LRA-YOLO: A Lightweight Power Equipment Detection Algorithm Based on Large Receptive Field and Attention Guidance
Abstract
1. Introduction
- (1)
- We propose a lightweight feature extraction module, CRepLK, which effectively establishes long-distance dependencies between features through the large receptive field of large kernel convolution, enhances the model’s capacity for global context modeling, thereby improving its multi-scale detection capabilities.
- (2)
- We propose a lightweight neck network, LEDSFN, which refines and modulates the multi-scale features from the backbone through ELA attention, it also employs the dynamic upsampling DySample module to better preserve boundary and texture details of the image, thereby alleviating the feature conflict issue inherent in traditional FPN fusion to a certain extent.
- (3)
- We propose a lightweight detection head, PADH, which mitigates channel redundancy in the feature map from the neck network to a certain extent. This is achieved by simplifying the classification branch and applying convolution to only a subset of channels within the localization branch.
2. Related Work
2.1. Object Detection Methods
2.2. Lightweight Object Detection Methods
2.3. Power Equipment Object Detection Method
3. The Proposed Methods
3.1. CRepLK Feature Extraction Module
3.2. LEDSF Neck Network
3.2.1. ELA Module
3.2.2. Dysample Module
3.3. PADH
4. Experimental Results and Analysis
4.1. Experimental Environment Setup and Evaluation Metrics
4.2. Datasets
4.3. Comparative Experiment and Analysis
4.4. Ablation Experiment and Analysis
4.5. Visual Analysis
4.6. Analysis of Failure Cases and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shakiba, F.M.; Azizi, S.M.; Zhou, M.; Abusorrah, A. Application of machine learning methods in fault detection and classification of power transmission lines: A survey. Artif. Intell. Rev. 2023, 56, 5799–5836. [Google Scholar] [CrossRef]
- Qian, X.; Luo, L.; Li, Y.; Zeng, L.; Chen, Z.; Wang, W.; Deng, W. Real-Time Object Detection Model for Electric Power Operation Violation Identification. Information 2025, 16, 569. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27–28 October 2019; pp. 9627–9636. [Google Scholar]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 26 June 26–1 July 2016; pp. 779–788. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 24–27 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Santiago, Chile, 13–16 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 213–229. [Google Scholar]
- Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable DETR: Deformable Transformers for End-to-End Object Detection. In Proceedings of the International Conference on Learning Representations, Vienna, Austria, 4–8 May 2021. [Google Scholar]
- Liu, S.; Li, F.; Zhang, H.; Yang, X.; Qi, X.; Su, H.; Zhu, J.; Zhang, L. DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR. In Proceedings of the International Conference on Learning Representations, Virtual, 25–29 April 2022. [Google Scholar]
- Zhang, H.; Li, F.; Liu, S.; Zhang, L.; Su, H.; Zhu, J.; Ni, L.; Shum, H.-Y. DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Zhao, Y.; Lv, W.; Xu, S.; Wei, J.; Wang, G.; Dang, Q.; Liu, Y.; Chen, J. Detrs beat yolos on real-time object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–22 June 2024; pp. 16965–16974. [Google Scholar]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.-Y. Segment anything. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 4–6 October 2023; pp. 4015–4026. [Google Scholar]
- Ravi, N.; Gabeur, V.; Hu, Y.-T.; Hu, R.; Ryali, C.; Ma, T.; Khedr, H.; Rädle, R.; Rolland, C.; Gustafson, L. Sam 2: Segment anything in images and videos. arXiv 2024, arXiv:2408.00714. [Google Scholar]
- Zhu, L.; Zhou, J.; Liu, Y.; Hao, X.; Liu, W.; Wang, X. Weaksam: Segment anything meets weakly-supervised instance-level recognition. In Proceedings of the 32nd ACM International Conference on Multimedia, Melbourne, Australia, 28 October–1 November 2024; pp. 7947–7956. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J. Yolov10: Real-time end-to-end object detection. In Proceedings of the Advances in Neural Information Processing Systems, San Diego, CA, USA, 14 May 2025; pp. 107984–108011. [Google Scholar]
- Yang, Z.; Guan, Q.; Yu, Z.; Xu, X.; Long, H.; Lian, S.; Hu, H.; Tang, Y. MHAF-YOLO: Multi-Branch Heterogeneous Auxiliary Fusion YOLO for accurate object detection. arXiv 2025, arXiv:2502.04656. [Google Scholar]
- Glenn, J.; Jing, Q. Ultralytics YOLO11. Available online: https://github.com/ultralytics/ultralytics (accessed on 5 March 2025).
- Tian, Y.; Ye, Q.; Doermann, D. Yolov12: Attention-centric real-time object detectors. arXiv 2025, arXiv:2502.12524. [Google Scholar]
- Maduako, I.; Igwe, C.F.; Abah, J.E.; Onwuasaanya, O.E.; Chukwu, G.A.; Ezeji, F.; Okeke, F.I. Deep learning for component fault detection in electricity transmission lines. J. Big Data 2022, 9, 81. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, L.; Han, T.; Xu, S.; Liu, Y.; Fu, J. High-accuracy insulator defect detection for overhead transmission lines based on improved YOLOv5. Appl. Sci. 2022, 12, 12682. [Google Scholar] [CrossRef]
- Bao, W.; Du, X.; Wang, N.; Yuan, M.; Yang, X. A defect detection method based on BC-YOLO for transmission line components in UAV remote sensing images. Remote Sens. 2022, 14, 5176. [Google Scholar] [CrossRef]
- Souza, B.J.; Stefenon, S.F.; Singh, G.; Freire, R.Z. Hybrid-YOLO for classification of insulators defects in transmission lines based on UAV. Int. J. Electr. Power Energy Syst. 2023, 148, 108982. [Google Scholar] [CrossRef]
- Panigrahy, S.; Karmakar, S. Real-time condition monitoring of transmission line insulators using the YOLO object detection model with a UAV. IEEE Trans. Instrum. Meas. 2024, 73, 2514109. [Google Scholar] [CrossRef]
- Wan, Z.; Jiang, Y.; Wenlong, L.; Songhai, F.; Yang, Y.; Hou, J.; Tang, H. YOLO-SRSA: An Improved YOLOv7 Network for the Abnormal Detection of Power Equipment. Information 2025, 16, 407. [Google Scholar] [CrossRef]
- Dong, C.; Zhang, K.; Xie, Z.; Shi, C. An improved cascade RCNN detection method for key components and defects of transmission lines. IET Gener. Transm. Distrib. 2023, 17, 4277–4292. [Google Scholar] [CrossRef]
- Li, J.; Xu, Y.; Nie, K.; Cao, B.; Zuo, S.; Zhu, J. PEDNet: A lightweight detection network of power equipment in infrared image based on YOLOv4-tiny. IEEE Trans. Instrum. Meas. 2023, 72, 5004312. [Google Scholar] [CrossRef]
- Ou, J.; Wang, J.; Xue, J.; Wang, J.; Zhou, X.; She, L.; Fan, Y. Infrared image target detection of substation electrical equipment using an improved faster R-CNN. IEEE Trans. Power Deliv. 2022, 38, 387–396. [Google Scholar] [CrossRef]
- Li, A.; Zhang, L.; Liu, Y.; Zhu, C. Feature modulation transformer: Cross-refinement of global representation via high-frequency prior for image super-resolution. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2–6 October 2023; pp. 12514–12524. [Google Scholar]
- Ding, X.; Zhang, X.; Han, J.; Ding, G. Scaling up your kernels to 31x31: Revisiting large kernel design in cnns. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 11963–11975. [Google Scholar]
- Li, H. Rethinking Features-Fused-Pyramid-Neck for Object Detection. In Proceedings of the European Conference on Computer Vision (ECCV), Milan, Italy, 29 September–4 October 2024; pp. 74–90. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 8759–8768. [Google Scholar]
- Chen, Y.; Zhang, C.; Chen, B.; Huang, Y.; Sun, Y.; Wang, C.; Fu, X.; Dai, Y.; Qin, F.; Peng, Y. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases. Comput. Biol. Med. 2024, 170, 107917. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wan, Y. ELA: Efficient local attention for deep convolutional neural networks. arXiv 2024, arXiv:2403.01123. [Google Scholar] [CrossRef]
- Liu, W.; Lu, H.; Fu, H.; Cao, Z. Learning to upsample by learning to sample. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2–3 October 2023; pp. 6027–6037. [Google Scholar]
- Chen, J.; Kao, S.-h.; He, H.; Zhuo, W.; Wen, S.; Lee, C.-H.; Chan, S.-H.G. Run, don’t walk: Chasing higher FLOPS for faster neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 18–22 June 2023; pp. 12021–12031. [Google Scholar]
- Vieira e Silva, A.L.B.; de Castro Felix, H.; Simões, F.P.M.; Teichrieb, V.; dos Santos, M.; Santiago, H.; Sgotti, V.; Lott Neto, H. Insplad: A dataset and benchmark for power line asset inspection in UAV images. Int. J. Remote Sens. 2023, 44, 7294–7320. [Google Scholar] [CrossRef]
- De Oliveira, F.S.; De Carvalho, M.; Campos, P.H.T.; Soares, A.D.S.; Júnior, A.C.; Quirino, A.C.R.D.S. PTL-AI Furnas dataset: A public dataset for fault detection in power transmission lines using aerial images. In Proceedings of the 2022 35th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Natal, Brazil, 24–27 October 2022; pp. 7–12. [Google Scholar]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar] [CrossRef]
- Bolya, D.; Foley, S.; Hays, J.; Hoffman, J. Tide: A general toolbox for identifying object detection errors. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 558–573. [Google Scholar]
Model | Precision | Recall | mAP | Params | GFLOPs | Size | FPS (GPU) | FPS (CPU) |
---|---|---|---|---|---|---|---|---|
YOLOv5s | 91.4 | 81.4 | 87.2 | 9.1 | 23.9 | 17.6 | 244.2 | 9.7 |
YOLOv6s | 87.6 | 85.6 | 87.7 | 16.3 | 44.1 | 31.3 | 286.1 | 9.5 |
YOLOv8s | 87.3 | 86.4 | 88.8 | 11.1 | 28.5 | 21.4 | 261.8 | 10.6 |
YOLOv10s | 87.0 | 86.4 | 88.7 | 7.2 | 21.5 | 15.7 | 200.3 | 10.7 |
YOLOv12s | 90.0 | 85.0 | 88.8 | 9.2 | 21.2 | 18.0 | 120.7 | 7.5 |
MHAF-YOLO | 90.8 | 83.8 | 87.8 | 7.4 | 26.8 | 15.7 | 85.0 | 6.1 |
YOLO-NAS-s | 84.5 | 76.7 | 81.8 | 19.0 | 34.5 | 72.9 | 86.4 | 1.0 |
RT-DETR-R18 | 91.2 | 83.8 | 87.5 | 19.9 | 57.0 | 38.6 | 96.8 | 5.4 |
YOLOv11s | 87.6 | 87.0 | 89.0 | 9.4 | 21.3 | 18.3 | 186.0 | 10.2 |
LRA-YOLO | 88.1 | 87.5 | 90.0 | 5.0 | 11.9 | 9.8 | 137.1 | 12.7 |
Model | Precision | Recall | mAP | Params | GFLOPs | Size | FPS (GPU) | FPS (CPU) |
---|---|---|---|---|---|---|---|---|
YOLOv5s | 87.1 | 77.1 | 84.8 | 9.1 | 23.9 | 17.6 | 244.2 | 9.7 |
YOLOv6s | 85.0 | 78.4 | 83.6 | 16.3 | 44.1 | 31.3 | 286.1 | 9.5 |
YOLOv8s | 88.1 | 76.1 | 84.9 | 11.1 | 28.5 | 21.4 | 261.8 | 10.6 |
YOLOv10s | 86.0 | 77.9 | 85.2 | 7.2 | 21.5 | 15.7 | 200.3 | 10.7 |
YOLOv12s | 85.0 | 78.8 | 84.0 | 9.2 | 21.2 | 18.0 | 120.7 | 7.5 |
MHAF-YOLO | 85.1 | 77.7 | 84.0 | 7.4 | 26.8 | 15.7 | 85.0 | 6.1 |
YOLO-NAS-s | 81.0 | 72.9 | 78.6 | 19.0 | 34.5 | 72.9 | 86.4 | 1.0 |
RT-DETR-R18 | 90.2 | 84.9 | 87.6 | 19.9 | 56.9 | 38.6 | 96.8 | 5.4 |
YOLOv11s | 86.4 | 79.2 | 84.3 | 9.4 | 21.3 | 18.3 | 186.0 | 10.2 |
LRA-YOLO | 86.5 | 78.5 | 84.4 | 5.0 | 11.9 | 9.8 | 137.1 | 12.7 |
Model | Precision | Recall | mAP | Params | GFLOPs | Size | FPS (GPU) | FPS (CPU) |
---|---|---|---|---|---|---|---|---|
YOLOv5s | 93.3 | 88.9 | 93.6 | 9.1 | 23.9 | 17.6 | 244.2 | 9.7 |
YOLOv6s | 94.2 | 88.7 | 93.5 | 16.3 | 44.1 | 31.3 | 286.1 | 9.5 |
YOLOv8s | 94.6 | 88.9 | 93.7 | 11.1 | 28.5 | 21.4 | 261.8 | 10.6 |
YOLOv10s | 93.9 | 88.6 | 93.5 | 7.2 | 21.5 | 15.7 | 200.3 | 10.7 |
YOLOv12s | 93.7 | 89.3 | 93.4 | 9.2 | 21.2 | 18.0 | 120.7 | 7.5 |
MHAF-YOLO | 94.2 | 89.6 | 93.9 | 7.4 | 26.8 | 15.7 | 85.0 | 6.1 |
YOLO-NAS-s | 92.5 | 78.7 | 87.5 | 19.0 | 34.5 | 72.9 | 86.4 | 1.0 |
RT-DETR-R18 | 94.9 | 93.4 | 95.6 | 19.9 | 56.9 | 38.6 | 96.8 | 5.4 |
YOLOv11s | 94.3 | 89.5 | 94.0 | 9.4 | 21.3 | 18.3 | 186.0 | 10.2 |
LRA-YOLO | 93.1 | 89.1 | 93.9 | 5.0 | 11.9 | 9.8 | 137.1 | 12.7 |
Baseline | CRepLK | LEDSF | PADH | Precision | Recall | mAP | Params | GFLOPs | Size |
---|---|---|---|---|---|---|---|---|---|
✓ | 87.7 | 87.1 | 89.0 | 9.4 | 21.3 | 18.3 | |||
✓ | ✓ | 89.5 | 86.2 | 89.9 | 7.4 | 15.2 | 14.5 | ||
✓ | ✓ | 88.8 | 83.9 | 88.6 | 6.2 | 16.4 | 12.1 | ||
✓ | ✓ | 90.4 | 85.4 | 89.8 | 9.4 | 20.3 | 18.3 | ||
✓ | ✓ | ✓ | 89.9 | 86.6 | 89.5 | 5.2 | 13.2 | 10.3 | |
✓ | ✓ | ✓ | 89.8 | 84.9 | 88.7 | 7.3 | 14.1 | 14.4 | |
✓ | ✓ | ✓ | 90.9 | 84.1 | 89.4 | 6.0 | 15.1 | 11.7 | |
✓ | ✓ | ✓ | ✓ | 88.1 | 87.5 | 90.0 | 5.0 | 11.9 | 9.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; Hu, L.; Hu, Q. LRA-YOLO: A Lightweight Power Equipment Detection Algorithm Based on Large Receptive Field and Attention Guidance. Information 2025, 16, 736. https://doi.org/10.3390/info16090736
Yuan J, Hu L, Hu Q. LRA-YOLO: A Lightweight Power Equipment Detection Algorithm Based on Large Receptive Field and Attention Guidance. Information. 2025; 16(9):736. https://doi.org/10.3390/info16090736
Chicago/Turabian StyleYuan, Jiwen, Lei Hu, and Qimin Hu. 2025. "LRA-YOLO: A Lightweight Power Equipment Detection Algorithm Based on Large Receptive Field and Attention Guidance" Information 16, no. 9: 736. https://doi.org/10.3390/info16090736
APA StyleYuan, J., Hu, L., & Hu, Q. (2025). LRA-YOLO: A Lightweight Power Equipment Detection Algorithm Based on Large Receptive Field and Attention Guidance. Information, 16(9), 736. https://doi.org/10.3390/info16090736