# Computational Assessment of the Hazardous Release Dispersion from a Diesel Pool Fire in a Complex Building’s Area

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Computational Characteristics

#### 2.1. Flow Field Definition

#### 2.2. Fundamental Equations

#### 2.3. Numerical Details and Validation

#### 2.4. Boundary Conditions

_{ref}= 10.08 m/s.

#### 2.5. Diesel Pool Fire

- (a)
- Zone I—Very Serious Consequences, Lethal Concentration 50% (LC50 region). The possibility of death population in this zone is 50% due to inhalation of a toxic substance.
- (b)
- Zone ΙΙ—Serious Consequences, Lethal Concentration 1% (LC1 region). The possibility of death population in this zone is 1% due to inhalation of a toxic substance.
- (c)
- Zone III—Moderate Consequences,Immediately Dangerous to Life and Health (IDLH region) . Zone III could lead to reversible injuries following the inhalation of a toxic substance. Outside the Zone III is the safe area.

^{3}) and IDLH = 2500 (mg/m

^{3}).

## 3. Results and Discussion

#### 3.1. Flow Field Results

#### 3.2. Smoke Concentration

#### 3.3. Safety Limits

_{2}etc.). The safety limits of the LC1 Zone for the smoke concentration is 25,000 mg/m

^{3}, and for the IDLH Zone is 2500 mg/m

^{3}. The limits of the IDLH zones with contour graphs give practical visual information for the danger zones and the definition of the intervention zones.

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Wood, C.R.; Arnold, S.J.; Balogun, A.A.; Barlow, J.F.; Belcher, S.E.; Britter, R.E.; Cheng, H.; Dobre, A.; Lingard, J.J.N.; Martin, D.; et al. Dispersion Experiments in Central London: The 2007 DAPPLE project. Bull. Am. Meteorol. Soc.
**2009**, 90, 955–970. [Google Scholar] [CrossRef] [Green Version] - Dobre, A.; Arnold, S.J.; Smalley, R.; Boddy, J.W.D.; Barlow, J.; Tomlin, A.; Belcher, S.E. Flow field measurements in the proximity of an urban intersection in London, UK. Atmos. Environ.
**2005**, 39, 4647–4657. [Google Scholar] [CrossRef] - Allwine, K.J.; Flaherty, J.E. Urban Dispersion Program MSG05 Field Study: Summary of Tracer and Meteorological Measurements; PNNL-15969; Pacific Northwest National Laboratory: Richland, WA, USA, 2006.
- García-Sánchez, C.; Van Tendeloo, G.; Gorlé, C. Quantifying inflow uncertainties in RANS simulations of urban pollutant dispersion. Atmos. Environ.
**2017**, 161, 263–273. [Google Scholar] [CrossRef] - Markatos, N.C.; Malin, M.R.; Cox, G. Mathematical modelling of buoyancy-induced smoke flow in enclosures. Int. J. Heat Mass Transf.
**1982**, 25, 63–75. [Google Scholar] [CrossRef] - Stavrakakis, G.M.; Markatos, N.C. Simulation of airflow in one- and two-room enclosures containing a fire source. Int. J. Heat Mass Transf.
**2009**, 52, 2690–2703. [Google Scholar] [CrossRef] - Drikakis, D.; Rider, W. High-Resolution Methods for Incompressible and Low-Speed Flows; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Drikakis, D. Advances in turbulent flow computations using high-resolution methods. Prog. Aerosp. Sci.
**2003**, 39, 405–424. [Google Scholar] [CrossRef] [Green Version] - Ricci, A.; Burlando, M.; Freda, A.; Repetto, M.P. Wind tunnel measurements of the urban boundary layer development over a historical district in Italy. Build. Environ.
**2017**, 111, 192–206. [Google Scholar] [CrossRef] - Coceal, O.; Goulart, E.V.; Branford, S.; Glyn Thomas, T.; Belcher, S.E. Flow structure and near-field dispersion in arrays of building-like obstacles. J. Wind Eng. Ind. Aerodyn.
**2014**, 125, 52–68. [Google Scholar] [CrossRef] - Ramponi, R.; Blocken, B.; de Coo, L.B.; Janssen, W.D. CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths. Build. Environ.
**2015**, 92, 152–166. [Google Scholar] [CrossRef] [Green Version] - DePaul, F.T.; Sheih, C.M. Measurements of wind velocities in a street canyon. Atmos. Environ.
**1986**, 20, 455–459. [Google Scholar] [CrossRef] - Johnson, W.B.; Dabberdt, W.F.; Ludwig, F.L.; Allen, R.J. Field Study for Initial Evaluation of an Urban Diffusion Model for Carbon Monoxide; Comprehensive Report; Stanford Research Institute: Menlo Park, CA, USA, 1971; p. 144. [Google Scholar]
- Davidson, M.J.; Mylne, K.R.; Jones, C.D.; Phillips, J.C.; Perkins, R.J.; Fung, J.C.H.; Hunt, J.C.R. Plume dispersion through large groups of obstacles—A field investigation. Atmos. Environ.
**1995**, 29, 3245–3256. [Google Scholar] [CrossRef] - Baik, J.-J.; Kim, J.-J. A Numerical Study of Flow and Pollutant Dispersion Characteristics in Urban Street Canyons. J. Appl. Meteorol.
**1998**, 98, 1576–1589. [Google Scholar] [CrossRef] - Kim, J.-J.; Baik, J.-J. Effects of inflow turbulence intensity on flow and pollutant dispersion in an urban street canyon. J. Wind Eng. Ind. Aerodyn.
**2003**, 91, 309–329. [Google Scholar] [CrossRef] - Hunter, L.J.; Johnson, G.T.; Watson, I.D. An investigation of three-dimensional characteristics of flow regimes within the urban canyon. Atmos. Environ. Part B Urban Atmos.
**1992**, 26, 425–432. [Google Scholar] [CrossRef] - Johnson, W.B.; Ludwig, F.L.; Dabberdt, W.F.; Allen, R.J. An Urban Diffusion Simulation Model For Carbon Monoxide. J. Air Pollut. Control. Assoc.
**1973**, 23, 490–498. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Dabberdt, W.F.; Ludwig, F.L.; Johnson, W.B. Validation and applications of an urban diffusion model for vehicular pollutants. Atmos. Environ.
**1973**, 7, 603–618. [Google Scholar] [CrossRef] - Liu, C.-H.; Wong, C.C.C. On the pollutant removal, dispersion, and entrainment over two-dimensional idealized street canyons. Atmos. Res.
**2014**, 135–136, 128–142. [Google Scholar] [CrossRef] - Hu, L.H.; Huo, R.; Yang, D. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow. J. Hazard. Mater.
**2009**, 166, 394–406. [Google Scholar] [CrossRef] - Soulhac, L.; Garbero, V.; Salizzoni, P.; Mejean, P.; Perkins, R.J. Flow and dispersion in street intersections. Atmos. Environ.
**2009**, 43, 2981–2996. [Google Scholar] [CrossRef] - Hoydysh, W.G.; Dabberdt, W.F. Concentration fields at urban intersections: fluid modeling studies. Atmos. Environ.
**1994**, 28, 1849–1860. [Google Scholar] [CrossRef] - Dabberdt, W.; Hoydysh, W.; Schorling, M.; Yang, F.; Holynskyj, O. Dispersion modeling at urban intersections. Sci. Total. Environ.
**1995**, 169, 93–102. [Google Scholar] [CrossRef] - Heath, T.; Smith, S.G.; Lim, B. Tall Buildings and the Urban Skyline:The Effect of Visual Complexity on Preferences. Environ. Behav.
**2000**, 32, 541–556. [Google Scholar] [CrossRef] - Aristodemou, E.; Boganegra, L.M.; Mottet, L.; Pavlidis, D.; Constantinou, A.; Pain, C.; Robins, A.; ApSimon, H. How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood. Environ. Pollut.
**2018**, 233, 782–796. [Google Scholar] [CrossRef] [PubMed] - Xing, Y.; Brimblecombe, P. Dispersion of traffic derived air pollutants into urban parks. Sci. Total. Environ.
**2018**, 622–623, 576–583. [Google Scholar] [CrossRef] [PubMed] - Davidson, M.J.; Snyder, W.H.; Lawson, R.E., Jr.; Hunt, J.C.R. Wind tunnel simulations of plume dispersion through groups of obstacles. Atmos. Environ.
**1996**, 30, 3715–3731. [Google Scholar] [CrossRef] - Sudheer, S.; Kumar, L.; Manjunath, B.S.; Pasi, A.; Meenakshi, G.; Prabhu, S.V. Fire safety distances for open pool fires. Infrared Phys. Technol.
**2013**, 61, 265–273. [Google Scholar] [CrossRef] - Vasanth, S.; Tauseef, S.M.; Abbasi, T.; Abbasi, S.A. Multiple pool fires: Occurrence, simulation, modeling and management. J. Loss Prev. Process. Ind.
**2014**, 29, 103–121. [Google Scholar] [CrossRef] - Chatris, J.M.; Quintela, J.; Folch, J.; Planas, E.; Arnaldos, J.; Casal, J. Experimental study of burning rate in hydrocarbon pool fires. Combust. Flame
**2001**, 126, 1373–1383. [Google Scholar] [CrossRef] - Jiang, P.; Lu, S.-X. Pool Fire Mass Burning Rate and Flame Tilt Angle under Crosswind in Open Space. Procedia Eng.
**2016**, 135, 261–274. [Google Scholar] [CrossRef] - Argyropoulos, C.D.; Sideris, G.M.; Christolis, M.N.; Nivolianitou, Z.; Markatos, N.C. Modelling pollutants dispersion and plume rise from large hydrocarbon tank fires in neutrally stratified atmosphere. Atmos. Environ.
**2010**, 44, 803–813. [Google Scholar] [CrossRef] - Argyropoulos, C.D.; Christolis, M.N.; Nivolianitou, Z.; Markatos, N.C. A hazards assessment methodology for large liquid hydrocarbon fuel tanks. J. Loss Prev. Process. Ind.
**2012**, 25, 329–335. [Google Scholar] [CrossRef] - Markatos, N.C.; Christolis, C.; Argyropoulos, C. Mathematical modeling of toxic pollutants dispersion from large tank fires and assessment of acute effects for fire fighters. Int. J. Heat Mass Transf.
**2009**, 52, 4021–4030. [Google Scholar] [CrossRef] - Baik, J.-J.; Kang, Y.-S.; Kim, J.-J. Modeling reactive pollutant dispersion in an urban street canyon. Atmos. Environ.
**2007**, 41, 934–949. [Google Scholar] [CrossRef] - Kastner-Klein, P.; Plate, E.J. Wind-tunnel study of concentration fields in street canyons. Atmos. Environ.
**1999**, 33, 3973–3979. [Google Scholar] [CrossRef] - Zhang, X.; Hu, L.; Tang, F.; Wang, Q. Large Eddy Simulation of Fire Smoke Re-circulation in Urban Street Canyons of Different Aspect Ratios. Procedia Eng.
**2013**, 62, 1007–1014. [Google Scholar] [CrossRef] - Pesic, D.J.; Blagojevic, M.D.; Zivkovic, N.V. Simulation of wind-driven dispersion of fire pollutants in a street canyon using FDS. Environ. Sci. Pollut. Res.
**2014**, 21, 1270–1284. [Google Scholar] [CrossRef] - Hu, L.H.; Xu, Y.; Zhu, W.; Wu, L.; Tang, F.; Lu, K.H. Large eddy simulation of pollutant gas dispersion with buoyancy ejected from building into an urban street canyon. J. Hazard. Mater.
**2011**, 192, 940–948. [Google Scholar] [CrossRef] - Hu, L.; Zhang, X.; Zhu, W.; Ning, Z.; Tang, F. A global relation of fire smoke re-circulation behaviour in urban street canyons. J. Civ. Eng. Manag.
**2015**, 21, 459–469. [Google Scholar] [CrossRef] - Pesic, D.J.; Zigar, D.N.; Anghel, I.; Glisovic, S.M. Large Eddy Simulation of wind flow impact on fire-induced indoor and outdoor air pollution in an idealized street canyon. J. Wind Eng. Ind. Aerodyn.
**2016**, 155, 89–99. [Google Scholar] [CrossRef] - Inagaki, A.; Kanda, M. Turbulent flow similarity over an array of cubes in near-neutrally stratified atmospheric flow. J. Fluid Mech.
**2008**, 615, 101–120. [Google Scholar] [CrossRef] - Shen, Z.; Wang, B.; Cui, G.; Zhang, Z. Flow pattern and pollutant dispersion over three dimensional building arrays. Atmos. Environ.
**2015**, 116, 202–215. [Google Scholar] [CrossRef] - King, M.-F.; Gough, H.L.; Halios, C.; Barlow, J.F.; Robertson, A.; Hoxey, R.; Noakes, C.J. Investigating the influence of neighbouring structures on natural ventilation potential of a full-scale cubical building using time-dependent CFD. J. Wind Eng. Ind. Aerodyn.
**2017**, 169, 265–279. [Google Scholar] [CrossRef] - Gough, H.; Sato, T.; Halios, C.; Grimmond, C.S.B.; Luo, Z.; Barlow, J.F.; Robertson, A.; Hoxey, R.; Quinn, A. Effects of variability of local winds on cross ventilation for a simplified building within a full-scale asymmetric array: Overview of the Silsoe field campaign. J. Wind Eng. Ind. Aerodyn.
**2018**, 175, 408–418. [Google Scholar] [CrossRef] - McGrattan, K.; Baum, H.; Rehm, R.; Hamins, A.; Forney, G.; Floyd, J.; Hostikka, S.; Prasad, K. Fire Dynamics Simulator (Version 5) Technical Reference Guide; NIST Special Publication: Gaithersburg, MD, USA, 2010; Volume 1018. [Google Scholar]
- Grigoriadis, D.G.E.; Sarris, I.E.; Kassinos, S.C. MHD flow past a circular cylinder using the immersed boundary method. Comput. Fluids
**2010**, 39, 345–358. [Google Scholar] [CrossRef] - Richards, P.J.; Hoxey, R.P. Appropriate boundary conditions for computational wind engineering models using the k-ϵ turbulence model. J. Wind Eng. Ind. Aerodyn.
**1993**, 46–47, 145–153. [Google Scholar] [CrossRef] - Richards, P.J.; Hoxey, R.P.; Short, J.L. Spectral models for the neutral atmospheric surface layer. J. Wind Eng. Ind. Aerodyn.
**2000**, 87, 167–185. [Google Scholar] [CrossRef] - Babrauskas, V. Estimating large pool fire burning rates. Fire Technol.
**1983**, 19, 251–261. [Google Scholar] [CrossRef] - Walton, W.D.; Twilley, W.H.; Putorti, A.D.; Hiltabrand, R.R. Smoke measurements using an advanced helicopter transported sampling package with radio telemetry. In Proceedings of the 18th Arctic and Marine Oilspill Program (AMOP) Technical Seminar, Environment, Ottawa, ON, Canada, 14–16 June 1995; pp. 1053–1074. [Google Scholar]
- Assael, M.J.; Kakosimos, K.E. Fires, Explosions, and Toxic Gas Dispersions: Effects Calculation and Risk Analysis; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]

**Figure 1.**Model city buildings arrangement (marked squares), diesel pool fire location (circle) and wind direction (arrow) for (

**a**) Case 1 where the Silsoe cube is also indicated; (

**b**) Case 2; and (

**c**) Case 3.

**Figure 2.**Pressure coefficient around the Silsoe Cube situated in the building array of Case 1, with “-” as the present results and with “o” as the measurements from the King, Gough [45] experiments.

**Figure 4.**Time-averaged streamlines of the horizontal plane Z = 1 m for (

**a**) Case 1; (

**b**) Case 2; (

**c**) Case 3.

**Figure 5.**Time-averaged streamlines at the symmetry plane Y = 0 m for (

**a**) Case 1; (

**b**) Case 2; (

**c**) Case 3.

**Figure 6.**Snapshots of the dispersion of smoke after 200 s of the incidence for (

**a**) Case 1; (

**b**) Case 2; (

**c**) Case 3.

**Figure 8.**Smoke average concentration distribution along (

**a**) line A; (

**b**) line B; (

**c**) line C; (

**d**) line D for Case 1 and (

**e**) the streamlines that define it.

**Figure 9.**Smoke average concentration distribution along (

**a**) A line; (

**b**) B line; (

**c**) C line; (

**d**) D line for Case 2 and (

**e**) the streamlines that define it.

**Figure 10.**Smoke average concentration distribution along (

**a**) line A; (

**b**) line B; (

**c**) line C; (

**d**) D line for Case 2 and (

**e**) the streamlines that define it.

**Figure 11.**The LC1 zone and the IDLH zone at the fire’s symmetry for (

**a**) Case 1; (

**b**) Case 2; (

**c**) Case 3 after 200 s of the fire incidence at the.

**Figure 12.**The LC1 and IDLH zones for a horizontal plane at Z = 1 m above the ground for (

**a**) Case 1; (

**b**) Case 2; (

**c**) Case 3, after 200 s of the fire accident.

Case 1 | Case 1 (Radius) | Case 2 (Radius) | Case 3 (Radius) | |
---|---|---|---|---|

LC1 zone | Horizontal Plane Z = 1 m | 1.35 m | 4.2 m | 1.8 m |

IDLH zone | Horizontal Plane Z = 1 m | 4.2 m | 2.46 m | 5.83 m |

LC1 zone | Fire’s symmetry plane | 0.6 m | 1.96 m | 2.5 m |

IDLH zone | Fire’s symmetry plane | 18.5 m | 10.4 m | 23.32 m |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Vasilopoulos, K.; Mentzos, M.; Sarris, I.E.; Tsoutsanis, P.
Computational Assessment of the Hazardous Release Dispersion from a Diesel Pool Fire in a Complex Building’s Area. *Computation* **2018**, *6*, 65.
https://doi.org/10.3390/computation6040065

**AMA Style**

Vasilopoulos K, Mentzos M, Sarris IE, Tsoutsanis P.
Computational Assessment of the Hazardous Release Dispersion from a Diesel Pool Fire in a Complex Building’s Area. *Computation*. 2018; 6(4):65.
https://doi.org/10.3390/computation6040065

**Chicago/Turabian Style**

Vasilopoulos, Konstantinos, Michalis Mentzos, Ioannis E. Sarris, and Panagiotis Tsoutsanis.
2018. "Computational Assessment of the Hazardous Release Dispersion from a Diesel Pool Fire in a Complex Building’s Area" *Computation* 6, no. 4: 65.
https://doi.org/10.3390/computation6040065