VIKOR Method for Interval Neutrosophic Multiple Attribute Group Decision-Making
Abstract
:1. Introduction
2. Preliminaries
SVNSs and INSs
3. VIKOR Method for INN MAGDM Problems
4. Numerical Example
4.1. Numerical Example
4.2. Comparative Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making. Economics and Mathematical Systems; Springer: Berlin, Germany, 1981. [Google Scholar]
- Wei, G.W. Extension of TOPSIS method for 2-tuple linguistic multiple attribute group decision making with incomplete weight information. Knowl. Inf. Syst. 2010, 25, 623–634. [Google Scholar] [CrossRef]
- Opricovic, S. Multicriteria Optimization of Civil Engineering Systems; Faculty of Civil Engineering: Belgrade, Serbia, 1998. [Google Scholar]
- Wei, G.W.; Zhang, N. A multiple criteria hesitant fuzzy decision making with Shapley value-based VIKOR method. J. Intell. Fuzzy Syst. 2014, 26, 1065–1075. [Google Scholar]
- Zhang, N.; Wei, G.W. Extension of VIKOR method for decision making problem based on hesitant fuzzy set. Appl. Math. Modell. 2013, 37, 4938–4947. [Google Scholar] [CrossRef]
- Brans, J.P.; Mareschal, B.; Vincke, P. PROMETHEE: A new family of outranking methods in multi criteria analysis. Oper. Res. 1984, 84, 477–490. [Google Scholar]
- Benayoun, R.; Roy, B.; Sussman, B. ELECTRE: Une méthode pour guider le choix en présence de points de vue multiples. Rev. Franaise Informat. Rech. Opér. 1969, 3, 31–56. (In French) [Google Scholar]
- Wei, G.W. Grey relational analysis method for intuitionistic fuzzy multiple attribute decision making with preference information on alternatives. Int. J. Comput. Intell. Syst. 2011, 4, 164–173. [Google Scholar] [CrossRef]
- Wei, G.W. Grey relational analysis model for dynamic hybrid multiple attribute decision making. Knowl. Syst. 2011, 24, 672–679. [Google Scholar] [CrossRef]
- Wei, G.W. Gray relational analysis method for intuitionistic fuzzy multiple attribute decision making. Expert Syst. Appl. 2011, 38, 11671–11677. [Google Scholar] [CrossRef]
- Baležentis, A.; Baležentis, T.; Brauers, W.K.M. Personnel selection based on computing with words and fuzzy MULTIMOORA. Expert Syst. Appl. 2012, 39, 7961–7967. [Google Scholar] [CrossRef]
- Baležentis, T. Group multi-criteria decision making based upon interval-valued fuzzy numbers: An extension of the MULTIMOORA method. Expert Syst. Appl. 2013, 40, 543–550. [Google Scholar] [CrossRef]
- Laarhoven, V. A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst. 1983, 11, 229–241. [Google Scholar] [CrossRef]
- Herrera, F.; Martínez, L. A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 2000, 8, 746–752. [Google Scholar]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–356. [Google Scholar] [CrossRef]
- Bellman, R.; Zadeh, L.A. Decision making in a fuzzy environment. Manag. Sci. 1970, 17, 141–164. [Google Scholar] [CrossRef]
- Yager, R.R. Multiple objective decision-making using fuzzy sets. Int. J. Man-Mach. Stud. 1997, 9, 375–382. [Google Scholar] [CrossRef]
- Smarandache, F. A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: Rehoboth, NM, USA, 1999. [Google Scholar]
- Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics, 3rd ed.; American Research Press: Phoenix, AZ, USA, 2003. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace Multistruct. 2010, 4, 410–413. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing; Hexis: Phoenix, AZ, USA, 2005. [Google Scholar]
- Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [Google Scholar]
- Broumi, S.; Smarandache, F. Correlation coefficient of interval neutrosophic set. Appl. Mech. Mater. 2013, 436, 511–517. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Ji, P.; Wang, J.; Chen, X.H. An improved weighted correlation coefficient based on integrated weight for interval neutrosophic sets and its application in multi-criteria decision-making problems. Int. J. Comput. Intell. Syst. 2015, 8, 1027–1043. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Wang, J.Q.; Chen, X.H. An outranking approach for multi-criteria decision-making problems with interval-valued neutrosophic sets. Neural Comput. Appl. 2016, 27, 615–627. [Google Scholar] [CrossRef]
- Tian, Z.P.; Zhang, H.Y.; Wang, J.; Wang, J.Q.; Chen, X.H. Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets. Int. J. Syst. Sci. 2016, 47, 3598–3608. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Wang, J.Q.; Chen, X.H. Interval neutrosophic sets and their application in multicriteria decision making problems. Sci. World J. 2014, 2014, 645953. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.W.; Du, J.G.; Guan, H.J. Interval valued neutrosophic sets and multi-attribute decision-making based on generalized weighted aggregation operator. J. Intell. Fuzzy Syst. 2015, 29, 2697–2706. [Google Scholar]
- Sun, H.X.; Yang, H.X.; Wu, J.Z.; Yao, O.Y. Interval neutrosophic numbers Choquet integral operator for multi-criteria decision making. J. Intell. Fuzzy Syst. 2015, 28, 2443–2455. [Google Scholar] [CrossRef]
- Liu, P.D.; Wang, Y.M. Interval neutrosophic prioritized OWA operator and its application to multiple attribute decision making. J. Syst. Sci. Complex 2016, 29, 681–697. [Google Scholar] [CrossRef]
- Ye, J. Exponential operations and aggregation operators of interval neutrosophic sets and their decision making methods. SpringerPlus 2016, 5, 1488. [Google Scholar] [CrossRef] [PubMed]
- Ye, J. Similarity measures between interval neutrosophic sets and their applications in multicriteria decision-making. J. Intell. Fuzzy Syst. 2014, 26, 165–172. [Google Scholar]
- Xu, D.S.; Wei, C.; Wei, G.W. TODIM Method for Single-Valued Neutrosophic Multiple Attribute Decision Making. Information 2017, 8, 125. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Bausys, R.; Lazauskas, M. Sustainable assessment of alternative sites for the construction of a waste incineration plant by applying WASPAS method with single-valued neutrosophic set. Sustainability 2015, 7, 15923–15936. [Google Scholar] [CrossRef]
- Bausys, R.; Zavadskas, E.K.; Kaklauskas, A. Application of neutrosophic set to multicriteria decision making by COPRAS. J. Econ. Comput. Econ. Cybern. Stud. Res. 2015, 49, 91–106. [Google Scholar]
- Peng, X.D.; Liu, C. Algorithms for neutrosophic soft decision making based on EDAS, new similarity measure and level soft set. J. Intell. Fuzzy Syst. 2017, 32, 955–968. [Google Scholar] [CrossRef]
- Pouresmaeil, H.; Shivanian, E.; Khorram, E.; Fathabadi, H.S. An extended method using TOPSIS and VIKOR for multiple attribute decision making with multiple decision makers and single valued neutrosophic numbers. Adv. Appl. Stat. 2017, 50, 261–292. [Google Scholar] [CrossRef]
- Liu, P.D.; Wang, Y.M. Multiple attribute decision making method based on single-valued neutrosophic normalized weighted Bonferroni mean. Neural Comput. Appl. 2014, 25, 2001–2010. [Google Scholar] [CrossRef]
- Liu, P.D.; Chu, Y.C.; Li, Y.W.; Chen, Y.B. Some generalized neutrosophic number Hamacher aggregation operators and their application to group decision making. J. Int. Fuzzy Syst. 2014, 16, 242–255. [Google Scholar]
- Wang, L.; Zhang, H.Y.; Wang, J.Q. Frank Choquet Bonferroni mean operators of bipolar neutrosophic sets and their application to multi-criteria decision-making problems. Int. J. Fuzzy Syst. 2017, 1–16. [Google Scholar] [CrossRef]
- Liang, R.X.; Wang, J.Q.; Zhang, H.Y. A multi-criteria decision-making method based on single-valued trapezoidal neutrosophic preference relations with complete weight information. Neural Comput. Appl. 2017, 1–16. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.-H. Extended VIKOR method in comparison with outranking methods. Eur. J. Oper. Res. 2007, 178, 514–529. [Google Scholar] [CrossRef]
- Cevikcan, E.; Çebi, S.; Kaya, I. Fuzzy VIKOR and Fuzzy Axiomatic Design Versus to Fuzzy Topsis: An Application of Candidate Assessment. Mul. Valued Log. Soft Comput. 2009, 15, 181–208. [Google Scholar]
- Opricovic, S.; Tzeng, G.-H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Devi, K. Extension of VIKOR method in intuitionistic fuzzy environment for robot selection. Expert Syst. Appl. 2011, 38, 14163–14168. [Google Scholar] [CrossRef]
- Park, J.H.; Cho, H.J.; Kwun, Y.C. Extension of the VIKOR method for group decision making with interval-valued intuitionistic fuzzy information. Fuzzy Optim. Decis. Mak. 2011, 10, 233–253. [Google Scholar] [CrossRef]
- Wan, S.; Wang, Q.; Dong, J. The extended VIKOR method for multi-attribute group decision making with triangular intuitionistic fuzzy numbers. Knowl. Based Syst. 2013, 52, 65–77. [Google Scholar] [CrossRef]
- Liu, H.; You, J.; Fan, X.; Chen, Y. Site selection in waste management by the VIKOR method using linguistic assessment. Appl. Soft Comput. 2014, 21, 453–461. [Google Scholar] [CrossRef]
- Qin, J.; Liu, X.; Pedrycz, W. An extended VIKOR method based on prospect theory for multiple attribute decision making under interval type-2 fuzzy environment. Knowl. Based Syst. 2015, 86, 116–130. [Google Scholar] [CrossRef]
- Liao, H.; Xu, Z.; Zeng, X. Hesitant Fuzzy Linguistic VIKOR Method and Its Application in Qualitative Multiple Criteria Decision Making. IEEE Trans. Fuzzy Syst. 2015, 23, 1343–1355. [Google Scholar] [CrossRef]
- Ren, Z.; Xu, Z.; Wang, H. Dual hesitant fuzzy VIKOR method for multi-criteria group decision making based on fuzzy measure and new comparison method. Inf. Sci. 2017, 388, 1–16. [Google Scholar] [CrossRef]
- Li, Z.; Liu, P.; Qin, X. An extended VIKOR method for decision making problem with linguistic intuitionistic fuzzy numbers based on some new operational laws and entropy. J. Intell. Fuzzy Syst. 2017, 33, 1919–1931. [Google Scholar] [CrossRef]
- Tang, G. Approaches for Relational Multiple Attribute Decision Making with Interval Neutrosophic Numbers Based on Choquet Integral. Master Thesis’s, Shandong University of Finance and Economics, Jinan, China, 2016. [Google Scholar]
- Bausys, R.; Zavadskas, E.K. Multicriteria decision making approach by VIKOR under interval neutrosophic set environment. J. Econ. Comput. Econ. Cybern. Stud. Res. 2015, 49, 33–48. [Google Scholar]
- Cao, Y.X.; Zhou, H.; Wang, J.Q. An approach to interval-valued intuitionistic stochastic multi-criteria decision-making using set pair analysis. Int. J. Mach. Learn. Cybern. 2016, 1–12. [Google Scholar] [CrossRef]
- Wei, G.W. Picture 2-tuple linguistic Bonferroni mean operators and their application to multiple attribute decision making. Int. J. Fuzzy Syst. 2017, 19, 997–1010. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Pythagorean 2-tuple linguistic aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1129–1142. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Hesitant bipolar fuzzy aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1119–1128. [Google Scholar] [CrossRef]
- Lu, M.; Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Hesitant pythagorean fuzzy hamacher aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1105–1117. [Google Scholar] [CrossRef]
- Zhang, X.L.; Xu, Z.S. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int. J. Intell. Syst. 2014, 29, 1061–1078. [Google Scholar] [CrossRef]
- Ren, P.; Xu, Z.; Gou, X. Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl. Soft Comput. 2016, 42, 246–259. [Google Scholar] [CrossRef]
- Lu, M.; Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Bipolar 2-tuple linguistic aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1197–1207. [Google Scholar] [CrossRef]
- Wei, G.W. Picture fuzzy aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 713–724. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. A linear assignment method for multiple criteria decision analysis with hesitant fuzzy sets based on fuzzy measure. Int. J. Fuzzy Syst. 2017, 19, 607–614. [Google Scholar] [CrossRef]
- Wei, G.W.; Wang, J.M. A comparative study of robust efficiency analysis and data envelopment analysis with imprecise data. Expert Syst. Appl. 2017, 81, 28–38. [Google Scholar] [CrossRef]
- Garg, H. A New Generalized Pythagorean Fuzzy Information Aggregation Using Einstein Operations and Its Application to Decision Making. Int. J. Intell. Syst. 2016, 31, 886–920. [Google Scholar] [CrossRef]
- Garg, H. A novel accuracy function under interval-valued Pythagorean fuzzy environment for solving multicriteria decision making problem. J. Intell. Fuzzy Syst. 2016, 31, 529–540. [Google Scholar] [CrossRef]
- Wei, G.W. Picture fuzzy cross-entropy for multiple attribute decision making problems. J. Bus. Econ. Manag. 2016, 17, 491–502. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Hesitant fuzzy linguistic arithmetic aggregation operators in multiple attribute decision making. Iran. J. Fuzzy Syst. 2016, 13, 1–16. [Google Scholar]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Projection models for multiple attribute decision making with picture fuzzy information. Int. J. Mach. Learn. Cybern. 2016, 1–7. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Picture 2-tuple linguistic aggregation operators in multiple attribute decision making. Soft Comput. 2016, 1–14. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M. Dual hesitant Pythagorean fuzzy Hamacher aggregation operators in multiple attribute decision making. Arch. Control Sci. 2017, 27, 365–395. [Google Scholar] [CrossRef]
- Wei, G.W. Pythagorean fuzzy interaction aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 2119–2132. [Google Scholar] [CrossRef]
- Wei, G.W. Some cosine similarity measures for picture fuzzy sets and their applications to strategic decision making. Informatica 2017, 28, 547–564. [Google Scholar]
- Wu, S.J.; Wei, G.W. Picture uncertain linguistic aggregation operators and their application to multiple attribute decision making. Int. J. Knowl.-Based Intell. Eng. Syst. 2017, 21, 243–256. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M. Pythagorean Fuzzy Maclaurin Symmetric Mean Operators in multiple attribute decision making. Int. J. Intell. Syst. 2017. [Google Scholar] [CrossRef]
- Wang, H.J.; Zhao, X.F.; Wei, G.W. Dual hesitant fuzzy aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 26, 2281–2290. [Google Scholar]
([0.3, 0.4], [0.6, 0.7], [0.3, 0.5]) | ([0.4, 0.5], [0.2, 0.3], [0.1, 0.2]) | |
([0.5, 0.7], [0.6, 0.8], [0.2, 0.4]) | ([0.5, 0.6], [0.3, 0.5], [0.2, 0.3]) | |
([0.4, 0.5], [0.5, 0.6], [0.2, 0.3]) | ([0.3, 0.4], [0.5, 0.6], [0.1, 0.2]) | |
([0.6, 0.7], [0.2, 0.3], [0.1, 0.2]) | ([0.4, 0.5], [0.1, 0.2], [0.2, 0.3]) | |
([0.4, 0.5], [0.2, 0.3], [0.2, 0.3]) | ([0.2, 0.3], [0.6, 0.7], [0.2, 0.3]) | |
([0.1, 0.2], [0.4, 0.5], [0.1, 0.2]) | ([0.3, 0.4], [0.5, 0.6], [0.2, 0.3]) | |
([0.5, 0.7], [0.4, 0.6], [0.2, 0.3]) | ([0.6, 0.7], [0.3, 0.4], [0.2, 0.3]) | |
([0.3, 0.4], [0.1, 0.2], [0.2, 0.3]) | ([0.4, 0.5], [0.1, 0.2], [0.3, 0.4]) | |
([0.4, 0.5], [0.2, 0.3], [0.1, 0.2]) | ([0.3, 0.4], [0.4, 0.5], [0.2, 0.3]) | |
([0.5, 0.6], [0.4, 0.5], [0.2, 0.3]) | ([0.3, 0.4], [0.6, 0.7], [0.3, 0.4]) |
([0.4, 0.6], [0.5, 0.7], [0.3, 0.4]) | ([0.6, 0.7], [0.5, 0.6], [0.5, 0.6]) | |
([0.6, 0.9], [0.4, 0.5], [0.3, 0.4]) | ([0.7, 0.8], [0.6, 0.7], [0.4, 0.5]) | |
([0.8, 0.9], [0.8, 0.9], [0.4, 0.5]) | ([0.7, 0.8], [0.5, 0.6], [0.5, 0.6]) | |
([0.6, 0.7], [0.3, 0.4], [0.5, 0.6]) | ([0.8, 0.9], [0.5, 0.6], [0.6, 0.7]) | |
([0.4, 0.5], [0.6, 0.7], [0.6, 0.7]) | ([0.6, 0.7], [0.3, 0.4], [0.3, 0.4]) | |
([0.5, 0.6], [0.4, 0.5], [0.3, 0.4]) | ([0.6, 0.7], [0.4, 0.5], [0.3, 0.4]) | |
([0.7, 0.8], [0.3, 0.4], [0.3, 0.4]) | ([0.8, 0.9], [0.4, 0.5], [0.3, 0.4]) | |
([0.7, 0.8], [0.1, 0.2], [0.3, 0.4]) | ([0.8, 0.9], [0.5, 0.6], [0.2, 0.3]) | |
([0.5, 0.6], [0.2, 0.3], [0.4, 0.5]) | ([0.5, 0.6], [0.7, 0.9], [0.3, 0.4]) | |
([0.9, 1.0], [0.4, 0.5], [0.3, 0.4]) | ([0.7, 0.8], [0.8, 0.9], [0.1, 0.2]) |
([0.7, 0.8], [0.4, 0.5], [0.4, 0.5]) | ([0.7, 0.8], [0.3, 0.4], [0.6, 0.7]) | |
([0.6, 0.7], [0.5, 0.6], [0.4, 0.5]) | ([0.7, 0.8], [0.6, 0.7], [0.5, 0.6]) | |
([0.7, 0.8], [0.3, 0.4], [0.5, 0.6]) | ([0.8, 0.9], [0.2, 0.4], [0.6, 0.7]) | |
([0.7, 0.8], [0.4, 0.5], [0.6, 0.7]) | ([0.6, 0.9], [0.1, 0.2], [0.7, 0.8]) | |
([0.6, 0.7], [0.7, 0.8], [0.2, 0.3]) | ([0.7, 0.8], [0.3, 0.5], [0.4, 0.5]) | |
([0.6, 0.7], [0.3, 0.4], [0.4, 0.5]) | ([0.5, 0.6], [0.4, 0.5], [0.4, 0.5]) | |
([0.8, 0.9], [0.2, 0.3], [0.7, 0.8]) | ([0.6, 0.7], [0.3, 0.4], [0.4, 0.6]) | |
([0.8, 0.9], [0.2, 0.4], [0.4, 0.5]) | ([0.9, 1.0], [0.1, 0.2], [0.5, 0.6]) | |
([0.6, 0.7], [0.1, 0.2], [0.5, 0.6]) | ([0.6, 0.7], [0.3, 0.4], [0.4, 0.5]) | |
([0.7, 0.9], [0.3, 0.4], [0.4 0.5]) | ([0.8, 0.9], [0.5, 0.6], [0.5, 0.6]) |
([0.4974, 0.6477], [0.4850, 0.6328], [0.3270, 0.4472]) | ([0.6021, 0.7058], [0.3571, 0.4625], [0.3828, 0.5044]) | |
([0.5817, 0.8268], [0.4638, 0.5802], [0.3016, 0.4277]) | ([0.6677, 0.7703], [0.5223, 0.6544], [0.3723, 0.4768]) | |
([0.7186, 0.8301], [0.5426, 0.6507], [0.3723, 0.4768]) | ([0.6853, 0.7976], [0.3798, 0.5313], [0.3828, 0.5044]) | |
([0.6331, 0.7344], [0.3016, 0.4038], [0.3828, 0.5044]) | ([0.6933, 0.8620], [0.2236, 0.3464], [0.5044, 0.6150]) | |
([0.4687, 0.5710], [0.5044, 0.6150], [0.3464, 0.4583]) | ([0.5785, 0.6853], [0.3446, 0.4783], [0.3016, 0.4083]) | |
([0.4740, 0.5785], [0.3669, 0.4676], [0.2625, 0.3723]) | ([0.5127, 0.6243], [0.4183, 0.5186], [0.3016, 0.4038]) | |
([0.7058, 0.8238], [0.2814, 0.3979], [0.3567, 0.4649]) | ([0.7172, 0.8268], [0.3464, 0.4472], [0.3016, 0.4265]) | |
([0.6853, 0.7976], [0.1231, 0.2462], [0.3016, 0.4038]) | ([0.7976, 1.0000], [0.2236, 0.3464], [0.2855, 0.3912]) | |
([0.5150, 0.6163], [0.1625, 0.2656], [0.3241, 0.4397]) | ([0.4998, 0.6021], [0.4854, 0.6274], [0.3016, 0.4038]) | |
([0.8082, 1.0000], [0.3669, 0.4676], [0.3016, 0.4038]) | ([0.6853, 0.7976], [0.6559, 0.7579], [0.2019, 0.3194]) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-H.; Wei, G.-W.; Wei, C. VIKOR Method for Interval Neutrosophic Multiple Attribute Group Decision-Making. Information 2017, 8, 144. https://doi.org/10.3390/info8040144
Huang Y-H, Wei G-W, Wei C. VIKOR Method for Interval Neutrosophic Multiple Attribute Group Decision-Making. Information. 2017; 8(4):144. https://doi.org/10.3390/info8040144
Chicago/Turabian StyleHuang, Yu-Han, Gui-Wu Wei, and Cun Wei. 2017. "VIKOR Method for Interval Neutrosophic Multiple Attribute Group Decision-Making" Information 8, no. 4: 144. https://doi.org/10.3390/info8040144
APA StyleHuang, Y. -H., Wei, G. -W., & Wei, C. (2017). VIKOR Method for Interval Neutrosophic Multiple Attribute Group Decision-Making. Information, 8(4), 144. https://doi.org/10.3390/info8040144