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Abstract: Engineers have consistently prioritized the maintenance of structural serviceability and
safety. Recent strides in design codes, computational tools, and Structural Health Monitoring
(SHM) have sought to address these concerns. On the other hand, the burgeoning application of
machine learning (ML) techniques across diverse domains has been noteworthy. This research
proposes the combination of ML techniques with SHM to bridge the gap between high-cost and
affordable measurement devices. A significant challenge associated with low-cost instruments lies
in the heightened noise introduced into recorded data, particularly obscuring structural responses
in ambient vibration (AV) measurements. Consequently, the obscured signal within the noise poses
challenges for engineers in identifying the eigenfrequencies of structures. This article concentrates
on eliminating additive noise, particularly electronic noise stemming from sensor circuitry and
components, in AV measurements. The proposed MLDAR (Machine Learning-based Denoising of
Ambient Response) model employs a neural network architecture, featuring a denoising autoencoder
with convolutional and upsampling layers. The MLDAR model undergoes training using AV response
signals from various Single-Degree-of-Freedom (SDOF) oscillators. These SDOFs span the 1–10 Hz
frequency band, encompassing low, medium, and high eigenfrequencies, with their accuracy forming
an integral part of the model’s evaluation. The results are promising, as AV measurements in an
image format after being submitted to the trained model become free of additive noise. This with
the aid of upscaling enables the possibility of deriving target eigenfrequencies without altering
or deforming of them. Comparisons in various terms, both qualitative and quantitative, such as
the mean magnitude-squared coherence, mean phase difference, and Signal-to-Noise Ratio (SNR),
showed great performance.

Keywords: ambient vibration; convolutional neural networks; denoising; machine learning; structural
health monitoring

1. Introduction

Structural Health Monitoring (SHM) has become an intriguing topic during the last
decades and is applied to various fields of civil, mechanical, automotive, and aerospace
engineering, among others. Estimating the health condition and understanding the unique
characteristics of structures by assessing the measured physical parameters in real time
represents a major objective of SHM. As a result, signal processing has become an essential
and inseparable part of methodologies introduced via research related to SHM. The appli-
cation of signal processing techniques to the structural damage identification procedure is
classified into two types of approaches, namely, (i) time-domain and (ii) frequency-domain
methods. Experimental studies have assessed the potential of signal processing techniques
in the two aforementioned domains, aiming to enhance vibration-based structural damage
detection subjected to environmental effects (earthquakes, wind, etc.).
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Although multiple review studies have been published on vibration-based structural
damage detection, there have been no studies on categorizing signal processing techniques
based on feature extraction procedures that belong to time and frequency domains for SHM
purposes. Recently, this was explored in the work by Zhang et al. [1]. Meanwhile, with the
developments in the classical SHM approach, neural networks and big data analytics have
paved the way for a new approach in the field of SHM. As Zinno et al. [2] showcased with
their work, Artificial Intelligence (AI) could benefit SHM applications for bridge structures
in several phases: construction, development, management, and maintenance. Moreover,
buildings are aging, and deriving newer architectural trends while preserving building
heritage is not only of high value but also a complex procedure requiring multi-criteria
approaches to decision making to be implemented [3]. Therefore, AI-based methodologies
specially tailored to assist the preservation of building heritage through SHM techniques
have already been developed and are summarized in the work by Mishra [4]. Generally
speaking, one of the most common implementations of deep learning methodologies
in SHM applications relies on the convolutional neural network (CNN) architecture; a
summary of these can be found in the recent work by Sony et al. [5]. As is mentioned in
the conclusion of the aforementioned work, one of the targets of future research will be the
development of the real-time implementation of CNN-based approaches in everyday SHM
practice; the model presented in the current work was developed for real-world practice.
CNN-based models have already been applied with great success in different scientific
fields, e.g., the work by Xu et al. [6], which also inspired the authors to develop the model
presented in the current study; more specifically, in the work by Xu et al. [6], a CNN
and a Recurrent Neural Network (RNN) were combined in order to dynamically detect
levels of ambient noise from speech gaps and remove them from audio signals without
distorting the speech audio quality. Also, during the last decades, multiple Deep Learning
models have found a successful place in the denoising task for various noisy images. An
overview about this can be seen in Elad et al.’s [7] work and Izadi et al.’s [8] work. In
a recent investigation, Damikoukas and Lagaros [9] explored the feasibility of utilizing
an ML model as a robust tool to predict building earthquake responses, addressing the
shortcomings of simplified models. The study advanced by integrating AV measurements
and earthquake time-history data into a neural network framework. This innovative model
presents a promising pathway to deepen our comprehension of structural behavior in the
face of seismic events, thereby contributing to the advancement of earthquake resilience
in building design and engineering. Other recent works that tried to take advantage of
neural networks in structural engineering and seismic response estimation are those of
Xiang et al. [10] and Demertzis et al. [11].

The motivation behind this research was to delve into the potential of Deep Learning in
addressing denoising challenges associated with Micro-Electromechanical System (MEMS)
digital sensors, specifically accelerometers. This category of sensors is notable for its cost-
effectiveness compared to alternatives like force balance accelerometers. However, they
often contend with elevated levels of electronic noise. Recognizing the ongoing strides in AI
capabilities and their ubiquitous integration into various domains, the motivation behind
this work was to leverage Deep Learning for denoising tasks, laying the groundwork
for more advanced applications, such as the real-time denoising of acceleration time
histories. MEMS digital sensors, while economically advantageous, can suffer from inherent
electronic noise. This noise can compromise the accuracy of measurements, especially in
dynamic applications like acceleration monitoring. By harnessing the power of Deep
Learning, this research aims to effectively mitigate this noise and enhance the reliability of
sensor outputs. The broader context lies in the rapid evolution of AI technologies, which
are progressively becoming integral components of everyday applications. This research
envisions the deployment of Neural Processing Unit (NPU) hardware at the measurement
site, paving the way for the real-time denoising of acceleration time histories. This not
only addresses current challenges but also anticipates future scenarios where advanced
techniques are seamlessly integrated into the measurement process. The utilization of NPUs
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represents a strategic move toward decentralized processing, enabling on-site denoising
without relying solely on external computational resources. As a result, this research
endeavors to contribute to the practical implementation of AI-driven denoising techniques,
fostering advancements in the field of sensor technology and real-time data processing.

The achievement of this study is that ambient vibration (AV) measurements are
processed through a properly calibrated neural network (NN) in an image format, and
the structural response is unveiled after removing the additive electrical noise from the
AV recordings. To train the model, 1197 structural oscillators (models of Single Degree
of Freedom (SDOF)) were developed, from which 10,773 numerically produced noisy
signals were generated. These signals were converted into images in order to be fed to the
NN-based model chosen for the purposes of this study. For validation purposes, the results
were converted back to numerical values in order to assess the level of denoising, among
other factors, in terms of frequency spectra between predicted and target signals. The
proposed model is called MLDAR, which stands for Machine Learning-based Denoising of
Ambient Response.

The main contributions of this paper are (i) the denoising of ambient vibration (AV)
acceleration measurements (ii) by presuming the structural eigenfrequencies in domain
spectra needed for further structural analysis and assessment, all of which are realized by
(iii) exploiting the power of neural networks (NNs) and Deep Learning (DP) deploying a
multi-convolutional and transposed convolutional network.

The remainder of this paper is organized as follows. Section 2 generally describes the
characteristics of the structural response generated by ambient vibration, how research
on SHM during the last several decades has been progressing, and how new technologies
are finding their fit due to their versatility and cost efficiency. In Section 2, the structural
parameters used for the creation of the dataset are also presented, along with the list of the
assumptions implemented. Afterward, Section 3 introduces the Machine Learning-based
Denoising of Ambient Response (MLDAR) model, the basic principles on which it was
based on, and also all the chosen parameters of its structure. Thereafter, Section 4 showcases
the validation results of the proposed MLDAR model, both qualitative and quantitative.
The paper concludes with some final remarks given in Section 5 and insights into the
authors’ future work.

2. Structural Response Due to Ambient Vibration and SDOF Models

In this section, the characteristics of the structural response generated by means of
ambient vibration is provided, together with the details of the models used to calibrate the
neural network model developed for the purposes of this study.

2.1. Structural Response Generated by Ambient Vibration

Structures are permanently induced by various types of site excitations, which refer
to either ground vibrations related to nature, e.g., earthquake genesis, or those generated
by humans, like the vibrations generated during excavations, traffic, construction works,
etc. Thus, structures continuously vibrate due to the above-mentioned causes, offering
the possibility of monitoring and studying the structural response permanently. The
structural response is of high value for structural engineers, as, among other tasks, they
can derive the dynamic characteristics of the structure through the measurements they
collect. Structural Health Monitoring (SHM) is a field where multiple sensors are deployed
in order to enable engineers to monitor and assess the structural integrity, assist in deciding
which interventions should be implemented, or even be alerted to an event, either at the
precautionary or post-event state (early warning, etc.).

As nowadays, advancements in the manufacturing and technology of sensors and
microcontrollers are huge, more and more sensing devices are released without any dis-
counts on the level of their quality, shifting SHM research away from the traditional wired
acceleration-sensing systems [12–15]. Meanwhile, attempts to broaden the use of SHM
have been made, as more and more standards and design codes are being revised where
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SHM appears as an option or as an obligation for the engineers [16–19]. Therefore, there
is an opportunity to ease any disadvantages of low-cost monitoring devices in terms of
their implementation in civil engineering projects, bringing SHM into the mainstream of
the structural engineering profession.

A common disadvantage of low-cost sensing devices is the higher level of noise that is
introduced into the measurements. This noise is the additive distortion of the true-value
signals. When it comes to high-magnitude motions, it is not an issue, as the real values
can be acquired and processed easily. However, when we are referring to the ambient
response of structures, the magnitude scale is really small, even smaller than today’s low-
cost accelerometers’ level of noise. Therefore, in order to make use of noisy measurements
in various algorithms and methodologies, time-domain dynamic quantities are usually
skipped in favor of frequency-domain ones, such as eigenfrequencies. There are various
data processing techniques that unveil information hidden by noise, such as the averaging
of Fourier Spectra (e.g., [20]) and the recent work by the authors [21]. As said before, in the
time domain, little can be done when measurements are already “noisy”, and here comes
the current work to fill the gap, taking advantage of the power of neural networks and
their image detection capabilities.

2.2. Models Used for Calibrating the NN

Neural networks, in order to be designed and trained, need both parameters of
a system: input(s) and output(s). From that point on, after we decide properly what
architecture we want and correctly configure every parameter, they can learn all those
complex relationships between the prediction and what we have as input data. In this work,
the approach is straightforward, as the aim is to train the neural network to distinguish
additive noise from a noisy signal, which includes an ambient vibration structural response,
and remove it in order to return a “clean” ambient vibration structural response signal. In
order to do this, we would ideally need the “clean” and “noisy” versions of lots of response
signals for different kinds of sensors and buildings. As that is not something easily feasible,
we decided to start building the network from the ground up, using numerical data that
corresponds to a batch of assumptions made both for sensor specifications and for the
building models themselves.

Therefore, all data/measurements used were numerically generated and computation-
ally derived from Newmark numerical integration. The reason was that we wanted to cover
a whole range of SDOF oscillators, with all the possible different parameters’ combinations.
In total, 1197 oscillators were used for the purposes of this study. The assumptions used to
construct these oscillators were based on the model building that can be seen in Figure 1.
The dimensions and other properties of the model building are specifically representative
of the floor plan typically found in residential concrete buildings in Greece. This deliberate
choice ensures that our study is grounded in a context reflective of prevalent architectural
norms in the region, contributing to the relevance and applicability of our findings within
the specified context. This model was constructed in the ADINA analysis software [22].

ADINA stands as a versatile software package renowned for its extensive capabilities
in finite element analysis (FEA) and computational fluid dynamics (CFD). Tailored to
address a diverse array of engineering challenges spanning multiple disciplines, ADINA
excels in solving problems related to structural mechanics, heat transfer, fluid dynamics,
electromagnetics, and multiphysics simulations. The acronym “ADINA” itself encapsulates
its core functionality, representing “Automatic Dynamic Incremental Nonlinear Analy-
sis”. As a comprehensive tool, ADINA’s strength lies in its ability to perform intricate
simulations, offering engineers and researchers a robust platform for tackling complex
problems in fields ranging from structural engineering to fluid dynamics. The software’s
broad applicability makes it an invaluable resource for professionals seeking accurate and
efficient solutions across various domains of engineering. ADINA’s prowess in dynamic,
incremental, and nonlinear analyses underscores its suitability for simulating real-world
scenarios, where the interactions between components and materials exhibit complex and
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dynamic behavior. By seamlessly integrating these capabilities, ADINA empowers users
to gain deeper insights into the performance of their designs, aiding in the optimization
of structures, processes, and systems. In essence, ADINA stands at the forefront of engi-
neering simulation software, providing a sophisticated and adaptable suite of tools for
addressing the multifaceted challenges inherent in the realm of finite element analysis
and computational fluid dynamics. The number of assumptions and parameters used are
shown in Table 1.

Figure 1. Typical building model in ADINA on which assumptions-table is referring to.

Table 1. Model parameters.

Geometry

Plan 10.00 × 7.00 (m2)
Stories 1 to 7
Story height 3.50 (m)
Slab thickness 0.25 (m)
Columns 0.50 × 0.50 (m2)
Beams 0.40 × 0.70 (m2)

Loads

Dead 806.75 (kN)
Live 806.75 (kN)
Safety factor 1 1

Dynamic characteristics

Mass (per story) 110.78 (tons)
Damping ratio ζ 5%
Eigenfrequency 1 to 10 Hz with step of 0.5

Material

Reinforced concrete
Bilinear material Figure 2
Yield point 0.0105 m 2

Post-yield stiffness 50% of geometric one 3

1 Assessment of existing conditions—real loads; 2 0.003 drift × 3.50 m = 0.0105 m (HazusC3L—LowCode). More
details can be found in Hazus®–MH 2.1 Technical Manual (see Paragraph 5.2.1 of [23]); 3 EC8–1 (Ke = 0.5Kg).
After first yield, loading is still happening with Ke f f , even for small forces than Fy.
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Figure 2 depicts the bilinear capacity curve used for all structural members. For
each structural element, we considered two distinct stiffness states: geometrical stiffness,
denoted by Kg, and effective stiffness, represented by Ke f f . The effective stiffness, Ke f f ,
is assumed to be half of the geometrical stiffness (Kg) and arises from the degradation
experienced by the member under deformation, particularly in conditions of higher loads.
This dual representation of stiffness allows for a more nuanced understanding of the
structural response. The geometrical stiffness, Kg, captures the inherent stiffness of the
member in its ideal, undistorted state, while the effective stiffness, Ke f f , accounts for the
impact of deformations and degradation induced by higher loads. By acknowledging
the dynamic interplay between these two stiffness states, the model provides a more
accurate and comprehensive depiction of the member’s behavior under varying conditions,
facilitating a more realistic simulation of structural performance.

Figure 2. Bilinear capacity curve of all structural members.

The numerically created ambient acceleration responses of the building’s models are
noiseless, as they would be measured in an ideal experimental world, where measuring
devices do not interfere in the slightest with measurable quantities. However, in real-world
engineering applications, not only quantities are recorded by means of monitoring devices,
as they are accompanied by various levels of noise, such as electronic noise. This family
of noises is mathematically described as white noise, and statistically, it follows a normal
distribution, with an average value of zero and a standard deviation related to the noise
levels of the corresponding measuring device. The Signal-to-Noise Ratio (SNR), Noise
Density (e.g., µg/

√
Hz), and others are terms that usually describe the levels of noise in

the recorded signals.
The final signals are the result of the sum of the aforementioned signals. The sampling

rate is 100 Hz, and the duration of the artificial recordings is 60 s. Each building model
consists of 1 to 7 floors, with a mass ranging between 80% and 120% of the aforementioned
typical values (see Table 1) and with an eigenfrequency ranging between 1 and 10 Hz with
a step of 0.5 Hz. Therefore, 1197 models of single-stage oscillators were derived. For each
of these models, there are three signal windows of the theoretically no-(additional)-noise
response and three electronic and non-electronic noise signal windows, which, superpo-
sitioned, lead to nine combinations of final response signals (pure oscillator response +
electronic/other noise). Thus, 10,773 artificial signals were generated, which were con-
verted into images and were the input of the machine learning model. They were created
in the Matlab environment (release R2021b [24]). Of the generated signals, 75% were used
for training (training set), while the other 25% were the validation sample (validation set).
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3. Machine Learning-Based Models: Architecture and Calibration

During the last decade, due to the advances achieved in computer technology, machine
learning has become very popular, having been applied with great success in different
scientific areas, like autonomous vehicles, visual recognition, news aggregation and fake
news detection, robotics, natural language processing, vocal Artificial Intelligence (AI),
etc. Convolutional neural networks (CNNs) represent a class of artificial neural networks
(ANNs) most commonly used for analyzing images. What makes them unique is that the
network learns to optimize the filters (or kernels) through automated learning, whereas in
traditional algorithms, these filters are hand-engineered. This independence from prior
knowledge and human intervention in feature extraction is a major advantage. CNNs have
applications in image and video recognition, recommender systems, image classification,
image segmentation, medical image analysis, natural language processing, brain–computer
interfaces, and financial time series.

3.1. Convolutional Neural Networks

Convolutional networks (e.g., LeCun et al. [25]), also known as convolutional neural
networks, or CNNs, are a specialized kind of neural network for processing data that has a
known grid-like topology. Examples include time-series data, which can be thought of as a
1-D grid taking samples at regular time intervals, and image data, which can be thought
of as a 2-D grid of pixels. Convolutional networks have been tremendously successful
in practical applications. The name “convolutional neural network” indicates that the
network employs a mathematical operation called convolution.

s(t) =
∫

x(a) · w(t − a)da (1)

where x(t) is the raw signal measurement at time t, w(a) is a weighted average that gives
more weight to recent measurements, a denotes the age of a measurement, and s(t) is the
smoothed estimate of the x(t) measurement.

Convolution is also denoted as follows:

s(t) = (x · w)(t) (2)

In convolutional network terminology, the first argument (the function x) to the
convolution is often referred to as the input, and the second argument (the function w)
is the kernel. The output is sometimes referred to as the feature map (Figure 3). In our
case, as also in many others, the convolution taking place is two-dimensional, and time is
discrete. Therefore, its mathematical notation, called convolution without flipping, which
is equivalent to cross-correlation, is defined as follows:

s(i, j) = (K · I)(i, j) = ∑
m

∑
n

I(i + m, j + n) · K(m, n) (3)

where I is a two-dimensional array of data (e.g., an image), and K is a two-dimensional
kernel; both I and K are discrete values.

Figure 3. A 2D CNN channel.
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3.2. The Autoencoders

An autoencoder is a neural network that is trained to attempt to copy its input to
its output (Figure 4). Internally, it has a hidden layer h that describes a code used to
represent the input. The network may be viewed as consisting of two parts: an encoder
function h = f (x) and a decoder that produces a reconstruction r = g(h). If an autoencoder
succeeds in simply learning to set g( f (x)) = x everywhere, then it is not especially useful.
Instead, autoencoders are designed to be unable to learn to copy perfectly. Usually, they
are restricted in ways that allow them to copy only approximately and to copy only input
that resembles the training data. Because the model is forced to prioritize which aspects
of the input should be copied, it often learns useful properties of the data. Denoising
autoencoders must undo corrupted/noisy input measurements rather than simply copying
them as they are.

Figure 4. The general structure of an autoencoder, mapping an input x to an output (called recon-
struction) r through an internal representation or code h. The autoencoder has two components: the
encoder f (mapping x to h) and the decoder g (mapping h to r).

3.3. MLDAR: A Machine Learning-Based Model for Denoising the Ambient Structural Response

In this study, a machine learning-based model is presented that is able to denoise
ambient-response recordings collected using instruments with specifications equivalent to
those of a low-cost monitoring device (noise density: 22.5 µg/

√
Hz, MEMS type) used in

recent SHM studies [21,26–28]. The proposed model is labeled as MLDAR, which stands
for Machine Learning-based Denoising of Ambient Response, and is presented graphically
in Figure 5. In particular, MLDAR refers to a denoising autoencoder type of neural network
whose purpose is to reproduce its inputs’ time histories of ambient structural responses
free of noise.

Autoencoders serve as powerful tools for denoising tasks, leveraging their inherent
capacity to extract meaningful features from input data while effectively filtering out
noise. Comprising both an encoder and a decoder, autoencoders are designed to learn the
mapping of noisy input to a lower-dimensional representation, facilitating the subsequent
reconstruction of the clean input. The training process involves optimizing the model
to minimize the disparity between the reconstructed and pristine inputs, a mechanism
that inherently eradicates noise. The denoising prowess of autoencoders arises from
their fundamental need to discern between signals and noise. This process highlights
the autoencoder’s capability to emphasize salient features within the data, rendering it
particularly adept at tasks that demand precision amidst ambient noise. A pertinent
application of this capability can be observed in the context of Micro-Electromechanical
Systems (MEMs), where autoencoders prove invaluable in enhancing the accuracy of signal
extraction in the presence of inherent electronic noise. In essence, autoencoders stand out as
versatile tools for noise reduction, excelling in tasks that require the meticulous separation
of signals from noise. Their ability to learn intricate patterns in data and prioritize essential
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features positions them as valuable assets in applications ranging from MEMs to various
domains where precision amidst ambient noise is paramount.

Figure 5. The MLDAR neural network model.

The proposed NN model consists of the encoder, the latent space representation, the
decoder part, and last but not least, the upscaling part. The input to the proposed model
is the noisy ambient response, which can be viewed as a 2D image of size T × F with two
channels, where T represents the time length of the time-history signal, and F denotes the
amplitude of acceleration (in gs) at the given time. On the other hand, the output of the
model is the corresponding ambient response, clear of any additive noise (e.g., electronic).
Its form is also a 2D image with the same size, T × F, as the input.

The signal that precedes the generation of the image takes the form of a time history
of acceleration, organized with a consistent timestep. Essentially, it can be envisioned as a
one-dimensional matrix encompassing acceleration values, supplemented by a concealed
column that incorporates the temporal dimension. This representation is designed to
highlight the temporal evolution of the acceleration data, accentuating their dynamic
nature in the context of image creation. By structuring the information in this manner,
we aim to provide a comprehensive understanding of how acceleration changes over
time, offering valuable insights into the intricate process of image generation. The signals
throughout this work are not presented as graphs but as images. Therefore, they do not
have X- and Y-axes noted in the images themselves. However, they are implied. The X-axis
corresponds to samples, and the Y-axis represents acceleration values.

These images are normalized in the range of 0 to 1, a well-known practice for artificial
neural networks, depending also on the activation functions adopted. For the needs of
the study, a computing system equipped with a standalone NVIDIA Titan RTX graphics
card with 24 GB VRAM was used to implement the training part. Relying on the VRAM
capabilities, the I/O images’ dimensions were chosen as 512 × 171 pixels for the input and
as 1536 × 512 pixels for the output. Moreover, in addition to the noise elimination process,
an image upscaling process took place with the use of some further levels in the neural
network due to input-image compression due to hardware restrictions. The 510 width
pixels of input compressed images practically mean that the sampling rate was reduced
from 100 Hz to 8.53 Hz. The purpose of the upscaling part is to add the required details to
the output signals in order to enable further signal processing techniques, such as the Fast
Fourier Transform (FFT), and restore as much of the lost frequency spectrum as possible.
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After implementing the upscaling process, a sampling rate of 25.6 Hz is restored, meaning
that a bandwidth of 12.8 Hz is retained in our signals.

In order to convert images from acceleration values, the following limits were used:

• Input images (noisy response): minimum value of −0.000442 g, maximum value of
0.000437 g;

• Output images (no-noise response): minimum value of −0.000074 g, maximum value
of 0.000072 g.

The characteristics of the proposed MLDAR model (Figure 5) are the following: the
images introduced as input arguments are discretized with 512 × 171 pixels; therefore, the
input format is [171, 512, 1], where 171 refers to the number of pixels along the height
of each image, 512 is the number of pixels along the width of each image, and 1 is the
value of the monochrome channel (grayscale) of the image. The image is then passed
through a 2D convolutional encoder in order to extract the features of major importance.
The 2D encoder Table 2 consists of four layers of 2D convolution (Conv2D), and ReLu
was selected as the proper activation function. Every Conv2D layer is followed by Batch
Normalization and Dropout (with a frequency of 25%) layers in order to avoid overfitting
and so that the network is able to generalize with better accuracy. After implementing
the encoding part, two dense layers are used for the latent space representation in order
to achieve the desirable compression of the feature values. Feature values were unable
to be directly interpreted at the image-pixel input layer; however, it is now possible by
means of encoding the latent space representation in a reduced multidimensional space.
ReLu is also used as the proper activation function after the small dense layer. Having
reshaped the last dense layer to a two-dimensional one, the decoder Table 3 is used in
order to distance from the feature maps of latent space and return to the composition of
the monochrome image. The decoder consists of four levels of Conv2DTranspose, and
each of them is complemented by the ReLu activation function. Finally, the upscaling
section Table 3 is implemented, which enlarges the image to the desired output size of
1536 × 512 pixels. Upscaling is implemented at two levels, the Conv2DTranspose and the
Conv2D one. The first level relies on a ReLu activation function, while the last one relies
on a Sigmoid suppression function, since the output refers to an image with a color value
ranging between 0 to 1. Regarding the activation functions, the Sigmoid activation function
is characterized by an output range confined within [0,1]. This property proves particularly
advantageous when dealing with grayscale images, as their pixel values typically span
the range of 0 to 255 (or normalized to 0–1). Sigmoid effectively scales and squashes the
output to a probability-like range, aligning well with the characteristics of normalized
image data. Conversely, the Rectified Linear Unit (ReLU) activation function introduces
crucial nonlinearity to the model, enabling it to discern and learn intricate patterns and
representations within the data. Empirically, ReLU has demonstrated robust performance,
notably facilitating accelerated convergence during training. In the context of convolutional
autoencoders, ReLU is commonly employed in both the encoding and decoding layers.
This choice is deliberate, aiming to capture and preserve essential features in the data. The
rectification operation inherent in ReLU aids in the learning of hierarchical and spatial
features, enhancing the model’s capacity to extract meaningful information from the input.

The loss function chosen corresponds to the mean absolute error between the true
label and the prediction (Equation (4)):

loss = 1/n
n

∑
t=1

| et |= 1/n
n

∑
t=1

| ypred − ytrue | (4)

The batch size was chosen to be six sets of images (input–output). The training took
place in 80 epochs. The total number of training parameters was 106,375,947. The Adam
optimizer was used on this network with a learning step equal to 0.0001. At the last epoch,
the training error was 0.0045, while the prediction error was 0.0053 (in Figure 6, see the
history of the training process). The exploration of various model structures, hyperparame-
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ters, and training techniques is a crucial aspect of Deep Learning. This iterative process
entails systematic testing, evaluation, and subsequent refinement guided by performance
metrics. In the initial phase of parameter calibration, our emphasis primarily rested on
qualitative comparisons of the results. As the calibration progressed, a transition was
made to a more quantitative assessment approach, allowing for a comprehensive analysis
of the model’s performance and efficacy. This sequential evolution in our methodology
ensures a thorough and balanced evaluation of the experimented variables throughout the
experimentation process.

Table 2. Architecture of MLDAR—Part I. “C” indicates a convolutional layer.

Encoder

C1 1 C2 1 C3 1 C4 1

Filters: 128 64 64 64
Kernel size: (2,2) (2,2) (2,2) (2,2)
Dilation: (1,1) (2,2) (4,4) (6,6)
Stride: (1,1) (1,1) (1,1) (1,1)
Padding: Valid Valid Valid Valid
1 Followed by Batch Normalization, ReLu, and Dropout layers.

Table 3. Architecture of MLDAR—Part II. ‘C’ indicates a convolutional layer, and “TC” indicates a
transposed convolutional layer.

Decoder Upscaling

TC1 1 TC2 1 TC3 1 TC4 1 TC5 1 C5 2

Filters: 64 64 64 128 128 1
Kernel size: (2,2) (2,2) (2,2) (2,2) (4,4) (3,2)
Dilation: (6,6) (4,4) (2,2) (1,1) (1,1) (1,1)
Stride: (1,1) (1,1) (1,1) (1,1) (3,3) (1,1)
Padding: Valid Valid Valid Valid Valid Valid
1 Followed by ReLu; 2 followed by Sigmoid.

Figure 6. Training and validation loss function values over 80 epochs.

4. Frequency Spectrum Comparison: Qualitative and Quantitative Results

In this part of the study, some of the results obtained in the framework of the investiga-
tion are presented. In particular, low-, medium-, and high-frequency signals are randomly
selected, aiming to present the efficiency of the proposed MLDAR model for a spectrum of
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frequency values. Apart from the comparison of the results obtained in terms of images,
the frequency content is also compared, the outcome that was the primary goal of the
present work.

4.1. Qualitative Comparison: Sample of Low-Frequency Signals

Many mid- to high-rise buildings, bridges, and other flexible structures are usually
those showing low-frequency spectral responses, i.e., usually in the range of 1.0 to 3.0 Hz.
The dynamic characteristics of these ground-induced structures correspond to a lower
acceleration amplitude and a higher displacement amplitude. However, the damping part
takes a longer time to diminish the responses to this type of structure. To examine the
efficiency of the MLDAR model for such low-frequency cases, a sample denoted as 4_1 was
randomly chosen; this sample refers to structural model #4, while the #1 time-window is
used to represent the noise. The characteristics of the specific structural model #4 include
a frequency value equal to 1 Hz, a one-story structure, and a mass equal to 95% of the
reference mass provided in Table 1. The noisy signal can be seen in Figure 7, and the
non-noisy one can be found in Figure 8, while the predicted one obtained through the
MLDAR model is shown in Figure 9.

Figure 7. The noisy low-frequency signal (signal 4_1).

Figure 8. The low-frequency signal without noise [Target] (signal 4_1).

Figure 9. The denoised low-frequency signal through the MLDAR model [Prediction] (signal 4_1).

In order to make the difference in the magnitude scale (noisy vs. clean signal) more
clearly visible, an amplitude comparison between the signal with and without additive
noise is provided in Figure 10. This specific sample of noisy signal has values that range
in 7.75 × 10−4 mg with a standard deviation of 1.02 × 10−4 mg. On the other hand, its
counterpart, the target non-noisy one, has values that range in 7.27 × 10−5 mg with a
standard deviation of 9.69 × 10−6 mg. As can be seen, the range difference is almost
10 times. To this point, it should be pointed out again that the noisy signal is sampled at
100 Hz, and the non-noisy one, the product and target of the proposed NN, is sampled at
25.6 Hz. The reduction in the sampling rate consequently reduces the level of the total noise.
Therefore, calculating the average power of a signal at different sampling rates results in
different values. In this case, signal 4_1 in the original 100 Hz form has an average power
of −79.79 dB, that at 25.6 Hz has an average of −85.81 dB, and the target signal sampled at
25.6 Hz has an average power of −98.80 dB.
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Figure 10. Low-frequency case: scale comparison between noisy signal and non-noisy (cleaned–
predicted).

Regarding the frequency content of the signals generated by the specific model case, a
comparison at the frequency-domain level can be seen in Figure 11. The blue-colored line
depicts the noisy signal sampled at 100 Hz, and that was used in the .png format as input
in the NN. Orange and violet correspond to the target and predicted non-noisy signals,
which show the response of model #4 under ambient vibrations. As can be seen, the 1 Hz
frequency is indistinguishable in the ambient vibration measurements due to noise. Even
after the averaging of the Fast Fourier Transforms (FTTs) with a 1 min time-window, the 1
Hz frequency cannot be identified. On the other hand, the implementation of the MLDAR
model managed to remove the noise from the signal at an acceptable level, where the
extraction of the 1 Hz frequency is feasible. As can be seen, the whole frequency band
is much lower in the predicted and target signals, showing that the baseline high-level
electronic noise has been removed. A comparison in time-history terms can be seen in
Figure 12, where differences are colored in green and magenta, and matching regions are
in gray.

Figure 11. Low-frequency case: comparison of frequency content between response to ambient noise
(blue), target signal (orange), and predicted signal (violet)—frequency of 1.0 Hz.

Figure 12. Low-frequency case: comparison of frequency content between target signal (orange) and
prediction (light blue)—frequency of 1.0 Hz.
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4.2. Qualitative Comparison: Sample of Medium-Frequency Signal

Many mid-rise buildings, including typical concrete buildings designed based on
older building codes, are usually those showing medium-frequency spectral responses, i.e.,
usually in the range of 3.0 to 6.0 Hz. In order to further examine the efficiency of the
MLDAR model, a sample denoted by 631_4 was randomly chosen, belonging to the
medium-frequency cases. This sample refers to structural model #631, while the #4 time-
window was used to represent the noise. The characteristics of structural model #631
include a frequency value equal to 6 Hz, and similar to the previous case study, it is a
one-story structure, and the mass is equal to 80% of the reference mass provided in Table 1.
The noisy signal for this specific case can be seen in Figure 13, and the non-noisy one can
be found in Figure 14, while the predicted one obtained through the MLDAR model is
depicted in Figure 15.

Figure 13. The noisy medium-frequency signal (signal 631_4).

Figure 14. The medium-frequency signal without noise [Target] (signal 631_4).

Similar to the low-frequency case, and in order to make the difference in the magnitude
scale (noisy vs. clean signal) more clearly visible, an amplitude comparison between the
signal with and without additive noise is provided in Figure 16. This specific sample
of a noisy signal has values that range in 7.78 × 10−4 mg with a standard deviation of
1.03 × 10−4 mg. On the other hand, its counterpart, the target non-noisy one, has values
that range in 7.20 × 10−5 mg with a standard deviation of 1.08 × 10−5 mg. As can be seen,
the range difference is almost 10 times. For this case, signal 631_4 at the 100 Hz sampling
rate has an average power of −79.76 dB, that at 25.6 Hz has an average of −85.69 dB, and
the target signal sampled at 25.6 Hz has an average power of −95.53 dB.

Figure 15. The denoised medium-frequency signal through the MLDAR model [Prediction] (signal
631_4).
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Figure 16. Medium-frequency case: scale comparison between noisy signal and non-noisy (cleaned–
predicted).

Regarding the frequency content of the signals generated by the specific model case, a
comparison at the frequency-domain level can be seen in Figure 17. The blue-colored line
depicts the noisy signal sampled at 100 Hz, and that was used in the .png format as input
in the NN. Orange and violet correspond to target and predicted non-noisy signals, which
shows the response of model #631 under ambient vibrations. As can be seen, the 6 Hz
frequency is indistinguishable in the ambient vibration measurements due to noise. Even
after the averaging of the Fast Fourier Transforms (FTTs) with a 1 min time-window, the
6 Hz frequency cannot be identified, as its intensity is much smaller than that of the noise
band. On the other hand, the implementation of the MLDAR model managed to remove
the noise from the signal at an acceptable level, where the extraction of the 6 Hz frequency
is feasible. As can be seen, the whole frequency band is much lower in the predicted and
target signals, showing that the baseline high-level electronic noise has been removed. A
comparison in time-history terms can be seen in Figure 18, where differences are colored in
green and magenta, and matching regions are in gray.

Figure 17. Medium-frequency case: comparison of frequency content between response to ambient
noise (blue), target signal (orange), and predicted signal (violet)—frequency of 6.0 Hz.
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Figure 18. Medium-frequency case: Comparison of frequency content between target and predicted
non-electronically noisy signals. Differences are highlighted by orange and magenta colors, and
matching regions are in gray—frequency of 6.0 Hz.

4.3. Qualitative Comparison: Sample of High-Frequency Signal

Low-rise buildings such as those designed and built based on modern design codes
or older masonry building structures are usually those showing high-frequency spectral
responses, i.e., usually equal to 6.0 Hz or higher. The dynamic characteristics of these
ground-induced structures correspond to a higher acceleration amplitude, which, however,
is damped at a higher rate of response attenuation. To further examine the efficiency of
the proposed MLDAR model for higher-frequency cases, a sample denoted by 1194_7 was
randomly chosen. This sample refers to structural model #1194, while the #7 time-window
was used to represent the noise. The characteristics of structural model #1194 include a
frequency value equal to 10 Hz, a seven-story structure, and a mass equal to 105% of the
reference mass provided in Table 1. The noisy signal can be seen in Figure 19, and the
non-noisy one can be found in Figure 20, while the predicted one obtained through the
MLDAR model is shown in Figure 21.

Similar to the other two cases, for the high-frequency case as well, in order to make
the difference in the the magnitude scale (noisy vs. clean signal) more clearly visible, an
amplitude comparison between the signal with and without additive noise is provided in
Figure 22. This specific sample of noisy signal has values that range in 8.01 × 10−4 mg with
a standard deviation of 1.04 × 10−4 mg. On the other hand, its counterpart, the target non-
noisy one, has values that range in 6.94 × 10−5 mg with a standard deviation of 1.17 × 10−5.
As can be seen again, the range difference is almost 10 times. In this case, signal 631_4 at a
100 Hz sampling rate has an average power of −79.70 dB, that at 25.6 Hz has an average of
−85.56 dB, and the target signal sampled at 25.6 Hz has an average power of −92.51 dB.

Figure 19. The noisy high-frequency signal (signal 1194_7).

Figure 20. The high-frequency signal without noise [Target] (signal 1194_7).
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Figure 21. The denoised high-frequency signal through the MLDAR model [Prediction] (signal
1194_7).

Figure 22. High-frequency case: scale comparison between noisy signal and non-noisy (cleaned–
predicted).

Regarding the frequency content of the signals generated by the specific model case,
a comparison at the frequency-domain level can be seen in Figure 23. The blue-colored
line depicts the noisy signal sampled at 100 Hz, and that was used in the .png format as
input in the NN. Orange and violet correspond to target and predicted non-noisy signals,
which shows the response of model #1194 under ambient vibrations. As can be seen, the
10 Hz frequency is indistinguishable in the ambient vibration measurements due to noise.
Even after the averaging of the Fast Fourier Transforms (FTTs) with a 1 min time-window,
the frequency of interest cannot be identified, as its intensity is much smaller than that of
the noise band. On the other hand, the implementation of the MLDAR model managed
to remove the noise from the signal at an acceptable level, where the extraction of the
target frequency is feasible. As can be seen, the whole frequency band is much lower in the
predicted and target signals, showing that the baseline high-level electronic noise has been
removed. A comparison in time-history terms can be seen in Figure 24, where differences
are colored in green and magenta, and matching regions are in gray.

4.4. Quantitative Results: Comparing Frequency Spectra of Prediction and Target for the Whole
Dataset through Magnitude-Squared Coherence

Although the denoising process that relies on a Deep Learning model (MLDAR model)
concerns acceleration time-history recordings and operates on their image formatting, the
main objective of the original problem is the frequency extraction from ambient vibration
measurements; thus, the comparison should also be performed on the efficiency of the
MLDAR model in extracting eigenfrequencies from the denoised ambient response signals.
The first step is to convert the MLDAR image-output dataset into numerical time histories,
and then the frequency spectra need to be extracted through the Fast Fourier Transform
(FFT) algorithm.
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Figure 23. High-frequency case: comparison of frequency content between response to ambient noise
(blue), target signal (orange), and predicted signal (violet)—frequency of 10.0 Hz.

Figure 24. High-frequency case: Comparison between target and predicted non-electronically noisy
signals. Differences are highlighted by orange and magenta colors, and matching regions are in
gray—frequency of 10.0 Hz.

To compare the efficiency of the MLDAR method, a comparison in frequency terms
is also performed between predicted and target (original and non-noisy) signals for the
validation dataset (i.e., 2700 signals). The validation dataset contains around 25% of the
total generated 10,773 signals. Specifically, the magnitude-squared coherence values Cxy( f )
(Equation (5)) [29–31] are calculated for a specified frequency range between predicted and
target signals. Then, the mean value of Cxy( f ) for each sample pair of signals is derived.
This frequency range depends on the SDOF frequency of interest of each signal and is
determined as follows: fSDOF ± 0.1 (Hz). As seen in Figure 25, the minimum mean Cxy( f )
value for the whole validation dataset is 91%. The average value of the mean Cxy( f ) for
the whole validation dataset was calculated at 0.98, with a standard deviation of 0.01. The
standard deviation of Cxy( f ) for each sample varies, as shown in Figure 26.

Cxy( f ) =
|Pxy( f )|2

Pxx( f )Pyy( f )
. (5)

where Cxy( f ) is the magnitude-squared coherence of the x and y signals, Pxx( f ) and Pyy( f )
are the power spectral densities of the two signals, and Pxy( f ) is the cross-power spectral
density of the two signals. Cxy( f ) is between 0 and 1.
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Figure 25. Mean magnitude-squared coherence Cxy( f ) for whole validation dataset between target
and predicted signals.

Figure 26. Standard deviation of magnitude-squared coherence Cxy( f ) for whole validation dataset
between target and predicted signals.

For purposes of completeness, the phase difference (δϕ) between the target and pre-
dicted signals in the validation dataset is also presented based on the already-calculated
Pxy( f ) values, i.e., the cross-power spectral density of the two signals. Similarly, for the
same frequency range of each signal, the average of the difference in phase is calculated,
and the trend for all signals is summarized in Figure 27. The average value of the mean
(δϕ) for the whole dataset of signals is calculated as 0.20 degrees, with a standard deviation
of 3.245. The standard deviation of δϕ for each sample varies, as shown in Figure 28.
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Figure 27. Mean phase difference (δϕ) for whole validation dataset between target and predicted
signals.

Figure 28. Standard deviation of phase difference (δϕ) for whole validation dataset between target
and predicted signals.

Distinctive colors have been introduced in Figures 25 and 27, with the purpose of
highlighting the individuality of each graph point, emphasizing their uniqueness within
the dataset. The decision to employ varied colors is strategic, as using a uniform color for
all points could result in a visually overwhelming amalgamation, resembling a continuous
painted area due to the sheer volume of points within the limited horizontal space. By
assigning unique colors to each point, we ensure that the values remain discrete and
discernible, preventing the potential visual confusion that might arise from a homogeneous
color scheme.
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4.5. Quantitative Results: Evaluating Denoising Performance through SNR Levels

Finally, an additional index, the Signal-to-Noise Ratio (SNR) (Equation (6)), was
employed to assess the denoising performance. The SNR is a commonly used metric
in the fields of science and engineering to compare the level of a desired signal to the
level of background noise. It is typically calculated as the ratio of the signal power to the
noise power and is often expressed in decibels. An SNR ratio greater than 1:1 (exceeding
0 dB) indicates that the signal strength exceeds that of the noise, thereby signifying a
favorable outcome.

SNR =
Pclean
Pnoisy

(6)

The SNR was calculated by taking the average power, denoted by P. The SNR was
computed between the noisy and non-noisy signals, specifically between the target and
predicted signals. This calculation was performed for the entire validation set, and the
corresponding results are presented in Figure 29. SNR#1 refers to the ratio between the
target signal and the noisy signal, while SNR#2 represents the ratio between the predicted
signal and the noisy signal. The mean value of SNR#1 is found to be −8.40 decibels
(dB), indicating a relatively low signal strength compared to the background noise. The
median value for SNR#1 is −8.16 dB, suggesting a similar trend in the central tendency
of the data. Similarly, the mean of SNR#2 is −8.44 dB, implying a comparable signal–
noise relationship for the predicted signal. The median value for SNR#2 is −8.29 dB,
reinforcing the observations made from the mean value. These SNR measurements provide
quantitative information regarding the relationship between the target or predicted signals
and the accompanying noise. The negative dB values indicate that the noise level tends
to overshadow the signal strength, highlighting the need for further improvement in
denoising techniques to enhance signal clarity.

Figure 29. Signal-to-Noise Ratio (SNR) for whole validation dataset between target and predicted
signals.

5. Conclusions

This research proposes the use of a neural network model as a denoiser for ambient
vibration measurements, with the primary objective of removing noise while preserving the
essential information necessary for subsequent signal manipulation. In this study, signal
manipulation refers to the extraction of the dynamic characteristics, such as eigenfrequen-
cies and eigenmodes, of Single-Degree-of-Freedom (SDOF) building models.

In pursuit of denoising various signals, challenges arise after employing a digital
sensor or converting an analog sensor output into digital form, leaving limited options
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for noise reduction. One established approach involves the application of Digital Signal
Processing (DSP) techniques, such as digital filtering, moving average filters, and moving
median filters. These methods aim to effectively mitigate noise interference. An alternative
strategy entails implementing averaging techniques in the frequency domain following the
Fourier Transform. This approach proves particularly beneficial in addressing noise issues
by exploiting the frequency characteristics of the signals. In the context of analog sensors,
the quest for enhanced noise reduction requires a multifaceted approach. This includes
the adoption of superior digitization hardware, exemplified by high-quality Analog-to-
Digital Converters (ADCs). Furthermore, improvements in shielding for cables and the
integration of advanced decoupling transistors contribute significantly to fortifying the
system against unwanted noise. Nevertheless, in the specific context of this study, a
distinctive choice was made to utilize a Deep Learning architecture for denoising purposes.
This decision reflects a departure from traditional techniques, indicating an exploration into
the innovative realm of machine learning for noise reduction. By opting for Deep Learning,
this study endeavors to leverage the model’s ability to discern complex patterns and extract
relevant features, potentially offering a more sophisticated and adaptive solution to the
challenges posed by signal noise. This strategic shift aligns with the evolving landscape
of signal processing, embracing the promising capabilities of advanced machine learning
architectures for effective denoising in diverse sensor applications.

To train and validate the denoiser model, a dataset of response signals was artificially
generated based on existing accelerometer noise specifications. Both qualitative and quan-
titative evaluations demonstrate that the proposed MLDAR model effectively eliminates
almost all types of additive noise, including electronic and non-electronic sources, from
theoretically noise-free ambient response signals. Despite the significant difference in scale
between noisy and noise-free signals, as evident in Figures 10, 16, and 22, the MLDAR
model consistently succeeds in removing the noise from the signals. It is worth noting
that the MLDAR model produces output signals with a resolution of 12.8 Hz, which is
sufficient for most common building structures and civil engineering infrastructures. This
limitation is due to the smaller resolution of the input signals compared to the output
signals, potentially attributed to hardware capabilities. Nonetheless, the MLDAR model’s
upscaling capabilities open avenues for future work, enabling its utilization in versatile
and lightweight applications, such as web applications and IoT devices. This makes it
possible to combine the denoising model with earthquake building seismic assessment
tools and methodologies.

Moreover, the quantitative results of the MLDAR model, as presented in the last
paragraph of the numerical investigation section, exhibit its promising performance. The
validation dataset shows that the worst performance achieved was a 91% accuracy for
only a few cases, while the average score reached 98% (refer to Figure 25). This confirms
the successful accomplishment of the primary goal of this study, which is extracting the
eigenfrequencies of SDOF building models from noisy signals, a task previously challeng-
ing without extending the sampling time or employing statistical signal manipulation
techniques [21].

The model was trained using a dataset composed of artificially generated ambient
response signals designed to replicate the noise specifications of a MEMS-type accelerom-
eter, specifically the ADXL355 model. These signals were superimposed on the ambient
responses of Multi-Degree-of-Freedom (MDOF) building models. The outcomes showcased
the efficacy of the MLDAR model in effectively eliminating additive noise from ostensibly
noise-free ambient signals. Notably, the model demonstrated this capability despite the
substantial scale difference between noisy and non-noisy signals. A constraint observed is
the resolution of the output signal images, which restricts the signal’s useful bandwidth to
12.8 Hz, given a sampling rate of 25.6 Hz. Nevertheless, this resolution proves adequate
for the majority of building structures and applications in civil engineering. Quantitative
assessments affirm the model’s promising performance, with high magnitude-squared
coherence scores averaging at 98%, coupled with minimal phase differences of 0.20°. An
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impressive outcome of the study is the MLDAR model’s capacity to extract fundamen-
tal eigenfrequencies from MDOF building models even in the presence of noisy signals,
achieving the primary objective without the necessity of extending the sampling time or
employing statistical signal manipulation. To further enhance the capabilities of the ML-
DAR model in future endeavors, several avenues can be explored. Expanded Training Data:
Consider retraining the model by incorporating additional data from diverse sensors and
ambient vibration field measurements. Real-Time Implementation: Integrate the trained
model into a microcontroller or single-board microcomputer/barebone equipped with
AI capabilities. This would facilitate the real-time denoising of measurements. Notably,
Tensorflow, even in its Tensorflow Lite version, is compatible with a range of low-cost
devices (USD 50–150), such as Arduino Nano 33 BLE Sense, Espressif ESP32, Raspberry
Pi 4, NVIDIA® Jetson Nano™, and Coral Dev Board. Versatility Improvement: Explore
the possibility of enhancing the model’s versatility in signal denoising tasks, including
time-history signals of various natures. This expansion could broaden the applicability of
the MLDAR model across a wider spectrum of scenarios.
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