Thermal Behavior of a Building with Incorporated Phase Change Materials in the South and the North Wall
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Examined Building
2.2. Type 1270 for PCM
2.3. Weather Data
3. Results and Discussion
3.1. Energy Demand for Different Cases with and without PCM
3.2. Energy Demand for Different Cases with Variable Insulation Thickness in the South Wall
3.3. Energy Demand for Different Cases with Variable Insulation Thickness in the South and the North Walls
3.4. Temperature Profiles
4. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
Nomenclature
Cp | Specific heat capacity, J/kg K |
Cp,liquid | Specific heat capacity at liquid state, J/kg K |
Cp,solid | Specific heat capacity at solid state, J/kg K |
k | Thermal conductivity, W/m K |
mPCM | Mass of the PCM, kg |
q1, q2 | Energy quantities, J |
Q | Energy, kWh |
T | Temperature, oC |
U | Thermal transmittance, W/m2K |
Greek symbols | |
ρ | Density, kg/m3 |
Subscripts and superscripts | |
heat | Heating |
cool | Cooling |
Abbreviations | |
n_wall | North wall |
PCM | Phase Change Material |
s_wall | South wall |
References
- Soleimani, Z.; Calautit, J.K.; Hughes, B.R. Computational Analysis of Natural Ventilation Flows in Geodesic Dome Building in Hot Climates. Computation 2016, 4, 31. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C.; Moschos, K.; Antonopoulos, K.A. Energetic and financial evaluation of solar assisted heat pump space heating systems. Energy Convers. Manag. 2016, 120, 306–319. [Google Scholar] [CrossRef]
- Fantidis, J.G.; Bandekas, D.V.; Potolias, C.; Vordos, N. Cost of PV electricity—Case study of Greece. Sol. Energy 2013, 91, 120–130. [Google Scholar] [CrossRef]
- Kouremenos, D.A.; Antonopoulos, K.A.; Domazakis, E.S. Solar radiation correlations for the Athens, Greece. Sol. Energy 1985, 35, 259–269. [Google Scholar] [CrossRef]
- Kravvaritis, E.D.; Antonopoulos, K.A.; Tzivanidis, C.; Bellos, E. Solar Energy Management Using Phase Change Materials Passive Systems in the Athens Area Buildings. Int. J. Mech. Syst. Eng. 2015, 1, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Chou, H.-M.; Chen, C.-R.; Nguyen, V.-L. A new design of metal-sheet cool roof using PCM. Energy Build. 2013, 57, 42–50. [Google Scholar] [CrossRef]
- Jin, X.; Medina, M.A.; Zhang, X. Numerical analysis for the optimal location of a thin PCM layer in frame wall. Appl. Therm. Eng. 2016, 103, 1057–1063. [Google Scholar] [CrossRef]
- Romero-Sanchez, M.D.; Guillem-Lopez, C.; Lopez-Buendia, A.M.; Stamatiadou, M.; Mandilaras, I.; Katsourinis, D.; Founti, M. Treatment of natural stone with phase change materials: Experiments and computational approaches. Appl. Therm. Eng. 2012, 48, 136–143. [Google Scholar] [CrossRef]
- Kuznic, F.; Virgone, J. Experimental assessment of a phase change material for wall building use. Appl. Energy 2009, 86, 2038–2046. [Google Scholar] [CrossRef]
- Medina, M.A.; King, J.B.; Zhang, X. On the heat transfer rate reduction of structural insulated panels outfitted with phase change materials. Energy 2013, 33, 667–678. [Google Scholar] [CrossRef]
- Al-Saadi, S.N.; Zhai, Z. Modeling phase change materials embedded in building enclosure: A review. Renew. Sustain. Energy Rev. 2013, 21, 659–673. [Google Scholar] [CrossRef]
- Ibanez, M.; Lazaro, A.; Zalba, B.; Cabeza, L.F. An approach to the simulation of PCMs in building applications using TRNSYS. Appl. Therm. Eng. 2005, 25, 1796–1807. [Google Scholar] [CrossRef]
- Ahmad, M.; Bontemps, A.; Sallée, H.; Quenard, D. Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material. Energy Build. 2006, 38, 673–681. [Google Scholar] [CrossRef]
- Schranzhofer, H.; Puschnig, P.; Heinz, A.; Streicher, W. Validation of TRNSYS simulation model for PCM energy storages and PCM wall construction elements. In Proceedings of the ECOSTOCK 2006-10th International Conference on Thermal Energy Storage, Atlantic City, NJ, USA, 31 May–1 June 2006; Institute of Thermal Engineering, University of Technology Graz: Pomona, NJ, USA, 2006. [Google Scholar]
- Kuznik, F.; Virgone, J.; Johannes, K. Development and validation of a new TRNSYS type for the simulation of external building walls containing PCM. Energy Build. 2010, 42, 1004–1009. [Google Scholar] [CrossRef]
- Dentel, A.; Stephan, W. TRNSYS TYPE 399—Phase Change Materials in Passive and Active Wall Constructions; Institute for Energy and Building, Georg Simon Ohm University of Applied Sciences: Nürnberg, Germany, 2013. [Google Scholar]
- Al-Saadi, S.N.; Zhai, Z.J. TRNSYS Type 285—Phase Change Materials Embedded in Wall System; Department of Civil, Environmental and Architectural Engineering, University of Colorado: Boulder, CO, USA, 2014. [Google Scholar]
- Delcroix, B.; Kummert, M.; Daoud, A. Development and numerical validation of a new model for walls with phase change materials implemented in TRNSYS. J. Build. Perform. Simul. 2017, 10, 422–437. [Google Scholar] [CrossRef]
- Stritih, U.; Tyagi, V.V.; Stropnik, R.; Paksoy, H.; Haghighat, F.; Joybari, M.M. Integration of passive PCM technologies for net-zero energy buildings. Sustain. Cities Soc. 2018, 41, 286–295. [Google Scholar] [CrossRef]
- Fateh, A.; Borelli, D.; Devia, F.; Weinläder, H. Summer thermal performances of PCM-integrated insulation layers for light-weight building walls: Effect of orientation and melting point temperature. Therm. Sci. Eng. Progr. 2018, 6, 361–369. [Google Scholar] [CrossRef]
- Lu, S.; Zhao, Y.; Fang, K.; Li, Y.; Sun, P. Establishment and experimental verification of TRNSYS model for PCM floor coupled with solar water heating system. Energy Build. 2017, 140, 245–260. [Google Scholar] [CrossRef]
- Derradji, L.; Errebai, F.B.; Amara, M. Effect of PCM in Improving the Thermal Comfort in Buildings. Energy Procedia 2017, 107, 157–161. [Google Scholar] [CrossRef]
- Thermal Energy System Specialists (TESS). TESSLibs 3-Mathematical Reference, TRNSYS 17–Volume 5—Multizone Building Manual, Transient System Simulation Program; Solar Energy Laboratory (SEL), University of Wisconsin: Madison, WI, USA, 2012. [Google Scholar]
- BioPCM. Phase Change Energy Solutions Australia. 2015. Available online: http://phasechange.com.au/ (accessed on 21 December 2019).
- Tzivanidis, C.; Bellos, E.; Mitsopoulos, G.; Antonopoulos, K.A.; Delis, A. Energetic and financial evaluation of a solar assisted heat pump heating system with other usual heating systems in Athens. Appl. Therm. Eng. 2016, 106, 87–97. [Google Scholar] [CrossRef]
- YPEKA. EK407/B/9.4.2010, Regulation on Energy Performance in the Building Sector (20701-2/2010)—KENAK; YPEKA: Athens, Greece, 2010. (In Greek) [Google Scholar]
- YPEKA. EK407/B/9.4.2010, Regulation on Energy Performance in the Building Sector (20701-1/2010)—KENAK; YPEKA: Athens, Greece, 2010. (In Greek) [Google Scholar]
- Panayiotou, G.P.; Kalogirou, S.A.; Tassou, S.A. Evaluation of the application of Phase Change Materials (PCM) on the envelope of a typical dwelling in the Mediterranean region. Renew. Energy 2016, 97, 24–32. [Google Scholar] [CrossRef]
- Jayalath, A.; Aye, L.; Mendis, P.; Ngo, T. Effects of phase change material roof layers on thermal performance of a residential building in Melbourne and Sydney. Energy Build. 2016, 121, 152–158. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Floor area | 100 m2 |
Height | 3 m |
South double window | 6 m2 |
East double window | 3 m2 |
West double window | 3 m2 |
Wall U-value | 0.51 W/m2 K |
Specific Gains (equipment) | 250 W |
Persons | 5 |
Specific lighting | 5 W/m2 |
Shading factor | 60% |
Window U-value | 1.4 W/m2K |
Roof U-Value | 0.47 W/m2 K |
Materials | Density ρ (kg/m3) | Thermal Conductivity k (W/mK) | Specific Heat Capacity Cp (J/kgK) |
---|---|---|---|
Plaster | 2000 | 1.39 | 1000 |
Brick | 1800 | 0.89 | 1000 |
Insulation | 25 | 0.04 | 1500 |
Concrete | 1400 | 1.13 | 1000 |
Product BioPCM | Q25/M91 |
---|---|
Weight per area | 6.44 kg/m2 |
Thickness | 20 mm |
Dimensions/Width | 450 mm |
Melting temperature | 25 °C a |
Freezing temperature point | 21 °C a |
Density (liquid) | 850 kg/m3 |
Density (solid) | 1400 kg/m3 |
Specific heat capacity (liquid) | 2200 J/kgK |
Specific heat capacity (solid) | 4500 J/kgK |
Thermal conductivity (liquid) | 0.15 W/mK |
Thermal conductivity (solid) | 2.5 W/mK |
Latent heat storage capacity | 175 kJ/kg b |
Cases | North Wall | South Wall |
---|---|---|
(a) | Insulation = 0.06 m | Insulation = 0.06 m |
(b) | PCM | Insulation = 0.06 m |
(c) | Insulation = 0.06 m | PCM |
(d) | PCM | PCM |
(e) | Insulation = 0.06 m | no insulation, no PCM |
(f) | no insulation, no PCM | Insulation = 0.06 m |
(g) | no insulation, no PCM | no insulation, no PCM |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plytaria, M.T.; Tzivanidis, C.; Bellos, E.; Alexopoulos, I.; Antonopoulos, K.A. Thermal Behavior of a Building with Incorporated Phase Change Materials in the South and the North Wall. Computation 2019, 7, 2. https://doi.org/10.3390/computation7010002
Plytaria MT, Tzivanidis C, Bellos E, Alexopoulos I, Antonopoulos KA. Thermal Behavior of a Building with Incorporated Phase Change Materials in the South and the North Wall. Computation. 2019; 7(1):2. https://doi.org/10.3390/computation7010002
Chicago/Turabian StylePlytaria, Maria T., Christos Tzivanidis, Evangelos Bellos, Ioannis Alexopoulos, and Kimon A. Antonopoulos. 2019. "Thermal Behavior of a Building with Incorporated Phase Change Materials in the South and the North Wall" Computation 7, no. 1: 2. https://doi.org/10.3390/computation7010002
APA StylePlytaria, M. T., Tzivanidis, C., Bellos, E., Alexopoulos, I., & Antonopoulos, K. A. (2019). Thermal Behavior of a Building with Incorporated Phase Change Materials in the South and the North Wall. Computation, 7(1), 2. https://doi.org/10.3390/computation7010002