TransferLearning-Driven Large-Scale CNN Benchmarking with Explainable AI for Image-Based Dust Detection on Solar Panels
Abstract
1. Introduction
Research Gap, Questions, Contributions, and Scope
- RQ-1: Which pre-trained CNN architectures achieve the highest classification accuracy for image-based dust detection on solar panels?
- RQ-2: How do the evaluated CNN models compare in terms of computational efficiency, including training time, inference time for a single image, and FLOPs?
- RQ-3: Which CNN models offer the best trade-off between classification performance and computational cost, making them suitable for real-time or resource-constrained deployment?
- It presents the first large-scale benchmarking of 100 pre-trained CNN models from 16 architecture families for image-based dust detection on solar panels, providing a comprehensive comparative analysis of backbone performance.
- It reports classification accuracy along with computational metrics such as training time and FLOPs to highlight the practical trade-offs between model performance and efficiency.
- The benchmarking is conducted using a reproducible and modular evaluation pipeline, offering a standardized baseline for future research in solar panel monitoring using computer vision.
- We do not follow a multi-class classification approach for identifying “dirty” solar panels although the dirt may be of several types such as bird-droppings, debris, leaves, occlusion and defects, etc. Instead, we perform image-based binary classification to classify the solar panels as either “clean” or “dirty”. The details on the number of images per the dirt type is given in Section 3.
- We do not propose a novel CNN architecture, nor do we aim to achieve the best results on the current dataset by fine-tuning a given CNN architecture to mitigate misclassifications. Rather, our focus is on benchmarking pre-trained CNN backbones, which is considered a compulsory preliminary step. This is because newly proposed CNNs are often derived from well-known architectures such as ResNet or VGG. Identifying the best backbone for a given problem can then lead to improved results through the discriminative features it extracts. Given the vast number of available CNN architectures, evaluating all of them is impractical, while evaluating too few would fail to capture meaningful comparative insights. To ensure fairness, diversity, and comprehensiveness, we therefore evaluate 100 representative models from 16 distinct CNN families, providing a solid empirical foundation for future model development in this domain.
- We do not employ any additional sensing modalities such as infrared or electrostatic/deposition sensors—nor do we attempt to measure or estimate physical dust layer thickness μm, mass density (mg/cm2), or other quantitative deposition metrics. Our proposed classification pipeline is based on RGB images where the labels are assigned purely by visual criteria.
- We do not conduct any end-to-end energy or cost-savings analysis of vision-based cleaning systems. Consequently, the paper does not deal with or present hardware deployment, real-time inference pipeline, or field-trial validation.
- By clearly bounding the contribution of this paper to a comprehensive, reproducible comparison of 16 state-of-the-art CNN backbones, this paper provides a solid foundation upon which future research can achieve the following:
- –
- integrate the top-performing models into full monitoring systems;
- –
- extend the image dataset to accommodate the dirt types for multi-class classification;
- –
- incorporate additional sensors;
- –
- quantify operational and energy benefits.
2. Related Work
2.1. Impact of Dust Accumulation on Solar Panel Efficiency: A Global Perspective
- India: In Dehradun, a 45-day exposure led to an average efficiency drop of 22.5% in polysilicon solar panels [15].
- Jordan: At the Jordan University of Science and Technology, natural dust accumulation over three months resulted in a 13% decline in PV module output power [16].
- Pakistan: Studies in Islamabad and Bahawalpur revealed that dust densities of 6.388 g/m2 and 4.365 g/m2 led to efficiency reductions of 15.08% and 12.61%, respectively, [17].
- China: Research indicated that a one-micron dust layer could cause a 25.5% reduction in PV module efficiency, with a 70-day exposure leading to a 21.47% power output decrease [18].
- Global Review: A comprehensive analysis reported that dust accumulation could reduce PV efficiency by up to 64%, with factors like tilt angle and environmental conditions playing significant roles [19].
2.2. Image-Based Dust Detection on Solar Panels
3. Dataset
4. Methodology
4.1. Image Encoding Using Pre-Trained CNN Model
4.2. Classification Using a Linear SVM via Stratified Shuffle Split
5. Results and Discussion
5.1. Classification Accuracy
5.2. Training Time
5.3. Overall Verdict
5.4. Comparison of the Best-Performing Variants
- Accuracy vs. Floating Point Operations (FLOPs): Figure 7a shows the accuracy vs. FLOP comparison of the two models, where resnetv2_152 clearly outperforms convnext_xxlarge with fewer FLOPs and better classification accuracy.
- Accuracy vs. Parameters count: Figure 7b shows the same behavior for the accuracy vs. parameter countm thus determining that resnetv2_152 is superior to convnext_xxlarge.
- Confusion Matrices: Since the main aim is to detect dusty/dirty solar panels, convnext_xxlarge performs slightly better than resnetv2_152 at detecting dirty solar panels as shown in Figure 7c, as the former accurately detects dirty solar panels better than the latter.
- Manifold analysis using t-SNE and UMAP: We also performed a manifold analysis for both models using t-SNE [41] and uniform manifold approximation and projection for dimension reduction (UMAP) [42] to show the effectiveness of the CNN model to discriminate among the features of both the classes. The results are shown in Figure 7d for t-SNE and Figure 7e for UMAP, where the resnetv2_152 can clearly be observed to cluster features of the same class better than convnext_xxlarge, hence providing strong evidence for its superior performance.
- Performance across all the three splits: To show the collective performance of both the best-performing models across all three splits, we performed the experiments with each of the three splits. We show the collective behavior of both CNN models in Figure 8a. The results highlight the stability and effectiveness of both models, with convnext_xxlarge displaying a slightly higher median and lower variance.
- Other performance metrics: The precision–recall (PR) curves for the two models under the 90–10 split are shown in Figure 8b. Both models exhibit strong precision–recall performance, with resnetv2_152 maintaining higher precision at elevated recall levels. The receiver operating characteristic (ROC) curves under the same split are shown in Figure 8c, demonstrating excellent true positive rates for both models across all false positive rates, with convnext_xxlarge showing a marginal edge in ROC performance.
5.5. Qualitative Analysis Using Explainable-AI
5.6. Analyzing Misclassified Images of Dirty Solar Panels
5.7. Testing on Unseen Real-World Dirty Solar Panels Image Dataset
6. Conclusions and Future Work
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
| Model | Accuracy | Precision | Recall | F1 Score | Time (s) |
|---|---|---|---|---|---|
| convnext_xxlarge | 91.43 | 91.51 | 91.43 | 91.43 | 1.38 |
| resnetv2_152 | 91.37 | 91.44 | 91.37 | 91.38 | 2.16 |
| regnet_y_32gf | 89.84 | 89.95 | 89.84 | 89.86 | 2.30 |
| convnext_xlarge | 89.75 | 89.86 | 89.75 | 89.77 | 0.81 |
| densenet161 | 89.53 | 89.57 | 89.53 | 89.52 | 2.32 |
| densenet201 | 87.98 | 87.99 | 87.98 | 87.95 | 1.93 |
| densenet169 | 87.88 | 87.93 | 87.88 | 87.88 | 1.64 |
| dpn131 | 87.13 | 87.21 | 87.13 | 87.12 | 1.42 |
| mnasnet1_0 | 87.10 | 87.12 | 87.10 | 87.06 | 1.26 |
| convnextv2_tiny | 86.70 | 86.84 | 86.70 | 86.72 | 0.31 |
| convnext_base | 86.60 | 86.65 | 86.60 | 86.59 | 0.80 |
| inception_next_base | 86.39 | 86.52 | 86.39 | 86.41 | 0.45 |
| dpn98 | 85.89 | 85.92 | 85.89 | 85.88 | 1.79 |
| convnext_small | 85.83 | 85.92 | 85.83 | 85.84 | 0.60 |
| inception_next_small | 85.83 | 85.92 | 85.83 | 85.82 | 0.32 |
| dpn107 | 85.55 | 85.65 | 85.55 | 85.55 | 1.29 |
| convnextv2_nano | 85.52 | 85.66 | 85.52 | 85.52 | 0.24 |
| inception_next_tiny | 85.51 | 85.66 | 85.51 | 85.50 | 0.35 |
| densenet121 | 85.42 | 85.52 | 85.42 | 85.43 | 0.93 |
| mobilenet_v3_large | 85.39 | 85.48 | 85.39 | 85.38 | 0.88 |
| resnet152 | 85.27 | 85.48 | 85.27 | 85.26 | 1.20 |
| efficientnet_b0 | 85.26 | 85.41 | 85.26 | 85.27 | 1.27 |
| convnext_tiny | 84.98 | 85.07 | 84.98 | 85.01 | 0.66 |
| convnext_large | 84.92 | 84.97 | 84.92 | 84.91 | 1.33 |
| efficientnet_b2 | 84.92 | 85.00 | 84.92 | 84.94 | 1.48 |
| shufflenet_v2_x2_0 | 84.77 | 84.81 | 84.77 | 84.75 | 1.69 |
| regnet_x_1_6gf | 84.42 | 84.52 | 84.42 | 84.39 | 0.90 |
| regnet_x_800mf | 84.33 | 84.38 | 84.33 | 84.32 | 0.64 |
| cs3darknet_x | 84.24 | 84.43 | 84.24 | 84.25 | 0.50 |
| efficientnet_b1 | 84.18 | 84.28 | 84.18 | 84.20 | 1.38 |
| mnasnet0_5 | 84.05 | 84.04 | 84.05 | 83.98 | 1.69 |
| mnasnet0_75 | 84.05 | 84.18 | 84.05 | 84.06 | 1.58 |
| mobilenet_v3_small | 84.05 | 84.24 | 84.05 | 84.09 | 0.58 |
| regnet_x_3_2gf | 84.02 | 84.03 | 84.02 | 84.00 | 0.92 |
| shufflenet_v2_x0_5 | 83.99 | 84.07 | 83.99 | 83.95 | 0.47 |
| shufflenet_v2_x1_0 | 83.99 | 84.05 | 83.99 | 83.97 | 0.44 |
| efficientnet_b3 | 83.93 | 84.16 | 83.93 | 83.93 | 1.55 |
| efficientnet_v2_s | 83.93 | 83.99 | 83.93 | 83.91 | 1.27 |
| dpn68 | 83.68 | 83.69 | 83.68 | 83.65 | 0.33 |
| dpn92 | 83.68 | 83.92 | 83.68 | 83.68 | 2.20 |
| mnasnet1_3 | 83.61 | 83.65 | 83.61 | 83.58 | 1.63 |
| mobilenetv4_conv_small | 83.52 | 83.56 | 83.52 | 83.51 | 0.52 |
| vgg16_bn | 83.52 | 83.58 | 83.52 | 83.47 | 3.51 |
| vgg13 | 83.49 | 83.47 | 83.49 | 83.42 | 5.41 |
| efficientnet_b4 | 83.18 | 83.34 | 83.18 | 83.21 | 1.88 |
| alexnet | 83.12 | 83.13 | 83.12 | 83.02 | 8.66 |
| vgg11_bn | 82.99 | 82.97 | 82.99 | 82.92 | 3.77 |
| dpn68b | 82.8 | 82.96 | 82.8 | 82.82 | 0.29 |
| regnet_x_400mf | 82.49 | 82.52 | 82.49 | 82.44 | 0.53 |
| shufflenet_v2_x1_5 | 82.46 | 82.5 | 82.46 | 82.41 | 0.58 |
| dpn68b | 82.24 | 82.39 | 82.24 | 82.28 | 0.3 |
| convnext_nano | 82.21 | 82.39 | 82.21 | 82.26 | 0.35 |
| vgg11 | 82.15 | 82.19 | 82.15 | 82.09 | 5.42 |
| mobilenet_v2 | 81.87 | 81.87 | 81.87 | 81.85 | 1.28 |
| vgg13_bn | 81.84 | 81.86 | 81.84 | 81.72 | 4.08 |
| cs3darknet_focus_m | 81.71 | 81.66 | 81.71 | 81.61 | 0.26 |
| resnet18 | 81.65 | 81.68 | 81.65 | 81.59 | 0.23 |
| resnet34 | 81.56 | 81.81 | 81.56 | 81.57 | 0.25 |
| efficientnet_b5 | 81.5 | 81.65 | 81.5 | 81.52 | 2.73 |
| vgg16 | 81.43 | 81.35 | 81.43 | 81.26 | 5.21 |
| efficientnet_b7 | 81.34 | 81.37 | 81.34 | 81.33 | 3 |
| cs3darknet_focus_l | 81.28 | 81.37 | 81.28 | 81.28 | 0.42 |
| densenetblur121d | 81.09 | 81.26 | 81.09 | 81.12 | 0.41 |
| convnext_pico | 80.87 | 81.08 | 80.87 | 80.93 | 0.21 |
| regnet_y_16gf | 80.56 | 80.64 | 80.56 | 80.49 | 5.9 |
| regnet_y_400mf | 80.06 | 80.14 | 80.06 | 80.07 | 0.27 |
| regnet_y_8gf | 80.06 | 80.15 | 80.06 | 80.01 | 1.62 |
| resnetv2_50 | 80.06 | 80.22 | 80.06 | 80.07 | 1.33 |
| convnextv2_pico | 79.41 | 79.5 | 79.41 | 79.36 | 0.31 |
| vgg19_bn | 79.38 | 79.47 | 79.38 | 79.38 | 4.03 |
| efficientnet_b6 | 79.06 | 79.1 | 79.06 | 79.06 | 2.82 |
| regnet_y_800mf | 78.75 | 78.82 | 78.75 | 78.74 | 0.39 |
| resnet101 | 78.72 | 78.92 | 78.72 | 78.75 | 1.52 |
| inception_v3 | 78.6 | 78.86 | 78.6 | 78.66 | 3.2 |
| convnextv2_huge | 78.47 | 78.53 | 78.47 | 78.4 | 2.82 |
| regnet_y_1_6gf | 78.38 | 78.37 | 78.38 | 78.3 | 1.07 |
| resnetv2_101 | 78.32 | 78.5 | 78.32 | 78.35 | 1.19 |
| vgg19 | 78.26 | 78.11 | 78.26 | 78.11 | 5.42 |
| efficientnet_v2_m | 77.97 | 78.14 | 77.97 | 78 | 1.76 |
| googlenet | 77.85 | 77.93 | 77.85 | 77.84 | 1.24 |
| resnet50 | 77.6 | 77.66 | 77.6 | 77.6 | 1.65 |
| regnet_y_3_2gf | 77.01 | 77.02 | 77.01 | 76.97 | 1.03 |
| wide_resnet50_2 | 77.01 | 77.16 | 77.01 | 77.04 | 1.68 |
| wide_resnet101_2 | 76.67 | 76.76 | 76.67 | 76.63 | 1.77 |
| convnextv2_base | 76.6 | 76.77 | 76.6 | 76.6 | 0.41 |
| xception65 | 76.54 | 76.55 | 76.54 | 76.5 | 1.19 |
| resnext101_32x8d | 76.14 | 76.13 | 76.14 | 76.08 | 1.79 |
| regnet_x_32gf | 75.98 | 76 | 75.98 | 75.91 | 4.55 |
| convnextv2_large | 75.95 | 75.81 | 75.95 | 75.84 | 0.88 |
| regnet_x_16gf | 75.48 | 75.46 | 75.48 | 75.45 | 3.18 |
| resnext50_32x4d | 75.33 | 75.45 | 75.33 | 75.33 | 1.6 |
| convnextv2_femto | 74.15 | 74.38 | 74.15 | 74.21 | 0.43 |
| convnextv2_atto | 74.05 | 74.11 | 74.05 | 73.97 | 0.75 |
| inception_v4 | 73.83 | 74.12 | 73.83 | 73.88 | 1.12 |
| regnet_x_8gf | 73.58 | 73.55 | 73.58 | 73.53 | 2.75 |
| mobilenetv4_conv_medium | 73.18 | 73.92 | 73.18 | 73.35 | 0.75 |
| efficientnet_v2_l | 69.75 | 69.84 | 69.75 | 69.66 | 1.99 |
| xception71 | 69.59 | 69.5 | 69.59 | 69.39 | 1.56 |
| xception41 | 67.48 | 67.48 | 67.48 | 67.36 | 1.62 |
| mobilenetv4_conv_large | 66.14 | 66.06 | 66.14 | 66.04 | 1.2 |
| Model | Accuracy | Precision | Recall | F1 Score | Time (s) |
|---|---|---|---|---|---|
| convnext_xxlarge | 91.96 | 92.04 | 91.96 | 91.98 | 1.84 |
| resnetv2_152 | 91.96 | 92.08 | 91.96 | 91.98 | 2.68 |
| regnet_y_32gf | 89.86 | 89.92 | 89.86 | 89.86 | 3.85 |
| convnext_xlarge | 89.67 | 89.77 | 89.67 | 89.69 | 1.08 |
| densenet161 | 89.2 | 89.37 | 89.2 | 89.23 | 2.94 |
| densenet169 | 87.94 | 87.95 | 87.94 | 87.92 | 2.06 |
| densenet201 | 87.94 | 88.01 | 87.94 | 87.96 | 2.42 |
| dpn131 | 87.62 | 87.87 | 87.62 | 87.66 | 1.97 |
| convnext_base | 86.96 | 87.04 | 86.96 | 86.98 | 1.03 |
| convnextv2_tiny | 86.96 | 87.38 | 86.96 | 87.04 | 0.39 |
| convnextv2_nano | 86.92 | 87.1 | 86.92 | 86.96 | 0.32 |
| mnasnet1_0 | 86.87 | 86.92 | 86.87 | 86.86 | 1.59 |
| convnext_small | 86.82 | 86.9 | 86.82 | 86.83 | 0.73 |
| inception_next_base | 86.64 | 86.83 | 86.64 | 86.68 | 0.54 |
| mobilenet_v3_large | 86.26 | 86.35 | 86.26 | 86.28 | 1.09 |
| dpn107 | 86.12 | 86.25 | 86.12 | 86.14 | 1.75 |
| resnet152 | 86.12 | 86.28 | 86.12 | 86.16 | 1.59 |
| dpn98 | 86.07 | 86.23 | 86.07 | 86.1 | 2.37 |
| inception_next_small | 86.07 | 86.25 | 86.07 | 86.09 | 0.42 |
| regnet_x_3_2gf | 85.93 | 86.02 | 85.93 | 85.92 | 1.13 |
| densenet121 | 85.56 | 85.72 | 85.56 | 85.59 | 1.11 |
| efficientnet_b3 | 85.56 | 85.72 | 85.56 | 85.53 | 1.91 |
| efficientnet_b2 | 85.47 | 85.64 | 85.47 | 85.51 | 1.8 |
| convnext_tiny | 85.23 | 85.48 | 85.23 | 85.31 | 0.83 |
| mnasnet0_5 | 85.19 | 85.25 | 85.19 | 85.18 | 1.96 |
| mnasnet0_75 | 85 | 85.15 | 85 | 85.02 | 1.71 |
| efficientnet_b0 | 84.91 | 85.04 | 84.91 | 84.88 | 1.56 |
| inception_next_tiny | 84.91 | 85.01 | 84.91 | 84.94 | 0.46 |
| convnext_large | 84.81 | 85.12 | 84.81 | 84.89 | 1.68 |
| dpn92 | 84.63 | 84.68 | 84.63 | 84.61 | 2.81 |
| cs3darknet_x | 84.49 | 84.77 | 84.49 | 84.56 | 0.71 |
| efficientnet_b4 | 84.39 | 84.59 | 84.39 | 84.43 | 2.41 |
| regnet_x_800mf | 84.25 | 84.35 | 84.25 | 84.24 | 0.8 |
| mnasnet1_3 | 84.11 | 84.16 | 84.11 | 84.08 | 1.91 |
| mobilenetv4_conv_small | 84.02 | 84.04 | 84.02 | 84 | 0.76 |
| regnet_x_1_6gf | 83.92 | 84.15 | 83.92 | 83.97 | 1.05 |
| shufflenet_v2_x2_0 | 83.92 | 84.02 | 83.92 | 83.94 | 2.24 |
| efficientnet_b1 | 83.83 | 83.91 | 83.83 | 83.85 | 1.61 |
| mobilenet_v3_small | 83.83 | 84.09 | 83.83 | 83.89 | 0.76 |
| dpn68 | 83.78 | 84 | 83.78 | 83.84 | 0.39 |
| efficientnet_v2_s | 83.78 | 83.99 | 83.78 | 83.85 | 1.57 |
| vgg16_bn | 83.64 | 83.66 | 83.64 | 83.61 | 4.07 |
| vgg11_bn | 83.6 | 83.69 | 83.6 | 83.59 | 4.58 |
| convnext_nano | 83.55 | 84.22 | 83.55 | 83.68 | 0.41 |
| shufflenet_v2_x1_0 | 83.55 | 83.68 | 83.55 | 83.57 | 0.56 |
| alexnet | 83.36 | 83.32 | 83.36 | 83.28 | 10.84 |
| vgg13_bn | 83.36 | 83.44 | 83.36 | 83.32 | 5.28 |
| dpn68b | 83.22 | 83.51 | 83.22 | 83.29 | 0.37 |
| mobilenet_v2 | 83.08 | 83.13 | 83.08 | 83.04 | 1.6 |
| regnet_x_400mf | 82.9 | 82.93 | 82.9 | 82.88 | 0.67 |
| shufflenet_v2_x0_5 | 82.85 | 82.89 | 82.85 | 82.83 | 0.58 |
| dpn68b | 82.8 | 82.99 | 82.8 | 82.85 | 0.38 |
| vgg13 | 82.8 | 82.92 | 82.8 | 82.82 | 6.61 |
| shufflenet_v2_x1_5 | 82.66 | 82.88 | 82.66 | 82.69 | 0.61 |
| vgg11 | 82.48 | 82.57 | 82.48 | 82.44 | 6.6 |
| cs3darknet_focus_l | 82.24 | 82.5 | 82.24 | 82.28 | 0.56 |
| efficientnet_b5 | 82.24 | 82.32 | 82.24 | 82.25 | 3.29 |
| densenetblur121d | 82.2 | 82.41 | 82.2 | 82.26 | 0.45 |
| cs3darknet_focus_m | 82.15 | 82.26 | 82.15 | 82.16 | 0.44 |
| efficientnet_b7 | 81.96 | 82.26 | 81.96 | 82.02 | 3.8 |
| regnet_y_16gf | 81.87 | 81.95 | 81.87 | 81.84 | 7.3 |
| resnet18 | 81.73 | 81.94 | 81.73 | 81.75 | 0.31 |
| regnet_y_8gf | 81.45 | 81.57 | 81.45 | 81.47 | 2.45 |
| convnext_pico | 81.35 | 81.49 | 81.35 | 81.37 | 0.27 |
| resnet34 | 81.17 | 81.52 | 81.17 | 81.27 | 0.3 |
| resnetv2_50 | 81.12 | 81.41 | 81.12 | 81.2 | 1.77 |
| vgg16 | 81.07 | 81.12 | 81.07 | 81.04 | 6.37 |
| efficientnet_b6 | 80.84 | 80.91 | 80.84 | 80.82 | 3.53 |
| convnextv2_pico | 80.75 | 80.91 | 80.75 | 80.79 | 0.4 |
| regnet_y_800mf | 80.75 | 80.92 | 80.75 | 80.72 | 0.45 |
| inception_v3 | 80.14 | 80.3 | 80.14 | 80.15 | 4.03 |
| resnetv2_101 | 79.67 | 79.88 | 79.67 | 79.72 | 1.66 |
| vgg19_bn | 79.44 | 79.66 | 79.44 | 79.48 | 5.09 |
| regnet_y_400mf | 78.97 | 79.2 | 78.97 | 79.04 | 0.31 |
| convnextv2_huge | 78.93 | 78.83 | 78.93 | 78.81 | 3.38 |
| convnextv2_base | 78.65 | 78.73 | 78.65 | 78.64 | 0.58 |
| resnet101 | 78.6 | 78.79 | 78.6 | 78.65 | 1.98 |
| resnet50 | 78.55 | 78.77 | 78.55 | 78.61 | 2.29 |
| regnet_y_3_2gf | 78.27 | 78.63 | 78.27 | 78.36 | 1.36 |
| googlenet | 77.99 | 78.13 | 77.99 | 77.99 | 1.46 |
| vgg19 | 77.99 | 77.89 | 77.99 | 77.88 | 6.53 |
| convnextv2_large | 77.94 | 78.06 | 77.94 | 77.9 | 1.13 |
| efficientnet_v2_m | 77.9 | 78.18 | 77.9 | 77.91 | 2.1 |
| regnet_y_1_6gf | 77.38 | 77.5 | 77.38 | 77.37 | 1.22 |
| wide_resnet50_2 | 76.87 | 77.13 | 76.87 | 76.92 | 2.18 |
| resnext101_32x8d | 76.54 | 76.81 | 76.54 | 76.59 | 2.39 |
| regnet_x_16gf | 76.12 | 76.21 | 76.12 | 76.1 | 4.08 |
| xception65 | 75.84 | 76.13 | 75.84 | 75.89 | 1.46 |
| resnext50_32x4d | 75.7 | 76.05 | 75.7 | 75.82 | 2.07 |
| convnextv2_femto | 75.65 | 75.98 | 75.65 | 75.73 | 0.7 |
| convnextv2_atto | 75.56 | 75.53 | 75.56 | 75.5 | 1.13 |
| wide_resnet101_2 | 75.33 | 75.52 | 75.33 | 75.32 | 2.39 |
| mobilenetv4_conv_medium | 74.86 | 75.25 | 74.86 | 74.99 | 1.02 |
| regnet_x_32gf | 74.63 | 74.47 | 74.63 | 74.51 | 5.8 |
| inception_v4 | 74.25 | 74.75 | 74.25 | 74.4 | 1.43 |
| regnet_x_8gf | 73.36 | 73.66 | 73.36 | 73.46 | 3.2 |
| efficientnet_v2_l | 69.58 | 69.43 | 69.58 | 69.45 | 2.53 |
| xception71 | 69.16 | 69.18 | 69.16 | 69.13 | 2.13 |
| mobilenetv4_conv_large | 68.55 | 68.44 | 68.55 | 68.46 | 1.64 |
| xception41 | 68.13 | 68.11 | 68.13 | 68.01 | 2.21 |
| Model | Accuracy | Precision | Recall | F1 Score | Time (s) |
|---|---|---|---|---|---|
| convnext_xxlarge | 92.43 | 92.49 | 92.43 | 92.43 | 2.11 |
| resnetv2_152 | 91.78 | 91.92 | 91.78 | 91.8 | 3.21 |
| regnet_y_32gf | 90.56 | 90.64 | 90.56 | 90.57 | 5.79 |
| convnext_xlarge | 90.28 | 90.5 | 90.28 | 90.3 | 1.3 |
| densenet161 | 89.81 | 90.02 | 89.81 | 89.82 | 3.51 |
| densenet169 | 88.6 | 88.73 | 88.6 | 88.59 | 2.54 |
| densenet201 | 88.32 | 88.57 | 88.32 | 88.34 | 2.93 |
| convnextv2_tiny | 87.66 | 88.04 | 87.66 | 87.67 | 0.47 |
| dpn131 | 87.66 | 87.78 | 87.66 | 87.65 | 2.19 |
| resnet152 | 87.48 | 87.65 | 87.48 | 87.5 | 2.01 |
| inception_next_tiny | 87.29 | 87.54 | 87.29 | 87.31 | 0.58 |
| convnextv2_nano | 87.2 | 87.38 | 87.2 | 87.18 | 0.39 |
| inception_next_small | 86.64 | 86.65 | 86.64 | 86.59 | 0.54 |
| convnext_base | 86.54 | 86.6 | 86.54 | 86.5 | 1.21 |
| dpn98 | 86.54 | 86.76 | 86.54 | 86.54 | 3.11 |
| inception_next_base | 86.54 | 86.79 | 86.54 | 86.51 | 0.69 |
| dpn107 | 86.26 | 86.36 | 86.26 | 86.22 | 2.35 |
| mnasnet0_75 | 86.26 | 86.4 | 86.26 | 86.17 | 1.97 |
| convnext_large | 86.17 | 86.3 | 86.17 | 86.16 | 2.08 |
| mnasnet1_0 | 86.17 | 86.32 | 86.17 | 86.12 | 2.02 |
| regnet_x_3_2gf | 86.17 | 86.41 | 86.17 | 86.15 | 1.36 |
| efficientnet_b2 | 86.07 | 86.18 | 86.07 | 86.08 | 2.26 |
| convnext_small | 85.89 | 86.02 | 85.89 | 85.88 | 0.88 |
| efficientnet_b0 | 85.89 | 86.1 | 85.89 | 85.89 | 1.91 |
| efficientnet_b1 | 85.89 | 86 | 85.89 | 85.84 | 2.02 |
| dpn68 | 85.7 | 86.06 | 85.7 | 85.74 | 0.61 |
| alexnet | 85.61 | 85.73 | 85.61 | 85.55 | 12.25 |
| regnet_x_800mf | 85.42 | 85.6 | 85.42 | 85.38 | 0.96 |
| efficientnet_b3 | 85.33 | 85.52 | 85.33 | 85.31 | 2.36 |
| efficientnet_b4 | 85.24 | 85.42 | 85.24 | 85.23 | 2.96 |
| convnext_tiny | 85.23 | 85.47 | 85.23 | 85.17 | 0.97 |
| cs3darknet_x | 85.05 | 85.16 | 85.05 | 85.06 | 0.87 |
| efficientnet_v2_s | 85.05 | 85.34 | 85.05 | 85.08 | 1.96 |
| regnet_x_1_6gf | 84.95 | 85.2 | 84.95 | 84.96 | 1.29 |
| mobilenet_v3_large | 84.77 | 84.9 | 84.77 | 84.7 | 1.32 |
| vgg16_bn | 84.67 | 84.72 | 84.67 | 84.62 | 4.59 |
| shufflenet_v2_x1_0 | 84.58 | 84.66 | 84.58 | 84.55 | 0.67 |
| shufflenet_v2_x2_0 | 84.58 | 84.75 | 84.58 | 84.51 | 2.66 |
| mnasnet1_3 | 84.39 | 84.37 | 84.39 | 84.35 | 2.11 |
| dpn92 | 84.3 | 84.42 | 84.3 | 84.24 | 3.06 |
| mobilenetv4_conv_small | 84.3 | 84.48 | 84.3 | 84.3 | 1.01 |
| densenet121 | 84.11 | 84.12 | 84.11 | 84.03 | 1.36 |
| mobilenet_v3_small | 84.02 | 84.27 | 84.02 | 84.04 | 0.92 |
| mnasnet0_5 | 83.83 | 83.82 | 83.83 | 83.73 | 2.06 |
| efficientnet_b5 | 83.74 | 83.95 | 83.74 | 83.75 | 3.83 |
| efficientnet_b7 | 83.74 | 83.96 | 83.74 | 83.73 | 4.61 |
| shufflenet_v2_x0_5 | 83.55 | 83.94 | 83.55 | 83.61 | 0.75 |
| regnet_x_400mf | 83.18 | 83.37 | 83.18 | 83.16 | 0.82 |
| dpn68b | 82.99 | 83.26 | 82.99 | 82.96 | 0.45 |
| vgg11_bn | 82.99 | 83.06 | 82.99 | 82.83 | 5.41 |
| vgg13_bn | 82.99 | 83.04 | 82.99 | 82.83 | 6.23 |
| mobilenet_v2 | 82.9 | 82.95 | 82.9 | 82.78 | 1.97 |
| vgg11 | 82.9 | 82.87 | 82.9 | 82.77 | 7.64 |
| regnet_y_16gf | 82.43 | 82.59 | 82.43 | 82.35 | 8.9 |
| shufflenet_v2_x1_5 | 82.34 | 82.46 | 82.34 | 82.29 | 0.75 |
| convnextv2_pico | 82.24 | 82.49 | 82.24 | 82.26 | 0.53 |
| densenetblur121d | 82.24 | 82.58 | 82.24 | 82.21 | 0.56 |
| resnet34 | 82.24 | 82.7 | 82.24 | 82.25 | 0.37 |
| resnetv2_50 | 82.24 | 82.82 | 82.24 | 82.25 | 2.17 |
| regnet_y_8gf | 82.15 | 82.21 | 82.15 | 82.08 | 3.34 |
| resnet18 | 82.06 | 82.29 | 82.06 | 82.07 | 0.37 |
| cs3darknet_focus_l | 81.78 | 82 | 81.78 | 81.72 | 0.56 |
| convnext_pico | 81.68 | 81.76 | 81.68 | 81.52 | 0.37 |
| cs3darknet_focus_m | 81.59 | 81.87 | 81.59 | 81.43 | 0.41 |
| inception_v3 | 81.5 | 81.6 | 81.5 | 81.44 | 4.64 |
| regnet_y_800mf | 81.4 | 81.95 | 81.4 | 81.36 | 0.52 |
| vgg13 | 81.21 | 81.3 | 81.21 | 81.18 | 7.81 |
| convnext_nano | 80.93 | 81.39 | 80.93 | 81.04 | 0.49 |
| dpn68b | 80.93 | 81.14 | 80.93 | 80.96 | 0.44 |
| vgg16 | 80.75 | 80.98 | 80.75 | 80.56 | 7.65 |
| resnet50 | 80.28 | 80.54 | 80.28 | 80.28 | 2.92 |
| regnet_y_400mf | 80.09 | 80.39 | 80.09 | 80.13 | 0.42 |
| convnextv2_huge | 79.63 | 79.69 | 79.63 | 79.58 | 4.08 |
| efficientnet_b6 | 79.53 | 79.69 | 79.53 | 79.55 | 4.26 |
| vgg19_bn | 79.35 | 79.46 | 79.35 | 79.16 | 6.19 |
| googlenet | 79.25 | 79.44 | 79.25 | 79.24 | 1.8 |
| resnetv2_101 | 79.25 | 79.67 | 79.25 | 79.22 | 2.03 |
| efficientnet_v2_m | 78.6 | 78.6 | 78.6 | 78.49 | 2.36 |
| convnextv2_base | 78.5 | 78.88 | 78.5 | 78.47 | 0.73 |
| convnextv2_large | 77.85 | 77.95 | 77.85 | 77.65 | 1.53 |
| regnet_y_3_2gf | 77.29 | 77.32 | 77.29 | 77.25 | 1.61 |
| vgg19 | 77.2 | 77.19 | 77.2 | 76.91 | 7.83 |
| resnet101 | 77.1 | 77.47 | 77.1 | 77.11 | 2.38 |
| wide_resnet101_2 | 77.01 | 76.93 | 77.01 | 76.75 | 3.06 |
| regnet_y_1_6gf | 76.73 | 77.06 | 76.73 | 76.7 | 1.44 |
| xception65 | 76.63 | 76.62 | 76.63 | 76.45 | 1.83 |
| resnext101_32x8d | 76.45 | 76.58 | 76.45 | 76.36 | 3.02 |
| resnext50_32x4d | 76.45 | 76.59 | 76.45 | 76.42 | 2.43 |
| regnet_x_32gf | 76.36 | 76.18 | 76.36 | 76.07 | 7.22 |
| convnextv2_atto | 75.89 | 75.84 | 75.89 | 75.77 | 1.67 |
| wide_resnet50_2 | 75.8 | 75.9 | 75.8 | 75.75 | 2.68 |
| regnet_x_16gf | 75.42 | 75.34 | 75.42 | 75.34 | 5.01 |
| convnextv2_femto | 75.14 | 75.35 | 75.14 | 75.16 | 1.07 |
| regnet_x_8gf | 74.95 | 75.07 | 74.95 | 74.84 | 3.71 |
| inception_v4 | 74.39 | 74.44 | 74.39 | 74.37 | 1.87 |
| mobilenetv4_conv_medium | 74.39 | 74.57 | 74.39 | 74.39 | 1.38 |
| mobilenetv4_conv_large | 69.06 | 68.65 | 69.06 | 68.68 | 2.26 |
| efficientnet_v2_l | 68.88 | 69.07 | 68.88 | 68.62 | 3.18 |
| xception71 | 67.85 | 67.79 | 67.85 | 67.7 | 2.86 |
| xception41 | 65.98 | 65.54 | 65.98 | 65.55 | 2.89 |
References
- Toennies, K.D. An Introduction to Image Classification: From Designed Models to End-to-End Learning; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Liu, G.H.; Yang, J.Y. Content-based image retrieval using color difference histogram. Pattern Recognit. 2013, 46, 188–198. [Google Scholar] [CrossRef]
- Castleman, K.R. Digital image processing; Prentice Hall Press: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–25 September 1999; Volume 2, pp. 1150–1157. [Google Scholar]
- Guo, Z.; Zhang, L.; Zhang, D. A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 2010, 19, 1657–1663. [Google Scholar] [CrossRef]
- Anwar, A.; Anwar, H.; Anwar, S. Towards Low-Cost Classification for Novel Fine-Grained Datasets. Electronics 2022, 11, 2701. [Google Scholar] [CrossRef]
- Torralba, A.; Isola, P.; Freeman, W.T. Foundations of Computer Vision; MIT Press: Cambridge, MA, USA, 2024. [Google Scholar]
- Anwar, H.; Anwar, S.; Zambanini, S.; Porikli, F. Deep ancient Roman Republican coin classification via feature fusion and attention. Pattern Recognit. 2021, 114, 107871. [Google Scholar] [CrossRef]
- Imran, M.; Anwar, H.; Tufail, M.; Khan, A.; Khan, M.; Ramli, D.A. Image-Based Automatic Energy Meter Reading Using Deep Learning. Comput. Mater. Contin. 2023, 75, 203–216. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, G.; Yu, H.; Yan, H. Advantages, challenges and molecular design of different material types used in organic solar cells. Nat. Rev. Mater. 2024, 9, 46–62. [Google Scholar] [CrossRef]
- Pourasl, H.H.; Barenji, R.V.; Khojastehnezhad, V.M. Solar energy status in the world: A comprehensive review. Energy Rep. 2023, 10, 3474–3493. [Google Scholar] [CrossRef]
- Ding, R.; Cao, Z.; Teng, J.; Cao, Y.; Qian, X.; Yue, W.; Yuan, X.; Deng, K.; Wu, Z.; Li, S.; et al. Self-Powered Autonomous Electrostatic Dust Removal for Solar Panels by an Electret Generator. Adv. Sci. 2024, 11, 2401689. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.K.; Bansal, K. A brief history and future aspects in automatic cleaning systems for solar photovoltaic panels. Adv. Robot. 2015, 29, 515–524. [Google Scholar] [CrossRef]
- Alatwi, A.M.; Albalawi, H.; Wadood, A.; Anwar, H.; El-Hageen, H.M. Deep Learning-Based Dust Detection on Solar Panels: A Low-Cost Sustainable Solution for Increased Solar Power Generation. Sustainability 2024, 16, 8664. [Google Scholar] [CrossRef]
- Rathod, A.P.S.; Singh, R.K.; Kumar, S. Effect of Dust Accumulation on Efficiency of Solar Panels in Clement Town Region (Dehradun) India: An Empirical Study. NanoWorld J. 2023, 9, S1–S6. [Google Scholar] [CrossRef]
- Shariah, A.; Al-Ibrahim, E. Impact of Dust and Shade on Solar Panel Efficiency and Development of a Simple Method for Measuring the Impact of Dust in any Location. J. Sustain. Dev. Energy Water Environ. Syst. 2023, 11, 1110448. [Google Scholar]
- Rashid, M.; Yousif, M.; Rashid, Z.; Muhammad, A.; Altaf, M.; Mustafa, A. Effect of dust accumulation on the performance of photovoltaic modules for different climate regions. Heliyon 2023, 9, e23069. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hu, W.; Wen, Y.; Zhang, F.; Li, X. Dust deposition characteristics on photovoltaic arrays investigated through wind tunnel experiments. Sci. Rep. 2025, 15, 1582. [Google Scholar] [CrossRef]
- Yakubu, S.; Samikannu, R.; Gawusu, S.; Wetajega, S.D.; Okai, V.; Shaibu, A.K.S.; Workneh, G.A. A holistic review of the effects of dust buildup on solar photovoltaic panel efficiency. Sol. Compass 2025, 13, 100101. [Google Scholar] [CrossRef]
- Kawamoto, H. Electrodynamic dust removal technologies for solar panels: A comprehensive review. J. Electrost. 2025, 134, 104045. [Google Scholar] [CrossRef]
- Dantas, G.M.; Mendes, O.L.C.; Maia, S.M.; de Alexandria, A.R. Dust detection in solar panel using image processing techniques: A review. Res. Soc. Dev. 2020, 9, e321985107. [Google Scholar] [CrossRef]
- Abdelsattar, M.; Rasslan, A.A.A.; Emad-Eldeen, A. Detecting dusty and clean photovoltaic surfaces using MobileNet variants for image classification. SVU-Int. J. Eng. Sci. Appl. 2025, 6, 9–18. [Google Scholar]
- Onim, M.S.H.; Sakif, Z.M.M.; Ahnaf, A.; Kabir, A.; Azad, A.K.; Oo, A.M.T.; Afreen, R.; Hridy, S.T.; Hossain, M.; Jabid, T.; et al. SolNet: A convolutional neural network for detecting dust on solar panels. Energies 2022, 16, 155. [Google Scholar] [CrossRef]
- Naeem, U.; Chadda, K.; Vahaji, S.; Ahmad, J.; Li, X.; Asadi, E. Aerial Imaging-Based Soiling Detection System for Solar Photovoltaic Panel Cleanliness Inspection. Sensors 2025, 25, 738. [Google Scholar] [CrossRef]
- Cruz-Rojas, T.; Franco, J.A.; Hernandez-Escobedo, Q.; Ruiz-Robles, D.; Juarez-Lopez, J.M. A novel comparison of image semantic segmentation techniques for detecting dust in photovoltaic panels using machine learning and deep learning. Renew. Energy 2023, 217, 119126. [Google Scholar] [CrossRef]
- Gao, X.; Wang, T.; Liu, M.; Lian, J.; Yao, Y.; Yu, L.; Li, Y.; Cui, Y.; Xue, R. A framework to identify guano on photovoltaic modules in offshore floating photovoltaic power plants. Sol. Energy 2024, 274, 112598. [Google Scholar] [CrossRef]
- Oulefki, A.; Trongtirakul, T.; Agaian, S.; Benbelkacem, S.; Zenati, N. Multi-view VR imaging for enhanced analysis of dust accumulation on solar panels. Sol. Energy 2024, 279, 112708. [Google Scholar] [CrossRef]
- Bassil, J.; Noura, H.; Salman, O.; Chahine, K.; Guizani, M. Deep learning image classification models for solar panels dust detection. In Proceedings of the 2024 International Wireless Communications and Mobile Computing (IWCMC), Ayia Napa, Cyprus, 3–7 June 2024; pp. 1516–1521. [Google Scholar]
- Mohammed, H.M.; Alawi, A.E.B. CASolarNet: Channel Attention EfficientNet-based Model for Solar Panel Dust Detection. In Proceedings of the 2024 4th International Conference on Emerging Smart Technologies and Applications (eSmarTA), Sana’a, Yemen, 28–30 October 2024; pp. 1–4. [Google Scholar]
- Sefer, T.; Kaya, M. Detection of Dust on Solar Panels with Deep Learning. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilim. Derg. 2024, 27, 1451–1464. [Google Scholar] [CrossRef]
- Cipriani, G.; D’Amico, A.; Guarino, S.; Manno, D.; Traverso, M.; Di Dio, V. Convolutional neural network for dust and hotspot classification in PV modules. Energies 2020, 13, 6357. [Google Scholar] [CrossRef]
- Chen, L.; Fan, S.; Sun, S.; Cao, S.; Sun, T.; Liu, P.; Gao, H.; Zhang, Y.; Ding, W. A detection model for dust deposition on photovoltaic (PV) panels based on light transmittance estimation. Energy 2025, 322, 135284. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, C.; Xing, L.; Sun, H.; Zhao, Q.; Zhang, L. A new dust detection method for photovoltaic panel surface based on Pytorch and its economic benefit analysis. Energy AI 2024, 16, 100349. [Google Scholar] [CrossRef]
- Noura, H.N.; Chahine, K.; Bassil, J.; Abou Chaaya, J.; Salman, O. Efficient combination of deep learning models for solar panel damage and soiling detection. Measurement 2025, 251, 117185. [Google Scholar] [CrossRef]
- Ahmed, S.; Rashid, H.; Qadir, Z.; Tayyab, Q.; Senjyu, T.; Elkholy, M. Deep Learning-Based Recognition and Classification of Soiled Photovoltaic Modules Using HALCON Software for Solar Cleaning Robots. Sensors 2025, 25, 1295. [Google Scholar] [CrossRef] [PubMed]
- Prova, N.N.I. Improved Solar Panel Efficiency through Dust Detection Using the InceptionV3 Transfer Learning Model. In Proceedings of the 2024 8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), Dharan, Nepal, 5–7 September 2024; pp. 260–268. [Google Scholar]
- Tan, Y.; Liao, K.; Bai, X.; Deng, C.; Zhao, Z.; Zhao, B. Denoising Convolutional Neural Networks Based Dust Accumulation Status Evaluation of Photovoltaic Panel. In Proceedings of the 2019 IEEE International Conference on Energy Internet (ICEI), Nanjing, China, 27–31 May 2019; pp. 560–566. [Google Scholar]
- Zhang, W.; Archana, V.; Gandhi, O.; Rodríguez-Gallegos, C.D.; Quan, H.; Yang, D.; Tan, C.W.; Chung, C.; Srinivasan, D. SoilingEdge: PV soiling power loss estimation at the edge using surveillance cameras. IEEE Trans. Sustain. Energy 2023, 15, 556–566. [Google Scholar] [CrossRef]
- Sai, H. Solar Panel Dust Detection. 2023. Available online: https://www.kaggle.com/datasets/hemanthsai7/solar-panel-dust-detection (accessed on 13 June 2024).
- Zambanini, S.; Kampel, M. Coarse-to-fine correspondence search for classifying ancient coins. In Proceedings of the ACCV, Daejeon, Republic of Korea, 5–9 November 2012; pp. 25–36. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Healy, J.; McInnes, L. Uniform manifold approximation and projection. Nat. Rev. Methods Prim. 2024, 4, 82. [Google Scholar] [CrossRef]
- Buckley, S.J.; Ringdal, K.; Naumann, N.; Dolva, B.; Kurz, T.H.; Howell, J.A.; Dewez, T.J. LIME: Software for 3-D visualization, interpretation, and communication of virtual geoscience models. Geosphere 2019, 15, 222–235. [Google Scholar] [CrossRef]
- Adadi, A.; Berrada, M. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access 2018, 6, 52138–52160. [Google Scholar] [CrossRef]
- Petsiuk, V.; Das, A.; Saenko, K. RISE: Randomized Input Sampling for Explanation of Black-box Models. In Proceedings of the British Machine Vision Conference (BMVC), Newcastle, UK, 3–6 September 2018. [Google Scholar]












| S.No. | Year | Ref. | CNN Models Evaluated |
|---|---|---|---|
| 1 | 2025 | [34] | ViTs and EfficientNet |
| 2 | 2025 | [35] | ANN |
| 3 | 2025 | [22] | MobileNetV1, V2, V3 |
| 4 | 2024 | [14] | DenseNet169, VGG16, ResNet50, and 17 others |
| 5 | 2024 | [36] | InceptionV3 |
| 6 | 2024 | [28] | ResNet50, VGG16, InceptionV3 |
| 7 | 2024 | [29] | EfficientNet (with Channel Attention) |
| 8 | 2024 | [33] | Custom CNN Model |
| 9 | 2023 | [23] | SolNet, VGG16, ResNet50, InceptionV3, MobileNetV2 |
| 10 | 2023 | [37] | DnCNN, VGG16, AlexNet, ResNet |
| 11 | 2023 | [38] | ResNet50, MobileNet |
| 12 | 2023 | [25] | UNet |
| Type of Dirt | Number of Images |
|---|---|
| Bird droppings | 69 |
| Debris | 7 |
| Defect | 9 |
| Dust | 524 |
| Leaves | 4 |
| Occlusions (human or cleaning tools) | 45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Anwar, H. TransferLearning-Driven Large-Scale CNN Benchmarking with Explainable AI for Image-Based Dust Detection on Solar Panels. Information 2026, 17, 52. https://doi.org/10.3390/info17010052
Anwar H. TransferLearning-Driven Large-Scale CNN Benchmarking with Explainable AI for Image-Based Dust Detection on Solar Panels. Information. 2026; 17(1):52. https://doi.org/10.3390/info17010052
Chicago/Turabian StyleAnwar, Hafeez. 2026. "TransferLearning-Driven Large-Scale CNN Benchmarking with Explainable AI for Image-Based Dust Detection on Solar Panels" Information 17, no. 1: 52. https://doi.org/10.3390/info17010052
APA StyleAnwar, H. (2026). TransferLearning-Driven Large-Scale CNN Benchmarking with Explainable AI for Image-Based Dust Detection on Solar Panels. Information, 17(1), 52. https://doi.org/10.3390/info17010052

