Numerical Modeling and Analysis of Transient and Three-Dimensional Heat Transfer in 3D Printing via Fused-Deposition Modeling (FDM)
Abstract
:1. Introduction
2. Mathematical Modeling and Conditions
2.1. Governing Equations and Discretization Scheme
- Conduction in x, y, and z directions.
- Convection and radiation () in x, y, and z directions.
- Temperature change in time.
2.2. Definition of Printing Path
2.3. Nominal Production Parameters and Material Properties
- Extrusion temperature (Text) is equal to 210 °C.
- Bed temperature (Tbed) is 60 °C.
- The air temperature is assumed to be 20 °C.
- The nominal effective heat transfer coefficient (heff) is 50 W/m2-K.
- Production speed is 60 mm/s.
- Density of PLA: 1240 kg/m3 [20].
- Specific heat (cp) of PLA: 1800 J/kg-K [21].
- Conductivity (k) of PLA: 0.13 W/m-K [21].
2.4. Modeled System and Solution Parameters (Nominal Case)
- X direction: The width of the part is 8 mm, divided into 24 parts (Δx = 0.333 mm).
- Y direction: The part is printed in 20 layers. The layer thickness is taken as 0.3 mm. The total height is 6 mm (Δy = layer thickness = 0.3 mm).
- Z direction: The depth of the part is 4 mm, divided into 12 parts (Δz = 0.333 mm)
- Time step: The algorithm is designed to advance 1 node in each time step. The time step size is calculated as Δt = Δx/speed = 0.005556 s.
3. Validation of the Methodology
3.1. Definition of the Benchmark Case
3.2. Analytical Solution
3.3. Mesh Study
3.4. Validation
4. Results
4.1. Temperature Contour Plots
4.2. Results of Sensitivity Analyses
4.2.1. Variation of Extrusion Temperature (Text)
4.2.2. Variation of Heat Transfer Coefficient
4.2.3. Variation of Air (Coolant) Temperature (Tair)
4.2.4. Variation of Bed Temperature (Tbed)
4.3. Local Variations: Intralayer and Interlayer Analyses
4.3.1. Intralayer Variation, Layer 4
- (I)
- Cooling rate at corner nodes (front right, front left, back left, and back right).
- (II)
- Cooling rate at z = 2 mm (left mid, right mid).
- (III)
- Cooling rate at x = 4 mm (front mid, back mid).
4.3.2. Interlayer Variation
4.4. Effect of Printing Pattern: Concentric vs. Zigzag
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Faludi, J.; Bayley, C.; Boghal, S.; Iribarne, M. Comparing environmental impacts of additive manufacturing vs. traditional machining via life-cycle assessment. Rapid Prototyp. J. 2015, 21, 14–33. [Google Scholar] [CrossRef]
- Bikas, H.; Stavropoulos, P.; Chryssolouris, G. Additive manufacturing methods and modelling approaches: A critical review. Int. J. Adv. Manuf. Technol. 2016, 83, 389–405. [Google Scholar] [CrossRef]
- Yang, F.; Pitchumani, R. Healing of thermoplastic polymers at an interface under nonisothermal conditions. Macromolecules 2002, 35, 3213–3224. [Google Scholar] [CrossRef]
- Wool, R.; O’Connor, K. A theory of crack healing in polymers. J. Appl. Phys. 1981, 52, 5953–5963. [Google Scholar] [CrossRef]
- Bartolai, J.; Simpson, J.; Xie, R. Predicting strength of additively manufactured thermoplastic polymer parts produced using material extrusion. Rapid Prototyp. J. 2018, 24, 321–332. [Google Scholar] [CrossRef]
- Edwards, S.F. The statistical mechanics of polymerized material. Proc. Phys. Soc. 1967, 92, 9–16. [Google Scholar] [CrossRef]
- Jud, K.; Kausch, H.; Williams, J. Fracture mechanics studies of crack healing and welding polymers. J. Mater. Sci. 1981, 16, 204–210. [Google Scholar] [CrossRef]
- Coogan, T.; Kazmer, D. Bond and part strength in fused deposition modeling. Rapid Prototyp. J. 2017, 23, 414–422. [Google Scholar] [CrossRef]
- Sun, Q.; Rizvi, G.; Bellehumeur, C.; Gu, P. Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp. J. 2008, 14, 72–80. [Google Scholar] [CrossRef]
- Seppala, J.; Migler, K. Infrared thermography of welding zones produced by polymerextrusion additive manufacturing. Addit. Manuf. 2016, 12, 71–76. [Google Scholar] [PubMed]
- Coogan, T.; Kazmer, D. Healing simulation for bond strength prediction of FDM. Rapid Prototyp. J. 2017, 23, 551–561. [Google Scholar] [CrossRef]
- Yin, J.; Lu, C.; Fu, J.; Huang, Y.; Zheng, Y. Interfacial bonding during multi-material fused deposition modeling (FDM) process due to inter-molecular diffusion. Mater. Des. 2018, 150, 104–112. [Google Scholar] [CrossRef]
- Basgul, C.; Thieringer, F.M.; Kurtz, S.M. Heat transfer-based non-isothermal healing model for the interfacial bonding strength of fused filament fabricated polyetheretherketone. Addit. Manuf. 2021, 46, 102097. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, X.Z.; Yu, W.W.; Deng, Y. Numerical investigation of the influence of process conditions on the temperature variation in fused deposition modeling. Mater. Des. 2017, 130, 59–68. [Google Scholar] [CrossRef]
- Ferraris, E.; Zhang, J.; Hooreweder, B.V. Thermography based in-process monitoring of fused filament fabrication of polymeric parts. CIRP Ann. Manuf. Technol. 2019, 68, 213–216. [Google Scholar] [CrossRef]
- Khanafer, K.; Al-Masri, A.; Deiab, I.; Vafai, K. Thermal analysis of fused deposition modeling process based finite element method: Simulation and parametric study. Numer. Heat Transf. A Appl. 2022, 81, 3–6. [Google Scholar] [CrossRef]
- Ramos, N.; Mittermeier, C.; Kiendl, J. Efficient Simulation of the Heat Transfer in Fused Filament Fabrication. J. Manuf. Process. 2023, 94, 550–563. [Google Scholar] [CrossRef]
- Mosleh, N.; Esfandeh, M.; Soheil, D. Simulation of Temperature Profile in Fused Filament Fabrication 3D Printing Method. Rapid Prototyp. J. 2024, 30, 134–144. [Google Scholar] [CrossRef]
- Chapra, S.; Canale, R. Numerical Methods for Engineers; McGraw-Hill Higher Education: Boston, MA, USA, 2010. [Google Scholar]
- Barrasa, J.O.; Ferrández-Montero, A.; Ferrari, B.; Pastor, J.Y. Characterisation and Modelling of PLA Filaments and Evolution with Time. Polymers 2021, 13, 2899. [Google Scholar] [CrossRef]
- Haleem, A.; Kumar, V.; Kumar, L. Mathematical Modelling & Pressure Drop Analysis of Fused Deposition Modelling Feed Wire. Int. J. Eng. Technol. 2017, 9, 2885–2894. [Google Scholar]
- Incropera, F.P.; Dewitt, D.P.; Bergman, T.L.; Lavine, A.S. The Plane Wall with Convection. In Fundamentals of Heat and Mass Transfer, 6th ed.; Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 272–275. [Google Scholar]
- Pereira, L.; Letcher, T.; Michna, G.J. The effects of 3d printing parameters and surface roughness on convective heat transfer performance. In Proceedings of the ASME Summer Heat Transfer Conference, Bellevue, WA, USA, 14–17 July 2019. [Google Scholar]
Neighboring Node | Contribution to II | |
---|---|---|
Left | ||
Right | ||
Bottom | ||
Top | ||
Front | ||
Back | +1 |
Neighboring Node | Contribution to I | |
---|---|---|
Left | ||
Right | ||
Bottom | ||
Top | ||
Front | ||
Back | +1 | |
b-vector (RHS) |
X Dimension | Y Dimension | Z Dimension | |||||||
---|---|---|---|---|---|---|---|---|---|
Root | |||||||||
1 | 1.53846 | 0.99617 | 1.15587 | 2.30769 | 1.11922 | 1.19027 | 0.76923 | 0.77905 | 1.09867 |
2 | 1.53846 | 3.55048 | −0.20310 | 2.30769 | 3.69934 | −0.25517 | 0.76923 | 3.36625 | −0.12433 |
3 | 1.53846 | 6.51508 | 0.06821 | 2.30769 | 6.61867 | 0.09502 | 0.76923 | 6.40275 | 0.03658 |
4 | 1.53846 | 9.58394 | −0.03254 | 2.30769 | 9.65929 | −0.04701 | 0.76923 | 9.50553 | −0.01683 |
5 | 1.53846 | 12.6870 | 0.01880 | 2.30769 | 12.7455 | 0.02758 | 0.76923 | 12.6272 | 0.00958 |
6 | 1.53846 | 15.8050 | −0.01219 | 2.30769 | 15.8525 | −0.01801 | 0.76923 | 15.7567 | −0.00617 |
7 | 1.53846 | 18.9306 | 0.00852 | 2.30769 | 18.9706 | 0.01265 | 0.76923 | 18.8903 | 0.00430 |
8 | 1.53846 | 22.0608 | −0.00629 | 2.30769 | 22.0952 | −0.00936 | 0.76923 | 22.0261 | −0.00316 |
9 | 1.53846 | 25.1937 | 0.00483 | 2.30769 | 25.224 | 0.00720 | 0.76923 | 25.1633 | 0.00243 |
10 | 1.53846 | 28.3286 | −0.00382 | 2.30769 | 28.3555 | −0.00571 | 0.76923 | 28.3015 | −0.00192 |
Total * | 0.9983 | 0.99746 | 0.99915 |
Mesh Structure | Temperature (degK) at t = 30 s. | Relative Change | |
---|---|---|---|
Mesh 1 | 4 × 6 × 2 | 451.81 | |
Mesh 2 | 8 × 12 × 4 | 451.27 | −0.12% |
Mesh 3 | 12 × 12 × 8 | 450.85 | −0.09% |
Mesh 4 | 12 × 12 × 12 | 450.73 | −0.03% |
Mesh 5 | 16 × 24 × 12 | 450.85 | 0.03% |
Mesh 6 | 24 × 24 × 12 | 450.90 | 0.01% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apaçoğlu-Turan, B.; Kırkköprü, K.; Çakan, M. Numerical Modeling and Analysis of Transient and Three-Dimensional Heat Transfer in 3D Printing via Fused-Deposition Modeling (FDM). Computation 2024, 12, 27. https://doi.org/10.3390/computation12020027
Apaçoğlu-Turan B, Kırkköprü K, Çakan M. Numerical Modeling and Analysis of Transient and Three-Dimensional Heat Transfer in 3D Printing via Fused-Deposition Modeling (FDM). Computation. 2024; 12(2):27. https://doi.org/10.3390/computation12020027
Chicago/Turabian StyleApaçoğlu-Turan, Büryan, Kadir Kırkköprü, and Murat Çakan. 2024. "Numerical Modeling and Analysis of Transient and Three-Dimensional Heat Transfer in 3D Printing via Fused-Deposition Modeling (FDM)" Computation 12, no. 2: 27. https://doi.org/10.3390/computation12020027
APA StyleApaçoğlu-Turan, B., Kırkköprü, K., & Çakan, M. (2024). Numerical Modeling and Analysis of Transient and Three-Dimensional Heat Transfer in 3D Printing via Fused-Deposition Modeling (FDM). Computation, 12(2), 27. https://doi.org/10.3390/computation12020027