Random Linear Network Coding for 5G Mobile Video Delivery
Abstract
:1. Introduction
2. Overview of Random Linear Network Coding
2.1. Introduction to RLNC
2.2. Sparse RLNC
2.3. Unequal Error Protection RLNC
2.4. RLNC Extensions to Erasure Networks
3. Overview of Video Delivery in 4G Mobile Cellular Networks
3.1. Mobile Video Delivery in 4G LTE
3.2. Core Network Support for Mobile Video Delivery over 4G LTE
- Transcoding: converts video content from one format to another by changing e.g., encoding format, resolution, codecs, frame rate, etc. Online (on-the-fly) transcoding is mostly used. In addition, offline transcoding can be used and it is done in a way that some popular videos are downloaded and optimized in advance before being stored in cache [23,24].
- Transrating: converts video by keeping the original video format and resolution and by changing number of bits per pixel. This technique is not widely used [44].
- ABR pacing: receives traffic from a content server with one pace and send it towards a consumer with another pace in order to limit the representation quality requested by ABR clients on the subscriber side. This technique changes effective bandwidth perceived by ABR client side in order to affect the representation quality that will be selected by the client [44,45].
- JIT (just-in-time) pacing: receives traffic from a content server with one pace and lowers the downstream pace in “just in time” manner. This is done in order to avoid unnecessary filling of video player buffer on subscriber side as well as waste of network resources [24].
- ABR manifest file manipulation: consists of interception of ABR manifest file at the VO platform, parsing it and filtering out the representations from the manifest file that are not possible to reproduce on subscriber side under current network conditions.
- Caching (transparent and selective): consists of storing popular traffic on the platform in order to make it available for future subscriber’s requests [46,47]. Transparent caching strategy consists of caching of all unencrypted content. As it is resource consuming operators typically uses selective caching such as caching of the content that is previously transcoded.
3.3. Radio Access Network Support for Mobile Video Delivery over LTE
4. Random Linear Network Coding for Mobile Video Delivery
4.1. RLNC: Where Should It Be?
4.1.1. End-to-end Solutions for RLNC
4.1.2. RLNC Solutions in Radio Access Network
4.2. RLNC and Resource Allocation
- How many coded packet transmissions per-video layer are to be scheduled for transmission?
- What MCSs are to be used for broadcasting each coded packet?
- Code Packet Transmissions Optimisation—On the basis of the instance of vector determined in the previous step, the minimum value of is determined, for any —thus an instance of vector is found.
5. Random Linear Network Coding for 5G New Radio
5.1. Introduction to 5G NR
5.2. Opportunities and Challenges for Mobile Video Delivery in 5G
5.3. Related Studies on Mobile Video Delivery in 5G NR
6. Conclusions
Author Contributions
Conflicts of Interest
References
- Cisco Visual Networking Index. Available online: https://www.cisco.com/c/en/us/solutions/service-provider/ /visual-networking-index-vni (accessed on 15 February 2018).
- Ye, Y.; Andrivon, P. The scalable extensions of HEVC for ultra-high-definition video delivery. IEEE MultiMedia 2014, 21, 58–64. [Google Scholar] [CrossRef]
- Bastug, E.; Bennis, M.; Médard, M.; Debbah, M. Toward interconnected virtual reality: Opportunities, challenges, and enablers. IEEE Commun. Mag. 2017, 55, 110–117. [Google Scholar] [CrossRef]
- De la Fuente, A.; Leal, R.P.; Armada, A.G. New technologies and trends for next generation mobile broadcasting services. IEEE Commun. Mag. 2016, 54, 217–223. [Google Scholar] [CrossRef]
- Xu, C.; Jia, S.; Zhong, L.; Muntean, G.M. Socially aware mobile peer-to-peer communications for community multimedia streaming services. IEEE Commun. Mag. 2015, 53, 150–156. [Google Scholar] [CrossRef]
- 3GPP 5G NR Rel. 15 Specification Series. Available online: http://www.3gorg/DynaReport/38-series.htm (accessed on 15 February 2018).
- Marsch, P.; Da Silva, I.; Bulakci, O.; Tesanovic, M.; El Ayoubi, S.E.; Rosowski, T.; Kaloxylos, A.; Boldi, M. 5G radio access network architecture: Design guidelines and key considerations. IEEE Commun. Mag. 2016, 54, 24–32. [Google Scholar] [CrossRef]
- Rost, P.; Banchs, A.; Berberana, I.; Breitbach, M.; Doll, M.; Droste, H.; Mannweiler, C.; Puente, M.A.; Samdanis, K.; Sayadi, B. Mobile network architecture evolution toward 5G. IEEE Commun. Mag. 2016, 54, 84–91. [Google Scholar] [CrossRef]
- Lecompte, D.; Gabin, F. Evolved multimedia broadcast/multicast service (eMBMS) in LTE-advanced: overview and Rel-11 enhancements. IEEE Commun. Mag. 2012, 50, 68–74. [Google Scholar] [CrossRef]
- Oyman, O.; Foerster, J.; Tcha, Y.J.; Lee, S.C. Toward enhanced mobile video services over WiMAX and LTE. IEEE Commun. Mag. 2011, 48. [Google Scholar] [CrossRef]
- Luo, H.; Ci, S.; Wu, D.; Wu, J.; Tang, H. Quality-driven cross-layer optimized video delivery over LTE. IEEE Commun. Mag. 2010, 48. [Google Scholar] [CrossRef]
- Wang, X.; Chen, M.; Taleb, T.; Ksentini, A.; Leung, V. Cache in the air: exploiting content caching and delivery techniques for 5G systems. IEEE Commun. Mag. 2014, 52, 131–139. [Google Scholar] [CrossRef]
- Bastug, E.; Bennis, M.; Debbah, M. Living on the edge: The role of proactive caching in 5G wireless networks. IEEE Commun. Mag. 2014, 52, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.X.; Hajisami, A.; Pandey, P.; Pompili, D. Collaborative mobile edge computing in 5G networks: New paradigms, scenarios, and challenges. IEEE Commun. Mag. 2017, 55, 54–61. [Google Scholar] [CrossRef]
- Ho, T.; Mèdard, M.; Koetter, R.; Karger, D.R.; Effros, M.; Shi, J.; Leong, B. A random linear network coding approach to multicast. IEEE Trans. Inf. Theory 2006, 52, 4413–4430. [Google Scholar] [CrossRef]
- Fragouli, C.; Le Boudec, J.Y.; Widmer, J. Network coding: An instant primer. ACM SIGCOMM Comput. Commun. Rev. 2006, 36, 63–68. [Google Scholar] [CrossRef]
- Chou, P.A.; Wu, Y. Network coding for the internet and wireless networks. IEEE Signal Process. Mag. 2007, 24, 77–85. [Google Scholar] [CrossRef]
- Fragouli, C.; Soljanin, E. Network coding fundamentals. Found. Trends Netw. 2007, 2, 1–133. [Google Scholar] [CrossRef]
- Tassi, A.; Chatzigeorgiou, I.; Lucani, D.E. Analysis and optimization of sparse random linear network coding for reliable multicast services. IEEE Trans. Commun. 2016, 64, 285–299. [Google Scholar] [CrossRef]
- Brown, S.; Johnson, O.; Tassi, A. Reliability of Broadcast Communications Under Sparse Random Linear Network Coding. IEEE Trans. Veh. Technol. 2018. to appear. [Google Scholar]
- Feizi, S.; Lucani, D.E.; Sørensen, C.W.; Makhdoumi, A.; Mèdard, M. Tunable sparse network coding for multicast networks. In Proceedings of the 2014 International Symposium on Network Coding (NetCod) 2014, Aalborg, Denmark, 27–28 June 2014. [Google Scholar]
- Vukobratovic, D.; Stankovic, V. Unequal error protection random linear coding strategies for erasure channels. IEEE Trans. Commun. 2012, 60, 1243–1252. [Google Scholar] [CrossRef]
- Schierl, T.; Stockhammer, T.; Wiegand, T. Mobile video transmission using scalable video coding. IEEE Trans. Circ. Syst. Video Technol. 2007, 17, 1204–1217. [Google Scholar] [CrossRef]
- Ma, K.J.; Bartos, R.; Bhatia, S.; Nair, R. Mobile video delivery with HTTP. IEEE Commun. Mag. 2011, 49. [Google Scholar] [CrossRef]
- Oyman, O.; Singh, S. Quality of experience for HTTP adaptive streaming services. IEEE Commun. Mag. 2012, 50. [Google Scholar] [CrossRef]
- Cooper, C. On the distribution of rank of a random matrix over a finite field. Random Struct. Algorithms 2000, 17, 197–212. [Google Scholar] [CrossRef]
- Trullols-Cruces, O.; Barcelo-Ordinas, J.M.; Fiore, M. Exact decoding probability under random linear network coding. IEEE Commun. Lett. 2011, 15, 67–69. [Google Scholar] [CrossRef] [Green Version]
- Nistor, M.; Lucani, D.E.; Vinhoza, T.T.; Costa, R.A.; Barros, J. On the delay distribution of random linear network coding. IEEE J. Sel. Areas Commun. 2011, 29, 1084–1093. [Google Scholar] [CrossRef]
- Chatzigeorgiou, I.; Tassi, A. Decoding delay performance of random linear network coding for broadcast. IEEE Trans. Veh. Technol. 2017, 66, 7050–7060. [Google Scholar] [CrossRef]
- Liva, G.; Paolini, E.; Chiani, M. Performance versus overhead for fountain codes over . IEEE Commun. Lett. 2010, 14, 178–180. [Google Scholar] [CrossRef]
- Luby, M. LT codes. In Proceedings of the 43rd Annual Symposium on Foundations of Computer Science (FOCS 2002), Vancouver, BC, Canada, 16–19 November 2002; pp. 271–280. [Google Scholar]
- Shokrollahi, A. Raptor codes. IEEE Trans. Inf. Theory 2006, 52, 2551–2567. [Google Scholar] [CrossRef]
- Pakzad, P.; Fragouli, C.; Shokrollahi, A. Coding schemes for line networks. In Proceedings of the International Symposium on Information Theory, 2005 (ISIT 2005), Adelaide, Australia, 4–9 September 2005; pp. 1853–1857. [Google Scholar]
- Lun, D.S.; Mèdard, M.; Koetter, R. Network coding for efficient wireless unicast. In Proceedings of the 2006 International Zurich Seminar on Communications, Zurich, Switzerland, 22–24 February 2006; pp. 74–77. [Google Scholar]
- Seferoglu, H.; Markopoulou, A.; Ramakrishnan, K.K. I2NC: Intra-and inter-session network coding for unicast flows in wireless networks. In Proceedings of the IEEE INFOCOM 2011, Shanghai, China, 10–15 April 2011; pp. 1035–1043. [Google Scholar]
- Sullivan, G.J.; Ohm, J.; Han, W.J.; Wiegand, T. Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circ. Syst. Video Technol. 2012, 22, 1649–1668. [Google Scholar] [CrossRef]
- Wiegand, T.; Sullivan, G.J.; Bjontegaard, G.; Luthra, A. Overview of the H. 264/AVC video coding standard. IEEE Trans. Circ. Syst. Video Technol. 2007, 13, 560–576. [Google Scholar] [CrossRef]
- Sullivan, G.J.; Boyce, J.M.; Chen, Y.; Ohm, J.R.; Segall, C.A.; Vetro, A. Standardized extensions of high efficiency video coding (HEVC). IEEE J. Sel. Top. Signal Process. 2013, 7, 1001–1016. [Google Scholar] [CrossRef]
- Nazir, S.; Vukobratović, D.; Stanković, V.; Andonović, I.; Nybom, K.; Groenroos, S. Unequal error protection for data partitioned H. 264/AVC video broadcasting. Multimed. Tools Appl. 2015, 74, 5787–5809. [Google Scholar] [CrossRef] [Green Version]
- Calabuig, J.; Monserrat, J.F.; Gozàlvez, D.; Gòmez-Barquero, D. AL-FEC for streaming services in lte e-MBMS. EURASIP J. Wirel. Commun. Netw. 2013, 2013, 73. [Google Scholar] [CrossRef]
- LTE Broadcast—Lessons Learned from Trials and Early Deployments, LTE Alliance, Whitepaper, 2016. Available online: http://www.expway.com/lte-broadcast-lessons-learned-from-trials-and-early-deployments/ (accessed on 15 February 2018).
- 3GPP TS 23.002, 14.1.0 Network Architecture. Available online: www.3gpp.org/dynareport/23002.htm (accessed on 15 February 2018).
- Dahlman, E.; Parkvall, S.; Skold, J. 4G: LTE/LTE-Advanced for Mobile Broadband; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Pu, W.; Zou, Z.; Chen, C.W. Video adaptation proxy for wireless dynamic adaptive streaming over HTTP. In Proceedings of the 2012 19th International Packet Video Workshop (PV), Munich, Germany, 10–11 May 2012; pp. 65–70. [Google Scholar]
- El Essaili, A.; Schroeder, D.; Steinbach, E.; Staehle, D.; Shehada, M. QoE-based traffic and resource management for adaptive HTTP video delivery in LTE. IEEE Trans. Circ. Syst. Video Technol. 2015, 25, 988–1001. [Google Scholar] [CrossRef]
- Zhang, W.; Wen, Y.; Chen, Z.; Khisti, A. QoE-driven cache management for HTTP adaptive bit rate streaming over wireless networks. IEEE Trans. Multimed. 2013, 15, 1431–1445. [Google Scholar] [CrossRef]
- Erman, J.; Gerber, A.; Ramadrishnan, K.K.; Sen, S.; Spatscheck, O. Over the top video: The gorilla in cellular networks. In Proceedings of the ACM SIGCOMM 2011, Berlin, Germany, 2–4 November 2011; pp. 127–136. [Google Scholar]
- Amram, N.; Fu, B.; Kunzmann, G.; Melia, T.; Munaretto, D.; Randriamasy, S.; Sayadi, B.; Widmer, J.; Zorzi, M. QoE-based transport optimization for video delivery over next generation cellular networks. In Proceedings of the 2011 IEEE Symposium on Computers and Communications (ISCC), Kerkyra, Greece, 28 June–1 July 2011; pp. 19–24. [Google Scholar]
- Bouras, C.; Kanakis, N.; Kokkinos, V.; Papazois, A. AL-FEC for streaming services over LTE systems. In Proceedings of the 2011 14th International Symposium on Wireless Personal Multimedia Communications (WPMC), Brest, France, 3–7 October 2011. [Google Scholar]
- Capozzi, F.; Piro, G.; Grieco, L.A.; Boggia, G.; Camarda, P. Downlink packet scheduling in LTE cellular networks: Key design issues and a survey. IEEE Commun. Surv. Tutor. 2013, 15, 678–700. [Google Scholar] [CrossRef]
- Piro, G.; Grieco, L.A.; Boggia, G.; Fortuna, R.; Camarda, P. Two-level downlink scheduling for real-time multimedia services in LTE networks. IEEE Trans. Multimed. 2011, 13, 1052–1065. [Google Scholar] [CrossRef]
- Lai, W.K.; Tang, C.L. QoS-aware downlink packet scheduling for LTE networks. Comput. Netw. 2013, 57, 1689–1698. [Google Scholar] [CrossRef]
- Su, G.M.; Su, X.; Bai, Y.; Wang, M.; Vasilakos, A.V.; Wang, H. QoE in video streaming over wireless networks: perspectives and research challenges. Wirel. Netw. 2016, 22, 1571–1593. [Google Scholar] [CrossRef]
- Araniti, G.; Condoluci, M.; Militano, L.; Iera, A. Adaptive resource allocation to multicast services in LTE systems. IEEE Trans. Broadcast. 2013, 59, 658–664. [Google Scholar] [CrossRef]
- Chen, J.; Chiang, M.; Erman, J.; Li, G.; Ramakrishnan, K.K.; Sinha, R.K. Fair and optimal resource allocation for LTE multicast (eMBMS): Group partitioning and dynamics. In Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM), Hong Kong, China, 26 April–1 May 2015; pp. 1266–1274. [Google Scholar]
- Lau, C.P.; Alabbasi, A.; Shihada, B. An efficient live TV scheduling system for 4G LTE broadcast. IEEE Syst. J. 2017, 11, 2737–2748. [Google Scholar] [CrossRef]
- Bouras, C.; Kanakis, N.; Kokkinos, V.; Papazois, A. Embracing RaptorQ FEC in 3GPP multicast services. Wirel. Netw. 2013, 19, 1023–1035. [Google Scholar] [CrossRef]
- IETF RFC 5170 Low Density Parity Check (LDPC) Staircase and Triangle Forward Error Correction (FEC) Schemes. Available online: https://www.rfc-editor.org/rfc/rfc5170.txt (accessed on 15 February 2018).
- Magli, E.; Wang, M.; Frossard, P.; Markopoulou, A. Network coding meets multimedia: A review. IEEE Trans. Multimed. 2013, 15, 1195–1212. [Google Scholar] [CrossRef]
- Li, B.; Li, H.; Zhang, R. Adaptive random network coding for multicasting hard-deadline-constrained prioritized data. IEEE Trans. Veh. Technol. 2016, 65, 8739–8744. [Google Scholar] [CrossRef]
- Shin, H.; Park, J.S. Optimizing random network coding for multimedia content distribution over smartphones. Multimed. Tools Appl. 2017, 76, 19379–19395. [Google Scholar] [CrossRef]
- Esmaeilzadeh, M.; Sadeghi, P.; Aboutorab, N. Random linear network coding for wireless layered video broadcast: General design methods for adaptive feedback-free transmission. IEEE Trans. Commun. 2017, 65, 790–805. [Google Scholar] [CrossRef]
- Carlucci, G.; De Cicco, L.; Mascolo, S. HTTP over UDP: An Experimental Investigation of QUIC. In Proceedings of the 30th Annual ACM Symposium on Applied Computing, Salamanca, Spain, 13–17 April 2015; pp. 609–614. [Google Scholar]
- Fragouli, C.; Lun, D.; Mèdard, M.; Pakzad, P. On feedback for network coding. In Proceedings of the 41st Annual Conference on Information Sciences and Systems, Baltimore, MD, USA, 14–16 March 2007; pp. 248–252. [Google Scholar]
- Sundararajan, J.K.; Shah, D.; Mèdard, M.; Mitzenmacher, M.; Barros, J. Network coding meets TCP. In Proceedings of the IEEE INFOCOM 2009, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 280–288. [Google Scholar]
- Medina Ruiz, H.; Kieffer, M.; Pesquet-Popescu, B.; Medina Ruiz, H.; Kieffer, M.; Pesquet-Popescu, B. TCP and Network Coding: Equilibriu and Dynamic Properties. IEEE/ACM Trans. Netw. 2016, 24, 1935–1947. [Google Scholar] [CrossRef]
- Khirallah, C.; Vukobratovic, D.; Thompson, J. Performance analysis and energy efficiency of random network coding in LTE-advanced. IEEE Trans. Wirel. Commun. 2012, 11, 4275–4285. [Google Scholar] [CrossRef]
- Vukobratovic, D.; Khirallah, C.; Stankovic, V.; Thompson, J.S. Random network coding for multimedia delivery services in LTE/LTE-Advanced. IEEE Trans. Multimed. 2014, 16, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Tassi, A.; Khirallah, C.; Vukobratovic, D.; Chiti, F.; Thompson, J.; Fantacci, R. Resource Allocation Strategies for Network-Coded Video Broadcasting Services over LTE-Advanced. IEEE Trans. Veh. Technol. 2015, 64, 2186–2192. [Google Scholar] [CrossRef]
- Tassi, A.; Chatzigeorgiou, I.; Vukobratovic, D. Resource Allocation Frameworks for Network-coded Layered Multimedia Multicast Services. IEEE J. Sel. Areas Commun. 2015, 33, 141–155. [Google Scholar] [CrossRef]
- Tassi, A.; Khirallah, C.; Vukobratovic, D.; Chiti, F.; Thompson, J.; Fantacci, R. Reliable rate-optimized video multicasting services over LTE/LTE-A. In Proceedings of the 2013 IEEE International Conference on Communications (ICC), Budapest, Hungary, 9–13 June 2013. [Google Scholar]
- Tassi, A.; Chatzigeorgiou, I.; Vukobratovic, D.; Jones, A. Optimized Network-coded Scalable Video Multicasting over eMBMS Networks. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015. [Google Scholar]
- 3GPP TS 23.501 System Architecture for the 5G System. Available online: www.3gorg/DynaReport/23501.htm (accessed on 15 February 2018).
- 3GPP TS 38.300 NR; Overall Description. Available online: www.3gorg/DynaReport/38300.htm (accessed on 15 February 2018).
- Osseiran, A.; Boccardi, F.; Braun, V.; Kusume, K.; Marsch, P.; Maternia, M.; Queseth, O.; Schellmann, M.; Schotten, H.; Taoka, H.; et al. Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun. Mag. 2014, 52, 26–35. [Google Scholar] [CrossRef]
- Ge, C.; Wang, N.; Foster, G.; Wilson, M. Toward QoE-Assured 4K Video-on-Demand Delivery Through Mobile Edge Virtualization With Adaptive Prefetching. IEEE Trans. Multimed. 2017, 19, 2222–2237. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, W.; Zhang, H. Heterogeneous statistical QoS provisioning over 5G mobile wireless networks. IEEE Netw. 2014, 28, 46–53. [Google Scholar] [CrossRef]
- Golrezaei, N.; Molisch, A.F.; Dimakis, A.G.; Caire, G. Femtocaching and device-to-device collaboration: A new architecture for wireless video distribution. IEEE Commun. Mag. 2013, 51, 142–149. [Google Scholar] [CrossRef]
- Argyriou, A.; Poularakis, K.; Iosifidis, G.; Tassiulas, L. Video Delivery in Dense 5G Cellular Networks. IEEE Netw. 2017, 31, 28–34. [Google Scholar] [CrossRef]
- Poularakis, K.; Iosifidis, G.; Sourlas, V.; Tassiulas, L. Exploiting caching and multicast for 5G wireless networks. IEEE Trans. Wirel. Commun. 2016, 15, 2995–3007. [Google Scholar] [CrossRef]
- Borcoci, E.; Ambarus, T.; Bruneau-Queyreix, J.; Negru, D.; Batalla, J.M. Optimization of Multi-server Video Content Streaming in 5G Environment. In Proceedings of the International Conference on Evolving Internet, Barcelona, Spain, 13–17 November 2016. [Google Scholar]
- Drago, M.; Azzino, T.; Polese, M.; Stefanovic, C.; Zorzi, M. Reliable Video Streaming over mmWave with Multi Connectivity and Network Coding. arXiv, 2017; arXiv:1711.06154. [Google Scholar]
- Qiao, J.; He, Y.; Shen, X.S. Proactive caching for mobile video streaming in millimeter wave 5G networks. IEEE Trans. Wirel. Commun. 2016, 15, 7187–7198. [Google Scholar] [CrossRef]
- Nielsen, J.J.; Liu, R.; Popovski, P. Optimized Interface Diversity for Ultra-Reliable Low Latency Communication (URLLC). arXiv, 2017; arXiv:1712.05148. [Google Scholar]
- Pervez, F.; Adinoyi, A.; Yanikomeroglu, H. Efficient resource allocation for video streaming for 5G network-to-vehicle communications. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017. [Google Scholar]
Video Traffic Type | Possible Optimization Method |
---|---|
ABR over HTTP | ABR pacing; JIT pacing; ABR manifest file manipulation |
ABR over HTTPS | ABR pacing; JIT pacing; |
ABR over DRM over HTTP | ABR pacing; JIT pacing; |
ABR over QUIC | ABR pacing; JIT pacing; |
PD over HTTP | JIT pacing; online/offline transcoding; transrating; caching |
PD over HTTPS | Not possible to optimize |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vukobratovic, D.; Tassi, A.; Delic, S.; Khirallah, C. Random Linear Network Coding for 5G Mobile Video Delivery. Information 2018, 9, 72. https://doi.org/10.3390/info9040072
Vukobratovic D, Tassi A, Delic S, Khirallah C. Random Linear Network Coding for 5G Mobile Video Delivery. Information. 2018; 9(4):72. https://doi.org/10.3390/info9040072
Chicago/Turabian StyleVukobratovic, Dejan, Andrea Tassi, Savo Delic, and Chadi Khirallah. 2018. "Random Linear Network Coding for 5G Mobile Video Delivery" Information 9, no. 4: 72. https://doi.org/10.3390/info9040072
APA StyleVukobratovic, D., Tassi, A., Delic, S., & Khirallah, C. (2018). Random Linear Network Coding for 5G Mobile Video Delivery. Information, 9(4), 72. https://doi.org/10.3390/info9040072