A New Intuitionistic Fuzzy Entropy and Application in Multi-Attribute Decision Making
Abstract
:1. Introduction
2. Preliminaries
- (1)
- if and only if ;
- (2)
- if and only if and ;
- (3)
- The complementary set of denoted by , is ;
- (4)
- called less fuzzy than , i.e., for ,
- If , then ;
- If , then ;
- (i)
- if and only if is a crisp set;
- (ii)
- if and only if ;
- (iii)
- ;
- (iv)
- If , then .
3. A New Effective Intuitionistic Fuzzy Entropy
E1 | E2 | E3 | E4 | E5 | E | |
A1/2 | 0.3786 | 0.5016 | 0.5106 | 0.8660 | 0.3645 | 0.3686 |
A | 0.3810 | 0.4939 | 0.5054 | 0.8685 | 0.3564 | 0.3633 |
A2 | 0.3160 | 0.3953 | 0.4065 | 0.8437 | 0.3339 | 0.3407 |
A3 | 0.2700 | 0.3330 | 0.3438 | 0.8263 | 0.2512 | 0.2643 |
A4 | 0.2403 | 0.2938 | 0.3044 | 0.8147 | 0.2142 | 0.2313 |
E1 | E2 | E3 | E4 | E5 | E | |
A1 | 0.6474 | 0.9057 | 0.9138 | 0.9877 | 0.7265 | 0.7883 |
A2 | 0.6474 | 0.9057 | 0.9138 | 0.9771 | 0.6427 | 0.6457 |
A3 | 0.6109 | 0.8329 | 0.8463 | 0.9659 | 0.5774 | 0.5914 |
A4 | 0.5953 | 0.8027 | 0.8180 | 0.9659 | 0.5774 | 0.6103 |
4. Intuitionistic Fuzzy MADM Method Based on the New IF Entropy
4.1. MADM Problem with Unknown Attribute Weights Information
4.2. MADM Problem with Partially Known Attribute Weights Information
4.3. The New MADM Method Based the Proposed IF Entropy
5. Numerical Examples
Air-condition system | Evaluation attribute | ||
o1 | o2 | o3 | |
A1 | (0.45,0.35) | (0.50,0.30) | (0.20,0.55) |
A2 | (0.65,0.25) | (0.65,0.25) | (0.55,0.15) |
A3 | (0.45,0.35) | (0.55,0.35) | (0.55,0.20) |
A4 | (0.75,0.15) | (0.65,0.20) | (0.35,0.15) |
Air-condition system | Evaluation attribute | ||
o1 | o2 | o3 | |
A1 | (0.75,0.10) | (0.60,0.25) | (0.80,0.20) |
A2 | (0.80,0.15) | (0.68,0.20) | (0.45,0.50) |
A3 | (0.40,0.45) | (0.75,0.05) | (0.60,0.30) |
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Carlsson, C.; Fuller, R. Multiobjective linguistic optimization. Fuzzy Sets Syst. 2000, 115, 5–10. [Google Scholar] [CrossRef]
- Chen, C.T. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 2000, 114, 1–9. [Google Scholar] [CrossRef]
- Jahanshahloo, G.R.; Lotfi, F.H.; Izadikhah, M. An algorithmic method to extend TOPSIS for decision-making problems with interval data. Appl. Math. Comput. 2006, 175, 1375–1284. [Google Scholar] [CrossRef]
- Amiri, M.; Nosratian, N.E.; Jamshidi, A.; Kazemi, A. Developing a new ELECTRE method with interval data in multiple attribute decision making problems. J. Appl. Sci. 2008, 8, 4017–4028. [Google Scholar] [CrossRef]
- Wang, Y. A fuzzy multi-criteria decision-making model by associating technique for order preference by similarity to ideal solution with relative preference relation. Inf. Sci. 2014, 268, 169–184. [Google Scholar] [CrossRef]
- Jing, Y.; Bai, H.; Wang, J. A fuzzy multi-criteria decision-making model for CCHP systems driven by different energy sources. Energy Policy 2012, 42, 286–296. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H. Multicriteria decision-making approach based on Atanassov’s intuitionistic fuzzy sets with incomplete certain information on weights. IEEE Trans. Fuzzy Syst. 2013, 21, 510–515. [Google Scholar] [CrossRef]
- Yue, Z.; Jia, Y.; Ye, G. An approach for multiple attribute group decision making based on intuitionistic fuzzy information. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2009, 17, 317–332. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic Fuzzy Sets; Springer-Verlag: New York, NY, USA, 1999. [Google Scholar]
- Chen, T.Y.; Li, C.H. Objective weights with intuitionistic fuzzy entropy measures and computational experiment analysis. Appl. Soft Comput. 2011, 11, 5411–5423. [Google Scholar] [CrossRef]
- Beliakov, G.; Bustinc, H.; Goswami, D.P.; Mukherjee, U.K.; Pal, N.R. On averaging operators for Atanassov’s intuitionistic fuzzy sets. Inf. Sci. 2011, 181, 1161–1124. [Google Scholar] [CrossRef]
- Pei, Z.; Zheng, L. A novel approach to multi-attribute decision making based on intuitionistic fuzzy sets. Expert Syst. Appl. 2012, 39, 2560–2566. [Google Scholar] [CrossRef]
- Gau, W.; Buehrer, D.J. Vague sets. IEEE Trans. Syst. Man Cybern. 1993, 23, 610–614. [Google Scholar] [CrossRef]
- Bustince, H.; Burillo, P. Vague sets are intuitionistic fuzzy sets. Fuzzy Sets Syst. 1996, 79, 403–405. [Google Scholar] [CrossRef]
- Szmidt, E.; Kacprzyk, J. Using intuitionistic fuzzy sets in group decision making. Control Cybern. 2002, 31, 1037–1054. [Google Scholar]
- Xu, Z. A deviation-based approach to intuitionistic fuzzy multiple attribute group decision making. Group Decis. Negot. 2010, 19, 57–76. [Google Scholar] [CrossRef]
- Zeng, S.; Balezentis, T.; Chen, J.; Luo, G. A projection method for multiple attribute group decision making with intuitionistic fuzzy information. Informatica 2013, 24, 485–503. [Google Scholar]
- Zadeh, L.A. Probability measures of fuzzy events. J. Math. Anal. Appl. 1968, 23, 421–427. [Google Scholar] [CrossRef]
- De Luca, A.; Termini, S. A definition of non-probabilistic entropy in the setting of fuzzy set theory. Inf. Control 1972, 20, 301–312. [Google Scholar] [CrossRef]
- Bhandari, D.; Pal, N.R. Some new information measures for fuzzy sets. Inf. Sci. 1993, 67, 209–228. [Google Scholar] [CrossRef]
- Fan, J. Some new fuzzy entropy formulas. Fuzzy Sets Syst. 2002, 128, 277–284. [Google Scholar] [CrossRef]
- Pal, N.R.; Pal, S.K. Object background segmentation using new definitions of entropy. IEE Proc. E 1989, 366, 284–295. [Google Scholar]
- Burillo, P.; Bustince, H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets Syst. 2001, 118, 305–316. [Google Scholar]
- Zhang, Q.; Jiang, S. A note on information entropy measure for vague sets. Inf. Sci. 2008, 178, 4184–4191. [Google Scholar] [CrossRef]
- Ye, J. Two effective measures of intuitionistic fuzzy ertropy. Computing 2010, 87, 55–62. [Google Scholar] [CrossRef]
- Verma, R.; Sharma, B.D. Exponential entropy on intuitionistic fuzzy sets. Kybernetika 2013, 49, 114–127. [Google Scholar]
- Wei, C.; Gao, Z.; Guo, T. An intuitionistic fuzzy entropy measure based on trigonometric function. Control Decis. 2012, 27, 571–574. [Google Scholar]
- Wang, J.; Wang, P. Intuitionistic linguistic fuzzy multi-criteria decision-making method based on intuitionistic fuzzy entropy. Control Decis. 2012, 27, 1694–1698. [Google Scholar]
- Hwang, C.L.; Yoon, K.P. Multiple Attribute Decision Making: Methods and Applications; Springer-Verlag: New York, NY, USA, 1981. [Google Scholar]
- Jiang, J.; Chen, Y.; Yang, K. TOPSIS with fuzzy belief structure for group belief multiple criteria decision making. Expert Syst. Appl. 2011, 38, 9400–9406. [Google Scholar] [CrossRef]
- Krohling, R.A.; Campanharo, V.C. Fuzzy TOPSIS for group decision making: A case study for accidents with oil spill in the sea. Expert Syst. Appl. 2011, 38, 4190–4197. [Google Scholar] [CrossRef]
- Yue, Z. A method for group decision-making based on determining weights of decision makers using TOPSIS. Appl. Math. Model. 2011, 35, 1926–1936. [Google Scholar] [CrossRef]
- Amiri, M.P. Project selection for oil-fields development by using the AHP and fuzzy TOPSIS methods. Expert Syst. Appl. 2010, 37, 6218–6224. [Google Scholar] [CrossRef]
- Li, D.F. Intuitionistic Fuzzy Set Decision and Game Analysis Methodologies; National Defense Industry Press: Beijing, China, 2012. [Google Scholar]
- De, S.K.; Biswas, R.; Roy, A.R. Some operations on intuitionistic fuzzy sets. Fuzzy Sets Syst. 2000, 114, 477–484. [Google Scholar] [CrossRef]
- Liu, H.; Wang, G. Multi-criteria decision-making methods based on intuitionistic fuzzy sets. Eur. J. Oper. Res. 2007, 179, 220–233. [Google Scholar] [CrossRef]
- Chen, T.; Li, C. Determining objective weights with intuitionistic fuzzy entropy measures: A comparative analysis. Inf. Sci. 2010, 180, 4207–4222. [Google Scholar] [CrossRef]
- Ye, J. Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment. Eur. J. Oper. Res. 2010, 205, 202–204. [Google Scholar] [CrossRef]
- Xu, Z. Multi-person multi-attribute decision making models under intuitionistic fuzzy environment. Fuzzy Optim. Decis. Mak. 2007, 6, 221–236. [Google Scholar] [CrossRef]
- Chen, S.; Tan, J. Handing multicriteria fuzzy decision-making problems based vague set theory. Fuzzy Sets Syst. 1994, 67, 163–172. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Q. Multicriteria decision making method based on intuitionistic fuzzy weighted entropy. Expert Syst. Appl. 2011, 38, 916–922. [Google Scholar] [CrossRef]
- Herrera, F.; Herrera-Viedma, E. Linguistic decision analysis: Steps for solving decision problems under linguistic information. Fuzzy Sets Syst. 2000, 115, 67–82. [Google Scholar] [CrossRef]
- Li, D. Multiattribute decision making models and methods using intuitionistic fuzzy sets. J. Comput. Syst. Sci. 2005, 70, 73–85. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Ren, H. A New Intuitionistic Fuzzy Entropy and Application in Multi-Attribute Decision Making. Information 2014, 5, 587-601. https://doi.org/10.3390/info5040587
Liu M, Ren H. A New Intuitionistic Fuzzy Entropy and Application in Multi-Attribute Decision Making. Information. 2014; 5(4):587-601. https://doi.org/10.3390/info5040587
Chicago/Turabian StyleLiu, Manfeng, and Haiping Ren. 2014. "A New Intuitionistic Fuzzy Entropy and Application in Multi-Attribute Decision Making" Information 5, no. 4: 587-601. https://doi.org/10.3390/info5040587
APA StyleLiu, M., & Ren, H. (2014). A New Intuitionistic Fuzzy Entropy and Application in Multi-Attribute Decision Making. Information, 5(4), 587-601. https://doi.org/10.3390/info5040587