An Efficient Filter Implementation Method and Its Applications in Topology Optimization Utilizing k-d Tree Data Structure
Abstract
1. Introduction
2. Topology Optimization Problem Statement
2.1. Problem Formulation
2.2. Material Interpolation with Three-Phase SIMP Method
2.3. Filtering and Threshold Projection
2.4. Sensitivity Analysis
2.5. Neighborhood Search Based on k-d Tree Algorithm
| Algorithm 1: Construction of k-d Tree and Neighborhood Search |
|
2.6. The Extension of Neighborhood Search with k-d Tree
2.6.1. Planar Symmetry
2.6.2. Rotational Symmetry
2.6.3. Implicit Local Volume Constraint
3. Numerical Examples and Discussion
3.1. Example 1
3.2. Example 2
3.3. Example 3
3.4. Example 4
3.5. Example 5
3.6. Engineering Application
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bendsøe, M.P.; Kikuchi, N. Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 1988, 71, 197–224. [Google Scholar] [CrossRef]
- Bendsøe, M.P. Optimal shape design as a material distribution problem. Struct. Optim. 1989, 1, 193–202. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Sigmund, O. Material interpolation schemes in topology optimization. Arch. Appl. Mech. 1999, 69, 635–654. [Google Scholar] [CrossRef]
- Zhou, M.; Rozvany, G.I.N. The COC algorithm, part II: Topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 1991, 89, 309–336. [Google Scholar] [CrossRef]
- Long, K.; Wang, X.; Gu, X. Local optimum in multi-material topology optimization and solution by reciprocal variables. Struct. Multidiscip. Optim. 2018, 57, 1283–1295. [Google Scholar] [CrossRef]
- Xie, Y.M.; Steven, G.P. A simple evolutionary procedure for structural optimization. Comput. Struct. 1993, 49, 885–896. [Google Scholar] [CrossRef]
- Allaire, G.; Jouve, F.; Toader, A.M. Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 2004, 194, 363–393. [Google Scholar] [CrossRef]
- Wang, M.Y.; Wang, X.; Guo, D. A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 2003, 192, 227–246. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, W.; Zhong, W. Doing topology optimization explicitly and geometrically—A new moving morphable components based framework. J. Appl. Mech. 2014, 81, 081009. [Google Scholar] [CrossRef]
- Fu, Y.F.; Rolfe, B.; Chiu, L.N.S.; Wang, Y.; Huang, X.; Ghabraie, K. SEMDOT: Smooth-edged material distribution for optimizing topology algorithm. Adv. Eng. Softw. 2020, 150, 102921. [Google Scholar] [CrossRef]
- Fu, Y.F.; Rolfe, B.; Chiu, L.N.S.; Wang, Y.; Huang, X.; Ghabraie, K. Smooth topological design of 3D continuum structures using elemental volume fractions. Comput. Struct. 2020, 231, 106213. [Google Scholar] [CrossRef]
- Fu, Y.F.; Long, K.; Rolfe, B. On non-penalization SEMDOT using discrete variable sensitivities. J. Optim. Theory Appl. 2023, 198, 644–677. [Google Scholar] [CrossRef]
- Wei, P. Level set band method: A combination of density-based and level set methods for the topology optimization of continuums. Front. Mech. Eng. 2020, 15, 390–405. [Google Scholar] [CrossRef]
- Sigmund, O.; Petersson, J. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 1998, 16, 68–75. [Google Scholar] [CrossRef]
- Zhou, M.; Shyy, Y.K.; Thomas, H.L. Checkerboard and minimum member size control in topology optimization. Struct. Multidiscip. Optim. 2001, 21, 152–158. [Google Scholar] [CrossRef]
- Diaz, A.; Sigmund, O. Checkerboard patterns in layout optimization. Struct. Optim. 1995, 10, 40–45. [Google Scholar] [CrossRef]
- Poulsen, T.A. A simple scheme to prevent checkerboard patterns and one-node connected hinges in topology optimization. Struct. Multidiscip. Optim. 2002, 24, 396–399. [Google Scholar] [CrossRef]
- Haber, R.B.; Jog, C.S.; Bendsøe, M.P. A new approach to variable-topology shape design using a constraint on perimeter. Struct. Optim. 1996, 11, 1–2. [Google Scholar] [CrossRef]
- Petersson, J.; Sigmund, O. Slope constrained topology optimization. Int. J. Numer. Methods Eng. 1998, 41, 1417–1434. [Google Scholar] [CrossRef]
- Sigmund, O. Morthology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 2007, 33, 401–424. [Google Scholar] [CrossRef]
- Bourdin, B. Filters in topology optimization. Int. J. Numer. Methods Eng. 2001, 50, 2143–2158. [Google Scholar] [CrossRef]
- Groenwold, A.A.; Etman, L.F. A simple heuristic for gray-scale suppression in optimality criterion-based topology optimization. Struct. Multidiscip. Optim. 2009, 39, 217–225. [Google Scholar] [CrossRef]
- Wang, M.Y.; Wang, S. Bilateral filtering for structural topology optimization. Int. J. Numer. Methods Eng. 2005, 63, 1911–1938. [Google Scholar] [CrossRef]
- Sigmund, O.; Maute, K. Sensitivity filtering from a continuum mechanics perspective. Struct. Multidiscip. Optim. 2012, 46, 471–475. [Google Scholar] [CrossRef]
- Bruns, T.E.; Tortorelli, D.A. Topology optimization of non-linear elastic structures and compliant mechanisms. Comput. Methods Appl. Mech. Eng. 2001, 190, 3443–3459. [Google Scholar] [CrossRef]
- Guest, J.K.; Prévost, J.H.; Belytschko, T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Methods Eng. 2004, 61, 238–254. [Google Scholar] [CrossRef]
- Wang, F.; Lazarov, B.S.; Sigmund, O. On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim. 2011, 43, 767–784. [Google Scholar] [CrossRef]
- Sigmund, O. A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 2001, 21, 120–127. [Google Scholar] [CrossRef]
- Lazarov, B.S.; Sigmund, O. Filters in topology optimization based on Helmholtz-type differential equations. Int. J. Numer. Methods Eng. 2011, 86, 765–781. [Google Scholar] [CrossRef]
- Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B.S.; Sigmund, O. Efficient topology optimization in MATLAB using 88 lines of code. Struct. Multidiscip. Optim. 2011, 43, 1–6. [Google Scholar] [CrossRef]
- Zhao, Z.L.; Rong, Y.; Yan, Y.; Feng, X.Q.; Xie, Y.M. A subdomain-based parallel strategy for structural topology optimization. Acta Mech. Sin. 2023, 39, 422357. [Google Scholar] [CrossRef]
- Foley, T.; Sugerman, J. KD-tree acceleration structures for a GPU raytracer. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, Los Angeles, CA, USA, 30–31 July 2005; pp. 15–22. [Google Scholar]
- Narasimhulu, Y.; Suthar, A.; Pasunuri, R.; Vadlamudi, C.V. CKD-Tree: An Improved KD-Tree Construction Algorithm. In Proceedings of the ISIC2021: International Semantic Intelligence Conference, New Delhi, India, 25–27 February 2021; pp. 211–218. Available online: https://ceur-ws.org/Vol-2786/Paper28.pdf (accessed on 15 March 2024).
- Rozvany, G.I. A critical review of established methods of structural topology optimization. Struct. Multidiscip. Optim. 2009, 37, 217–237. [Google Scholar] [CrossRef]
- Li, Q.; Liang, G.; Luo, Y.; Zhang, F.; Liu, S. An explicit formulation for minimum length scale control in density-based topology optimization. Comput. Methods Appl. Mech. Eng. 2023, 404, 115761. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Wei, P.; Wang, W. Parameterized level-set based topology optimization method considering symmetry and pattern repetition constraints. Comput. Methods Appl. Mech. Eng. 2018, 340, 1079–1101. [Google Scholar] [CrossRef]
- Zuo, Z.H.; Xie, Y.M.; Huang, X. Optimal topological design of periodic structures for natural frequencies. J. Struct. Eng. 2011, 137, 1229–1240. [Google Scholar] [CrossRef]
- Dou, S. A projection approach for topology optimization of porous structures through implicit local volume control. Struct. Multidiscip. Optim. 2020, 62, 835–850. [Google Scholar] [CrossRef]
- Zuo, Z.H.; Huang, X.; Yang, X.; Rong, J.H.; Xie, Y.M. Comparing optimal material microstructures with optimal periodic structures. Comput. Mater. Sci. 2013, 69, 137–147. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Y.M. Optimal design of periodic structures using evolutionary topology optimization. Struct. Multidiscip. Optim. 2008, 36, 597–606. [Google Scholar] [CrossRef]
- Svanberg, K. The method of moving asymptotes—A new method for structural optimization. Int. J. Numer. Methods Eng. 1987, 24, 359–373. [Google Scholar] [CrossRef]
- Wu, J.; Aage, N.; Westermann, R.; Sigmund, O. Infill optimization for additive manufacturing—Approaching bone-like porous structures. IEEE Trans. Vis. Comput. Graph. 2017, 24, 1127–1140. [Google Scholar] [CrossRef]
- Alkebsi, E.A.; Ameddah, H.; Outtas, T.; Almutawakel, A. Design of graded lattice structures in turbine blades using topology optimization. Int. J. Comput. Integr. Manuf. 2021, 34, 370–384. [Google Scholar] [CrossRef]
- Stanford, B.; Beran, P.; Bhatia, M. Aeroelastic topology optimization of blade-stiffened panels. J. Aircr. 2014, 51, 938–944. [Google Scholar] [CrossRef]
- Zhang, C.; Long, K.; Zhang, J.; Lu, F.; Bai, X.; Jia, J. A topology optimization methodology for the offshore wind turbine jacket structure in the concept phase. Ocean Eng. 2022, 266, 112974. [Google Scholar] [CrossRef]
- Lan, R.; Long, K.; Saeed, A.; Geng, R.; Chen, Y.; Zhang, J.; Tao, T.; Liu, J. Fail-safe topology optimization for a four-leg jacket structure of offshore wind turbines. Structures 2024, 62, 106183. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Long, K.; Saeed, A.; Tao, T.; Chen, J. Topology optimization on a jacket structure for offshore wind turbines by altering structural design domain. Appl. Ocean Res. 2025, 154, 104421. [Google Scholar] [CrossRef]
- Lu, F.; Long, K.; Zhang, C.; Zhang, J.; Tao, T. A novel design of the offshore wind turbine tripod structure using topology optimization methodology. Ocean Eng. 2023, 280, 114607. [Google Scholar] [CrossRef]

















| Number of Elements | Element Size | Filter Radius | Brute-Force (Search/Overall Time) | k-d Tree (Search/Overall Time) |
|---|---|---|---|---|
| 2500 | 2 × 2 × 2 | 10 | 13.72/1598.54 | 0.76/1563.11 |
| 20,000 | 1 × 1 × 1 | 5 | 1175.47/3689.21 | 8.74/2491.73 |
| 160,000 | 0.5 × 0.5 × 0.5 | 2.5 | - | 78.41/31,038.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Saeed, A.; Long, K.; Chen, Y.; Geng, R.; Jia, J.; Tao, T. An Efficient Filter Implementation Method and Its Applications in Topology Optimization Utilizing k-d Tree Data Structure. Computation 2025, 13, 262. https://doi.org/10.3390/computation13110262
Huang J, Saeed A, Long K, Chen Y, Geng R, Jia J, Tao T. An Efficient Filter Implementation Method and Its Applications in Topology Optimization Utilizing k-d Tree Data Structure. Computation. 2025; 13(11):262. https://doi.org/10.3390/computation13110262
Chicago/Turabian StyleHuang, Jingbo, Ayesha Saeed, Kai Long, Yutang Chen, Rongrong Geng, Jiao Jia, and Tao Tao. 2025. "An Efficient Filter Implementation Method and Its Applications in Topology Optimization Utilizing k-d Tree Data Structure" Computation 13, no. 11: 262. https://doi.org/10.3390/computation13110262
APA StyleHuang, J., Saeed, A., Long, K., Chen, Y., Geng, R., Jia, J., & Tao, T. (2025). An Efficient Filter Implementation Method and Its Applications in Topology Optimization Utilizing k-d Tree Data Structure. Computation, 13(11), 262. https://doi.org/10.3390/computation13110262

