Forecasting Hoabinh Reservoir’s Incoming Flow: An Application of Neural Networks with the Cuckoo Search Algorithm
Abstract
:1. Introduction
2. Literature Review
3. Cuckoo Search Algorithm
| Algorithm 1. Pseudo code of the Cuckoo Search (CS). |
| Begin |
| Objective function f(x), x= (x1,...,xd)T |
| Generate an initial population of n host nests xi (i=1,2,...,n), each nest containing a random solution; |
| while (t <MaxGeneration) or (stop criterion); |
| Get a cuckoo randomly by Lévy flights; |
| Evaluate its quality/fitness Fi; |
| Choose a nest among n (say, j) randomly; |
| if (Fi > Fj), |
| Replace j by the new solution; |
| end |
| A fraction (pa) of worse nests are replaced by new random solutions via Lévy flights; |
| Keep the best solutions (or nests with quality solutions); |
| Rank the solutions and find the current best; |
| Pass the current best solutions to the next generation; |
| end while |
| Return the best nest; |
| End |
denotes entry-wise multiplications. Lévy flights provide a random walk. The Lévy flight is a probability distribution which has an infinite variance with an infinite mean. It is represented by:
4. Training Artificial Neural Network

5. Research Design
5.1. Scenarios
5.2. Dataset
5.3. Structure of the Neural Network
5.4. Encoding Strategy

5.5. Examining the Performance
and
are the average values of tk and yk, respectively.6. Experimental Results
| Model | RMSE | MAPE | R |
|---|---|---|---|
| BP-FNN | 110.49 | 0.157268 | 0.7509 |
| CS-FNN | 99.2994 | 0.135368 | 0.7762 |
| PSO-FNN | 101.0622 | 0.136568 | 0.772 |

| Model | RMSE | MAPE | R |
|---|---|---|---|
| BP-FNN | 103.22 | 0.142246 | 0.7866 |
| CS-FNN | 84.0647 | 0.116846 | 0.8179 |
| PSO-FNN | 100.5382 | 0.131646 | 0.7964 |

| Model | RMSE | MAPE | R |
|---|---|---|---|
| BP-FNN | 76.1 | 0.108368 | 0.8737 |
| CS-FNN | 48.7161 | 0.067268 | 0.8965 |
| PSO-FNN | 66.9347 | 0.094968 | 0.8767 |

7. Conclusions
Acknowledgment
Author Contributions
Nomenclature
| ACO | ant colony algorithm |
| ANN | artificial neural network |
| BP | back-propagation |
| CS | Cuckoo Search |
| FNN | feedforward neural network |
| GA | genetic algorithm |
| MAPE | mean absolute percentage error |
| MLP | multilayer perceptron |
| MLR | multiple linear regression |
| PSO | particle swarm optimization |
| R | correlation coefficient |
| RMSE | root mean square error |
Conflicts of Interest
References
- Kumar, K.V. Neural Network Prediction of Interfacial Tension at Crystal/Solution Interface. Ind. Eng. Chem. Res. 2009, 48, 4160–4164. [Google Scholar] [CrossRef]
- Chamkalani, A.; Zendehboudi, S.; Chamkalani, R.; Lohi, A.; Elkamel, A.; Chatzis, I. Utilization of support vector machine to calculate gas compressibility factor. Fluid Phase Equilib. 2013, 358, 189–202. [Google Scholar] [CrossRef]
- Shafiei, A.; Dusseault, M.B.; Zendehboudi, S.; Chatzis, I. A new screening tool for evaluation of steamflooding performance in Naturally Fractured Carbonate Reservoirs. Fuel 2013, 108, 502–514. [Google Scholar] [CrossRef]
- Roosta, A.; Setoodeh, P.; Jahanmiri, A. Artificial Neural Network Modeling of Surface Tension for Pure Organic Compounds. Ind. Eng. Chem. Res. 2011, 51, 561–566. [Google Scholar] [CrossRef]
- Zendehboudi, S.; Ahmadi, M.A.; Mohammadzadeh, O.; Bahadori, A.; Chatzis, I. Thermodynamic Investigation of Asphaltene Precipitation during Primary Oil Production: Laboratory and Smart Technique. Ind. Eng. Chem. Res. 2013, 52, 6009–6031. [Google Scholar] [CrossRef]
- Coulibaly, P.; Anctil, F.; Bobée, B. Multivariate Reservoir Inflow Forecasting Using Temporal Neural Networks. J. Hydrol. Eng. 2001, 6, 367–376. [Google Scholar] [CrossRef]
- Can, I.; Yerdelen, C.; Kahya1, E. Stochastic Modeling of Karasu River (Turkey) Using the Methods of Artificial Neural Networks. In Proceedings of the AGU Hydrology Days, Colorado, CO, USA, 19–21 March 2007; pp. 138–144.
- Dolling, O.R.; Varas, E.A. Artificial neural networks for stream flow prediction. J. Hydraul. Res. 2002, 40, 547–554. [Google Scholar] [CrossRef]
- Kilinş, I.; Ciğizouğlu, K. Reservoir Management Using Artificial Neural Networks. Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.104.174 (accessed on 31 October 2014).
- Lekkas, D.F.; Onof, C. Improved Flow Forecasting Using Artificial Neural Networks. In Proceedings of the 9th International Conference on Environmental Science and Technology, Rhodes island, Greece, 1–3 September 2005; pp. 877–884.
- Nguyen, V.H.; Cuong, T.H.; Pham, T.H.N. Hoabinh Reservoir Incoming Flow Forecast for the Period of 10 Days with Neural Networks. In Proceedings of Scientific Research in Open Universities’ HS-IC2007, CatBa, Vietnam, 4–6 November 2007; pp. 181–189.
- Sivapragasam, C.; Vanitha, S.; Muttil, N.; Suganya, K.; Suji, S.; Thamarai Selvi, M.; Selvi, R.; Jeya Sudha, S. Monthly flow forecast for Mississippi River basin using artificial neural networks. Neural Comput. Appl. 2014, 24, 1785–1793. [Google Scholar] [CrossRef]
- Hush, D.R.; Horne, B.G. Progress in supervised neural networks. IEEE Signal Process. Mag. 1993, 10, 8–39. [Google Scholar] [CrossRef]
- Hagar, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993. [Google Scholar] [CrossRef]
- Adeli, H.; Hung, S.L. An adaptive conjugate gradient learning algorithm for efficient training of neural networks. Appl. Math. Comput. 1994, 62, 81–102. [Google Scholar] [CrossRef]
- Zhang, N. An online gradient method with momentum for two-layer feedforward neural networks. Appl. Math. Comput. 2009, 212, 488–498. [Google Scholar] [CrossRef]
- Mingguang, L.; Gaoyang, L. Artificial Neural Network Co-optimization Algorithm Based on Differential Evolution. In Proceedings of the Second International Symposium on Computational Intelligence and Design, Changsha, China, 12–14 December 2009; pp. 256–259.
- Gupta, J.N.D.; Sexton, R.S. Comparing backpropagation with a genetic algorithm for neural network training. Omega 1999, 27, 679–684. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mohd Hashim, S.Z.; Moradian Sardroudi, H. Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl. Math. Comput. 2012, 218, 11125–11137. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo Search via Lévy Flights. In Proceedings of the World Congress on Nature and Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.
- Yang, X.-S.; Deb, S. Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 2010, 1, 330–343. [Google Scholar]
- Yang, X.-S.; Deb, S.; Karamanoglu, M.; He, X. Cuckoo Search for Business Optimization Applications. In Proceedings of National Conference on Computing and Communication Systems (NCCCS), Durgapur, India, 21–22 November 2012; pp. 1–5.
- Kawam, A.A.L.; Mansour, N. Metaheuristic Optimization Algorithms for Training Artificial Neural Networks. Int. J. Comput. Inf. Technol. 2012, 1, 156–161. [Google Scholar]
- Valian, E.; Mohanna, S.; Tavakoli, S. Improved Cuckoo Search algorithm for feed forward neural network training. Int. J. Artif. Intell. Appl. 2011, 2, 36–43. [Google Scholar]
- Ünes, F. Prediction of Density Flow Plunging Depth in Dam Reservoirs: An Artificial Neural Network Approach. CLEAN Soil Air Water 2010, 38, 296–308. [Google Scholar] [CrossRef]
- Akhtar, M.K.; Corzo, G.A.; van Andel, S.J.; Jonoski, A. River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: Case study of the Ganges river basin. Hydrol. Earth Syst. Sci. 2009, 13, 1607–1618. [Google Scholar] [CrossRef]
- Taghi Sattaria, M.; Yureklib, K.; Palc, M. Performance evaluation of artificial neural network approaches in forecasting reservoir inflow. Appl. Math. Model. 2012, 36, 2649–2657. [Google Scholar] [CrossRef]
- Huang, W.; Xu, B.; Chan-Hilton, A. Forecasting flows in Apalachicola River using neural networks. Hydrol. Process. 2004, 18, 2545–2564. [Google Scholar] [CrossRef]
- Gori, M.; Tesi, A. On the problem of local minima in back-propagation. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 76–86. [Google Scholar] [CrossRef]
- Zhang, J.R.; Zhang, J.; Lock, T.M.; Lyu, M.R. A hybrid particle swarm optimization—back-propagation algorithm for feedforward neural network training. Appl. Math. Comput. 2007, 185, 1026–1037. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison Wesley: Boston, MA, USA, 1989. [Google Scholar]
- Kennedy, J.; Eberhart, R.C. Particle Swarm Optimization. In Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Systems Man Cybern. Part B Cybern. 1996, 26, 29–41. [Google Scholar] [CrossRef]
- Mohamad, A.B.; Zain, A.M.; Bazin, N.E.N. Cuckoo Search Algorithm for Optimization Problems—A Literature Review and its Applications. Appl. Artif. Intell. 2014, 28, 419–448. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo search: Recent advances and applications. Neural Comput. Appl. 2014, 24, 169–174. [Google Scholar] [CrossRef]
- Yang, X.-S. (Ed.) Cuckoo Search and Firefly Algorithm; Springer: Berlin/Heidelberg, Germany, 2014.
- Walton, S.; Hassan, O.; Morgan, K.; Brown, M.R. Modified cuckoo search: A new gradient free optimization algorithm. Chaos Solitons Fractals 2011, 44, 710–718. [Google Scholar] [CrossRef]
- Walton, S.; Brown, M.R.; Hassan, O.; Morgan, K. Comment on Cuckoo search: A new nature-inspired optimization method for phase equilibrium calculations by V. Bhargava, S. Fateen, A. Bonilla-Petriciolet. Fluid Phase Equilib. 2013, 352, 64–66. [Google Scholar] [CrossRef]
- Funahashi, K. On the approximate realization of continuous mappings by neural networks. Neural Netw. 1989, 2, 183–192. [Google Scholar] [CrossRef]
- Norgaard, M.R.; Ravn, O.; Poulsen, N.K.; Hansen, L.K. Neural Networks for Modeling and Control of Dynamic Systems: A Practitioner’s Handbook; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Caruana, R.; Lawrence, S.; Giles, C.L. Overfitting in Neural Networks: Backpropagation, Conjugate Gradient, and Early Stopping. In Proceedings of 13th Conference on Advances Neural Information Processing Systems, Vancouver, BC, Canada, 3–8 December 2001; pp. 402–408.
- Hornik, K.; Stinchombe, M.; White, H. Universal Approximation of an unknown Mapping and its Derivatives Using Multilayer Feed forward Networks. Neural Netw. 1990, 3, 551–560. [Google Scholar] [CrossRef]
- Cybenko, G. Approximation by superposition of a sigmoid function. Math. Control Signals Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- Bhattacharya, U.; Chaudhuri, B.B. Handwritten Numeral Databases of Indian Scripts and Multistage Recognition of Mixed Numerals. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 444–457. [Google Scholar] [CrossRef]
- Dogan, E.; Akgungor, A.P. Forecasting highway casualties under the effect of railway development policy in Turkey using artificial neural networks. Neural Comput. Appl. 2013, 22, 869–877. [Google Scholar] [CrossRef]
- MATLAB; R2014a; software for technical computation; The MathWorks, Inc.: Natick, MA, USA, 2014.
- Garson, G.D. Interpreting neural-network connection weights. AI Expert 1991, 6, 47–51. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-F.; Hsieh, H.-N.; Do, Q.H. Forecasting Hoabinh Reservoir’s Incoming Flow: An Application of Neural Networks with the Cuckoo Search Algorithm. Information 2014, 5, 570-586. https://doi.org/10.3390/info5040570
Chen J-F, Hsieh H-N, Do QH. Forecasting Hoabinh Reservoir’s Incoming Flow: An Application of Neural Networks with the Cuckoo Search Algorithm. Information. 2014; 5(4):570-586. https://doi.org/10.3390/info5040570
Chicago/Turabian StyleChen, Jeng-Fung, Ho-Nien Hsieh, and Quang Hung Do. 2014. "Forecasting Hoabinh Reservoir’s Incoming Flow: An Application of Neural Networks with the Cuckoo Search Algorithm" Information 5, no. 4: 570-586. https://doi.org/10.3390/info5040570
APA StyleChen, J.-F., Hsieh, H.-N., & Do, Q. H. (2014). Forecasting Hoabinh Reservoir’s Incoming Flow: An Application of Neural Networks with the Cuckoo Search Algorithm. Information, 5(4), 570-586. https://doi.org/10.3390/info5040570

