Bi-Objective Economic Dispatch of Micro Energy Internet Incorporating Energy Router
Abstract
:1. Introduction
2. Formulation of BOED
2.1. Energy Router
2.2. Power Distribution Network
2.3. District Heating Network
2.4. Bi-Objective Economic Dispatch
3. Nash Bargaining Method for the Bi-Objective ED
3.1. Nash Bargaining Solution
3.2. Golden Section Search for Nash Bargaining
Algorithm 1 Golden Section Search for Nash Bargaining (Equation (38)). |
|
4. Case Studies
4.1. System Setting
4.2. Pareto Front and Nash Bargaining Solution
4.3. Operation of Energy Router
4.4. Renewable Curtailment
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BOED | Bi-objective economic dispatch |
HDN | Heat distribution network |
PDN | Power distribution network |
TES | Thermal energy storage |
Sets | |
Set of dispatch period | |
Child buses of bus | |
Pipes with node i as ’from’ node | |
Pipes with node i as ’to’ node | |
Superscripts | |
Return/supply water system | |
Charging/discharging | |
Generation/demand | |
Lower/upper bound | |
Inlet/outlet of pipe | |
Power utility | |
Energy router | |
Subscripts | |
t | Dispatch time |
’from’ or ’to’ bus/node of line/pipe | |
min/max | Minimum/maximum value |
Parameters | |
Cost coefficients of gas turbine | |
Emission coefficients of gas turbine | |
Charging/discharging efficiency | |
c | Constant pressure specific heat |
l | Length of pipe |
Dissipation factor of thermal storage | |
Temperature loss coefficient of pipe | |
Mass flow rate of recycle water | |
Price of electric power | |
Decision Variables | |
Binary variables denote the operation of electric and thermal storage in router | |
Temperature at node, inlet/outlet of pipe | |
h | Injected thermal power of load and source |
Stored electric and thermal energy in router | |
Injected active/reactive power | |
Active/reactive power flow through the power line | |
W | Injected wind power |
Square of amplitude of current/voltage |
References
- Mancarella, P. MES (multi-energy systems): An overview of concepts and evaluation models. Energy 2014, 65, 1–17. [Google Scholar] [CrossRef]
- Mei, S.; Li, R.; Xue, X.; Chen, Y.; Lu, Q.; Chen, X.; Ahrens, C.D.; Li, R.; Chen, L. Paving the Way to Smart Micro Energy Internet: Concepts, Design Principles, and Engineering Practices. arXiv 2016, arXiv:1612.09500v2. [Google Scholar]
- Geidl, M.; Andersson, G. Optimal power flow of multiple energy carriers. IEEE Trans. Power Syst. 2007, 22, 145–155. [Google Scholar] [CrossRef]
- Mendes, G.; Ioakimidis, C.; Ferreao, P. On the planning and analysis of integrated community energy systems: A review and survey of available tools. Renew. Sustain. Energy Rev. 2011, 15, 4836–4854. [Google Scholar] [CrossRef]
- Hemmes, K.; Zachariah-Wolf, J.L.; Geidl, M.; Andersson, G. Towards multi-source multi-product energy systems. Int. J. Hydrogen Energy 2007, 32, 1332–1338. [Google Scholar] [CrossRef]
- Li, R.; Chen, L.; Yuan, T.; Li, C. Optimal dispatch of zero-carbonemission micro energy internet integrated with non-supplementary fired compressed air energy storage system. J. Mod. Power Syst. Clean Energy 2016, 4, 566–580. [Google Scholar] [CrossRef]
- Li, J.; Fang, J.; Zeng, Q.; Chen, Z. Optimal operation of the integrated electrical and heating systems to accommodate the intermittent renewable sources. Appl. Energy 2016, 167, 244–254. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Jenkins, N.; Bagdanavicius, A. Combined analysis of electricity and heat networks. Appl. Energy 2016, 162, 1238–1250. [Google Scholar] [CrossRef]
- Awad, B.; Chaudry, M.; Wu, J.; Jenkins, N. Integrated optimal power flow for electric power and heat in a microgrid. In Electricity Distribution-Part 1, Proceedings of the 20th International Conference and Exhibition on Electricity Distribution (CIRED 2009), Prague, Czech Republic, 8–11 June 2009; IET Conference Publications: Stevenage, UK, 2009; pp. 1–4. [Google Scholar]
- Li, Z.; Wu, W.; Shahidehpour, M.; Wang, J.; Zhang, B. Combined heat and power dispatch considering pipeline energy storage of district heating network. IEEE Trans. Sustain. Energy 2016, 7, 12–22. [Google Scholar] [CrossRef]
- Talaq, J.; El-Hawary, F.; El-Hawary, M. A summary of environmental/ economic dispatch algorithms. IEEE Trans. Power Syst. 1994, 9, 1508–1516. [Google Scholar] [CrossRef]
- Molyneaux, A.; Leyland, G.; Favrat, D. Environomic multi-objective optimisation of a district heating network considering centralized and decentralized heat pumps. Energy 2010, 35, 751–758. [Google Scholar] [CrossRef]
- Li, R.; Chen, L.; Zhao, B.; Wei, W.; Liu, F.; Xue, X.; Mei, S.; Yuan, T. Economic Dispatch of Integrated Heat-power Energy Distribution System with Concentrating Solar Power Energy Hub. J. Energy Eng. 2017, 143. [Google Scholar] [CrossRef]
- Wei, W.; Liu, F.; Mei, S. Nash bargain and complementarity approach based environmental/economic dispatch. IEEE Trans. Power Syst. 2015, 30, 1548–1549. [Google Scholar] [CrossRef]
- Baran, M.E.; Wu, F.F. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Deliv. 1989, 4, 1401–1407. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, B.; Wang, J.; Begovic, M.M.; Chen, C. Coordinated energy management of networked microgrids in distribution systems. IEEE Trans. Smart Grid 2015, 6, 45–53. [Google Scholar] [CrossRef]
- Bendato, I.; Bonfiglio, A.; Brignone, M.; Delfino, F.; Pampararo, F.; Procopio, R. A real-time Energy Management System for the integration of economical aspects and system operator requirements: Definition and validation. Renew. Energy J. 2017, 102, 406–416. [Google Scholar] [CrossRef]
- Baradar, M.; Hesamzadeh, M.R.; Ghandhari, M. Second-Order Cone Programming for Optimal Power Flow in VSC-Type AC-DC Grids. IEEE Trans. Power Syst. 2013, 28, 4282–4291. [Google Scholar] [CrossRef]
- Zhao, H. Analysis, Modelling and Operational Optimazation of District Heating Systems; Centre for District Heating Technology, Technical University of Denmark: Lyngby, Denmark, 1995. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Li, Y.; Lv, A. Bi-Objective Economic Dispatch of Micro Energy Internet Incorporating Energy Router. Information 2017, 8, 133. https://doi.org/10.3390/info8040133
Li T, Li Y, Lv A. Bi-Objective Economic Dispatch of Micro Energy Internet Incorporating Energy Router. Information. 2017; 8(4):133. https://doi.org/10.3390/info8040133
Chicago/Turabian StyleLi, Tian, Yongqian Li, and Anqiang Lv. 2017. "Bi-Objective Economic Dispatch of Micro Energy Internet Incorporating Energy Router" Information 8, no. 4: 133. https://doi.org/10.3390/info8040133
APA StyleLi, T., Li, Y., & Lv, A. (2017). Bi-Objective Economic Dispatch of Micro Energy Internet Incorporating Energy Router. Information, 8(4), 133. https://doi.org/10.3390/info8040133