Generative Data Modelling for Diverse Populations in Africa: Insights from South Africa
Abstract
1. Introduction
2. Materials and Methods
2.1. The Context
2.2. Data and Data Source
2.3. Variables and Variable Transformation
2.4. Handling Missing Data
2.5. Statistical Analysis
2.5.1. Descriptive Analysis
2.5.2. Inferential Analysis
3. Results
4. Discussion
4.1. Implications for Low-Resource Settings
4.2. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2Nc | Continuous variables |
BPs | Systolic blood pressure |
CDF | Cumulative distribution function |
CopulaGAN | Copula generative adversarial network |
CTGAN | Conditional tabular generative adversarial network |
D | Discriminator |
DJS(P||Q) | Jensen–Shannon divergence |
JS | Jensen–Shannon divergence |
ELBO | Evidence lower bound |
G | Generator |
GAIN | Generative adversarial imputation nets |
GAN | Generative adversarial network |
FN | False negative |
FP | False positive |
KLD | Kullback–Leibler divergence |
LMICs | Low- and middle-income countries |
NCDs | Non-communicable diseases |
Nd | Discrete variables |
PacGAN | Packed generative adversarial network |
ReLU | Rectified linear unit |
SAGE | Study on global ageing and adult health |
SD | Standard deviation |
SD Metrics | Synthetic data metrics |
SDV | Synthetic data vault |
TN | True negative |
TP | True positive |
TVAE | Tabular variational autoencoder |
VAE | Variational autoencoder |
VGM | Variational Gaussian mixture model |
WC | Waist circumference |
WGAN-GP | Wasserstein generative adversarial network with gradient penalty |
WHO | World health organisation |
References
- Campbell, M.C.; Tishkoff, S.A. African Genetic Diversity: Implications for Human Demographic History, Modern Human Origins, and Complex Disease Mapping. Annu. Rev. Genom. Hum. Genet. 2008, 9, 403–433. [Google Scholar] [CrossRef] [PubMed]
- Imoni, H.O. Exploring Ethnic Diversity on Managerial Choices in Nigeria. Ph.D. Thesis, Walden University, Minneapolis, MN, USA, 2018. [Google Scholar]
- CIA Uganda—2022. World Factbook Archive. Available online: https://www.cia.gov/the-world-factbook/about/archives/2022/countries/uganda/ (accessed on 18 May 2025).
- Pillay-van Wyk, V.; Msemburi, W.; Laubscher, R.; Dorrington, R.E.; Groenewald, P.; Glass, T.; Nojilana, B.; Joubert, J.D.; Matzopoulos, R.; Prinsloo, M.; et al. Mortality Trends and Differentials in South Africa from 1997 to 2012: Second National Burden of Disease Study. Lancet Glob. Health 2016, 4, e642–e653. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Committee on Assessing Interactions Among Social, Behavioral, and Genetic Factors in Health. The Impact of Social and Cultural Environment on Health. In Genes, Behavior, and the Social Environment: Moving Beyond the Nature/Nurture Debate; Hernandez, L.M., Blazer, D.G., Eds.; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Gomez, F.; Hirbo, J.; Tishkoff, S.A. Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a008524. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Matheson, B.E.; Douglas, J.M. Mental Health Diagnostic Considerations in Racial/Ethnic Minority Youth. J. Child Fam. Stud. 2016, 25, 1926–1940. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (US) Panel on Race, Ethnicity, and Health in Later Life. Understanding Racial and Ethnic Differences in Health in Late Life: A Research Agenda; Bulatao, R.A., Anderson, N.B., Eds.; The National Academies Collection: Reports funded by National Institutes of Health; National Academies Press: Washington, DC, USA, 2004; ISBN 978-0-309-09247-0. [Google Scholar]
- Shwartz-Ziv, R.; Armon, A. Tabular data: Deep learning is not all you need. Inf. Fusion 2022, 81, 84–90. [Google Scholar] [CrossRef]
- Hollmann, N.; Müller, S.; Purucker, L.; Krishnakumar, A.; Körfer, M.; Hoo, S.B.; Schirrmeister, R.T.; Hutter, F. Accurate Predictions on Small Data with a Tabular Foundation Model. Nature 2025, 637, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Simmons, S.S. Strikes and Gutters: Biomarkers and Anthropometric Measures for Predicting Diagnosed Diabetes Mellitus in Adults in Low- and Middle-Income Countries. Heliyon 2023, 9, e19494. [Google Scholar] [CrossRef] [PubMed]
- Simmons, S.S. Spatial Analysis of Metabolic Equivalents of Task Among Females in Urban and Rural Ghana. Obesities 2025, 5, 33. [Google Scholar] [CrossRef]
- Simmons, S.S.; Hagan, J.E., Jr.; Schack, T. The Influence of Anthropometric Indices and Intermediary Determinants of Hypertension in Bangladesh. Int. J. Environ. Res. Public Health 2021, 18, 5646. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.; Williams, J.; Townsend, N.; Mikkelsen, B.; Roberts, N.; Foster, C.; Wickramasinghe, K. Socioeconomic Status and Non-Communicable Disease Behavioural Risk Factors in Low-Income and Lower-Middle-Income Countries: A Systematic Review. Lancet Glob. Health 2017, 5, e277–e289. [Google Scholar] [CrossRef] [PubMed]
- Bigna, J.J.; Noubiap, J.J. The Rising Burden of Non-Communicable Diseases in Sub-Saharan Africa. Lancet Glob. Health 2019, 7, e1295–e1296. [Google Scholar] [CrossRef] [PubMed]
- Gouda, H.N.; Charlson, F.; Sorsdahl, K.; Ahmadzada, S.; Ferrari, A.J.; Erskine, H.; Leung, J.; Santamauro, D.; Lund, C.; Aminde, L.N.; et al. Burden of Non-Communicable Diseases in Sub-Saharan Africa, 1990–2017: Results from the Global Burden of Disease Study 2017. Lancet Glob. Health 2019, 7, e1375–e1387. [Google Scholar] [CrossRef] [PubMed]
- Grundlingh, N.; Zewotir, T.T.; Roberts, D.J.; Manda, S. Assessment of Prevalence and Risk Factors of Diabetes and Pre-Diabetes in South Africa. J. Health Popul. Nutr. 2022, 41, 7. [Google Scholar] [CrossRef] [PubMed]
- Agyei-Mensah, S.; de-Graft Aikins, A. Epidemiological Transition and the Double Burden of Disease in Accra, Ghana. J. Urban Health Bull. N. Y. Acad. Med. 2010, 87, 879–897. [Google Scholar] [CrossRef] [PubMed]
- Naz, O.; Ibrahim, M.; Mohiuddin, A.F.; Khan, A.A.; Samad, Z. Public Health Data Quality and Evidence Use in Developing Countries: A Call to Action. Front. Public Health 2023, 11, 1194499. [Google Scholar] [CrossRef] [PubMed]
- Kinyondo, A.; Pelizzo, R. Poor Quality of Data in Africa: What Are the Issues? Polit. Policy 2018, 46, 851–877. [Google Scholar] [CrossRef]
- O‘Neil, S.; Taylor, S.; Sivasankaran, A. Data Equity to Advance Health and Health Equity in Low- and Middle-Income Countries: A Scoping Review. Digit. Health 2021, 7, 20552076211061922. [Google Scholar] [CrossRef] [PubMed]
- Mhlanga, D.; Garidzirai, R. The Influence of Racial Differences in the Demand for Healthcare in South Africa: A Case of Public Healthcare. Int. J. Environ. Res. Public. Health 2020, 17, 5043. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.K. Sample Size for Saturation in Qualitative Research: Debates, Definitions, and Strategies. J. Med. Surg. Public Health 2025, 5, 100171. [Google Scholar] [CrossRef]
- Choudhary, K.; DeCost, B.; Chen, C.; Jain, A.; Tavazza, F.; Cohn, R.; Park, C.W.; Choudhary, A.; Agrawal, A.; Billinge, S.J.L.; et al. Recent Advances and Applications of Deep Learning Methods in Materials Science. NPJ Comput. Mater. 2022, 8, 1–26. [Google Scholar] [CrossRef]
- Goyal, M.; Mahmoud, Q.H. A Systematic Review of Synthetic Data Generation Techniques Using Generative AI. Electronics 2024, 13, 3509. [Google Scholar] [CrossRef]
- Rajotte, J.-F.; Bergen, R.; Buckeridge, D.L.; El Emam, K.; Ng, R.; Strome, E. Synthetic Data as an Enabler for Machine Learning Applications in Medicine. iScience 2022, 25, 105331. [Google Scholar] [CrossRef] [PubMed]
- Pezoulas, V.C.; Zaridis, D.I.; Mylona, E.; Androutsos, C.; Apostolidis, K.; Tachos, N.S.; Fotiadis, D.I. Synthetic Data Generation Methods in Healthcare: A Review on Open-Source Tools and Methods. Comput. Struct. Biotechnol. J. 2024, 23, 2892–2910. [Google Scholar] [CrossRef] [PubMed]
- Shahriar, S.; Al Roken, N. How Can Generative Adversarial Networks Impact Computer Generated Art? Insights from Poetry to Melody Conversion. Int. J. Inf. Manag. Data Insights 2022, 2, 100066. [Google Scholar] [CrossRef]
- Bourou, S.; El Saer, A.; Velivassaki, T.-H.; Voulkidis, A.; Zahariadis, T. A Review of Tabular Data Synthesis Using GANs on an IDS Dataset. Information 2021, 12, 375. [Google Scholar] [CrossRef]
- Gm, H.; Gourisaria, M.K.; Pandey, M.; Rautaray, S.S. A Comprehensive Survey and Analysis of Generative Models in Machine Learning. Comput. Sci. Rev. 2020, 38, 100285. [Google Scholar] [CrossRef]
- Alexander, M. South Africa’s Population. South Africa Gateway 2025. Available online: https://southafrica-info.com/author/mary1alexander/ (accessed on 24 June 2025).
- Konkor, I.; Kuuire, V.Z. Epidemiologic Transition and the Double Burden of Disease in Ghana: What Do We Know at the Neighborhood Level? PLoS ONE 2023, 18, e0281639. [Google Scholar] [CrossRef] [PubMed]
- WHO SAGE Data Catalog. Available online: https://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/sage/?page=1&ps=15&repo=sage (accessed on 12 May 2025).
- Yoon, J.; Jordon, J.; van der Schaar, M. GAIN: Missing Data Imputation Using Generative Adversarial Nets. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018. [Google Scholar]
- Mhawi, M.Y.; Abdullah, H.N.; Sikora, A. The Influence of Hyperparameters on GANs Performance for Medical Image Transformation. In Proceedings of the 2024 1st International Conference on Emerging Technologies for Dependable Internet of Things (ICETI), Sanaa, Yemen, 25–26 November 2024; pp. 1–8. [Google Scholar]
- Serafim Rodrigues, T.; Rogério Pinheiro, P. Hyperparameter Optimization in Generative Adversarial Networks (GANs) Using Gaussian AHP. IEEE Access 2025, 13, 770–788. [Google Scholar] [CrossRef]
- Patterson, J.; Gibson, A. Deep Learning: A Practitioner’s Approach; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017; ISBN 978-1-4919-1425-0. [Google Scholar]
- Foster, D. Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019; ISBN 978-1-4920-4191-7. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. arXiv 2014, arXiv14062661. [Google Scholar] [CrossRef]
- Hancock, J.T.; Khoshgoftaar, T.M. Survey on Categorical Data for Neural Networks. J. Big Data 2020, 7, 28. [Google Scholar] [CrossRef]
- Otsu, T.; Taniguchi, G. Kolmogorov–Smirnov Type Test for Generated Variables. Econ. Lett. 2020, 195, 109401. [Google Scholar] [CrossRef]
- Li, J.; Guo, S.; Ma, R.; He, J.; Zhang, X.; Rui, D.; Ding, Y.; Li, Y.; Jian, L.; Cheng, J.; et al. Comparison of the Effects of Imputation Methods for Missing Data in Predictive Modelling of Cohort Study Datasets. BMC Med. Res. Methodol. 2024, 24, 41. [Google Scholar] [CrossRef] [PubMed]
- Xu, L. Synthesizing Tabular Data Using Conditional GAN. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2017. [Google Scholar]
- Cheon, M.J.; Dong, H.L.; Lee, D.H.; Park, J.W.; Choi, H.J.; Lee, J.S.; Lee, O. CTGAN vs. TGAN? Which One is More Suitable for Generating Synthetic EEG Data. J. Theor. Appl. Inf. Technol. 2021, 99, 2359–2372. [Google Scholar]
- Parise, O.; Kronenberger, R.; Parise, G.; de Asmundis, C.; Gelsomino, S.; La Meir, M. CTGAN-Driven Synthetic Data Generation: A Multidisciplinary, Expert-Guided Approach (TIMA). Comput. Methods Programs Biomed. 2025, 259, 108523. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Skoularidou, M.; Cuesta-Infante, A.; Veeramachaneni, K. Modeling Tabular Data Using Conditional GAN. In Proceedings of the Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Pathare, A.; Mangrulkar, R.; Suvarna, K.; Parekh, A.; Thakur, G.; Gawade, A. Comparison of Tabular Synthetic Data Generation Techniques Using Propensity and Cluster Log Metric. Int. J. Inf. Manag. Data Insights 2023, 3, 100177. [Google Scholar] [CrossRef]
- Masarotto, G.; Varin, C. Gaussian Copula Marginal Regression. Electron. J. Stat. 2012, 6, 1517–1549. [Google Scholar] [CrossRef]
- Houssou, R.; Augustin, M.-C.; Rappos, E.; Bonvin, V.; Robert-Nicoud, S. Generation and Simulation of Synthetic Datasets with Copulas. arXiv 2022, arXiv:2203.17250. [Google Scholar]
- Razghandi, M.; Zhou, H.; Erol-Kantarci, M.; Turgut, D. Variational Autoencoder Generative Adversarial Network for Synthetic Data Generation in Smart Home. In Proceedings of the ICC 2022–IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022; pp. 4781–4786. [Google Scholar]
- Patki, N. The Synthetic Data Vault: Generative Modeling for Relational Databases. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2016. [Google Scholar]
- Montanez, A. SDV: An Open Source Library for Synthetic Data Generation. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2018. [Google Scholar]
- Campbell, J.N.; Dais Ferreira, M.; Isenor, A.W. Generation of Vessel Track Characteristics Using a Conditional Generative Adversarial Network (CGAN). Appl. Artif. Intell. 2024, 38, 2360283. [Google Scholar] [CrossRef]
- SDMetrics. Available online: https://docs.sdv.dev/sdmetrics (accessed on 12 May 2025).
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- van Daalen, K.R.; Zhang, D.; Kaptoge, S.; Paige, E.; Angelantonio, E.D.; Pennells, L. Risk Estimation for the Primary Prevention of Cardiovascular Disease: Considerations for Appropriate Risk Prediction Model Selection. Lancet Glob. Health 2024, 12, e1343–e1358. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Jones, D.M.; Braun, L.T.; Ndumele, C.E.; Smith, S.C.; Sperling, L.S.; Virani, S.S.; Blumenthal, R.S. Use of Risk Assessment Tools to Guide Decision-Making in the Primary Prevention of Atherosclerotic Cardiovascular Disease: A Special Report from the American Heart Association and American College of Cardiology. Circulation 2019, 139, e1162–e1177. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Fong, D.Y.T.; Yoon, J.; Wan, E.Y.F.; Bedford, L.E.; Tang, E.H.M.; Lam, C.L.K. Generative Adversarial Networks for Imputing Missing Data for Big Data Clinical Research. BMC Med. Res. Methodol. 2021, 21, 78. [Google Scholar] [CrossRef] [PubMed]
Original | Imputed | Tests | |
---|---|---|---|
Number (%) 4227 (100) | Number (%) 4227 (100) | stats, p-value | |
± SD | ± SD | (KS) | |
Age | 62.71 ± 9.65 | 62.63± 9.83 | 0.02, p > 0.05 |
Height | 157.95 ± 12.52 | 158.55 ± 13.19 | 0.02, p > 0.05 |
Systolic blood pressure (BPs) | 145.34 ± 25.36 | 145.00 ± 25.20 | 0.01, p > 0.05 |
Weight | 76.44 ± 18.30 | 76.08 ± 19.72 | 0.02, p > 0.05 |
Waist circumference (WC) | 94.40 ± 17.44 | 95.66 ± 19.00 | 0.02, p > 0.05 |
Number (%) | Number (%) | DJS (P∥Q) (JS) | |
Sex | 0.01 | ||
Male | 1797 (42.51) | 1797 (42.51) | |
Female | 2428 (57.45) | 2430 (57.49) | |
Missing | 2 (0.047) | NA | |
Race | 0.05 | ||
African/Black | 2238 (52.95) | 2344 (55.45) | |
Coloured | 716 (16.94) | 822 (19.45) | |
Indian/Asian | 335 (7.93) | 576 (13.63) | |
White | 287 (6.79) | 477 (11.28) | |
Other | 8 (0.19) | 8 (0.19) | |
Missing | 643 (15.21) | NA | |
Ever been to school | 0.01 | ||
Yes | 2661 (62.93) | 3043 (71.99) | |
No | 873 (20.65) | 1184 (28.01) | |
Missing | 693 (16.41) | NA | |
Wealth | 0.01 | ||
Rich | 1767 (41.80) | 2123 (50.22) | |
Not rich | 1638 (38.75) | 2104 (49.78) | |
Missing | 822 (19.45) | NA | |
Angina pectoris | 0.02 | ||
Yes | 229 (5.42) | 351 (8.30) | |
No | 3798 (89.88) | 3876 (91.70) | |
Missing | 200 (9.53) | NA | |
Hypertension | 0.01 | ||
Yes | 1144 (27.06) | 1232 (29.15) | |
No | 2879 (68.11) | 2995 (70.85) | |
Missing | 204 (4.83) | NA | |
Stroke | 0.05 | ||
Yes | 144 (3.41) | 340 (8.04) | |
No | 3883 (91.86) | 3887 (91.96) | |
Missing | 200 (4.73) | NA | |
Diabetes | 0.02 | ||
Yes | 370 (8.75) | 453 (10.72) | |
No | 3657 (86.52) | 3774 (89.28) | |
Missing | 200 (4.73) | NA |
CopulaGAN | CTGAN | TVAE | |
---|---|---|---|
Number (%) 104,227 (100) | Number (%) 104,227 (100) | Number (%) 104,227(100) | |
Indicators | ± SD | ± SD | ± SD |
Age | 63.04 ± 12.85 | 63.30 ± 9.87 | 59.26 ± 11.70 |
Height | 158.43 ± 16.76 | 159.86 ± 19.21 | 159.07 ± 9.91 |
Systolic blood pressure (BPs) | 145.81 ± 28.17 | 142.17 ± 25.58 | 138.30 ± 23.25 |
Weight | 76.86 ± 15.41 | 76.08 ± 19.68 | 72.95 ± 15.65 |
Waist circumference (WC) | 94.23 ± 21.64 | 92.82 ± 20.08 | 91.14 ± 17.65 |
Number (%) | Number (%) | Number (%) | |
Sex | |||
Male | 44,452 (42.65) | 49,398 (47.39) | 37,121 (35.62) |
Female | 59,775 (57.35) | 54,829 (52.61) | 67,106 (64.38) |
Race | |||
African/Black | 47,764 (45.83) | 54,012 (51.82) | 75,760 (72.69) |
Coloured | 25,866 (24.82) | 21,782 (20.90) | 10,619 (10.19) |
Indian/Asian | 13,822 (13.26) | 18,868 (18.10) | 5732 (5.50) |
White | 15,730 (15.09) | 8535 (8.19) | 12,116 (11.62) |
Other | 1045 (1.00) | 1030 (0.99) | NA |
Ever been to school | |||
Yes | 77,156 (74.03) | 84,540 (81.11) | 85,914 (82.43) |
No | 27,071 (25.97) | 19,687 (18.89) | 18,313 (17.57) |
Wealth | |||
Rich | 49,919 (47.89) | 47,907 (45.96) | 43,095 (41.35) |
Not rich | 54,308 (52.11) | 56,320 (54.04) | 61,132 (58.65) |
Angina pectoris | |||
Yes | 20,770 (19.93) | 16,309 (15.65) | 419 (0.40) |
No | 83,457 (80.07) | 87,918 (84.35) | 103,808 (99.60) |
Hypertension | |||
Yes | 29,595 (28.39) | 38,392 (36.83) | 24,281 (23.30) |
No | 74,632 (71.61) | 65,835 (63.17) | 79,946 (76.70) |
Stroke | |||
Yes | 14,446 (13.86) | 20,543 (19.71) | 1684 (1.62) |
No | 89,781 (86.14) | 83,684 (80.29) | 102,543 (98.38) |
Diabetes | |||
Yes | 13,074 (12.54) | 23,158 (22.22) | 2116 (2.03) |
No | 91,153 (87.46) | 81,069 (77.78) | 102,111 (97.97) |
Metric | CopulaGAN | CTGAN | TVAE |
---|---|---|---|
Column Shapes | 89.63% | 90.16% | 89.86% |
Column Pair Trends | 87.27% | 88.25% | 83.13% |
Overall Score | 88.45% | 89.20% | 86.50% |
CopulaGAN | CTGAN | TVAE | ||||
---|---|---|---|---|---|---|
Data Types | ||||||
Original | Synthetic | Original | Synthetic | Original | Synthetic | |
Training Recall | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 |
Validation Recall | 0.23 | 0.47 | 0.23 | 0.47 | 0.23 | 0.44 |
Validation Precision | 0.59 | 0.45 | 0.59 | 0.46 | 0.59 | 0.43 |
True Positives (TPs) | 82 | 168 | 82 | 169 | 82 | 168 |
False Positives (FPs) | 56 | 205 | 56 | 201 | 56 | 220 |
True Negatives (TNs) | 852 | 703 | 852 | 707 | 852 | 688 |
False Negatives (FNs) | 279 | 193 | 279 | 193 | 279 | 210 |
Score (Precision Ratio) | 1.0 (baseline) | 0.76 | 1.0 (baseline) | 0.77 | 1.0 (baseline) | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simmons, S.S.; Hagan, J.E., Jr.; Schack, T. Generative Data Modelling for Diverse Populations in Africa: Insights from South Africa. Information 2025, 16, 612. https://doi.org/10.3390/info16070612
Simmons SS, Hagan JE Jr., Schack T. Generative Data Modelling for Diverse Populations in Africa: Insights from South Africa. Information. 2025; 16(7):612. https://doi.org/10.3390/info16070612
Chicago/Turabian StyleSimmons, Sally Sonia, John Elvis Hagan, Jr., and Thomas Schack. 2025. "Generative Data Modelling for Diverse Populations in Africa: Insights from South Africa" Information 16, no. 7: 612. https://doi.org/10.3390/info16070612
APA StyleSimmons, S. S., Hagan, J. E., Jr., & Schack, T. (2025). Generative Data Modelling for Diverse Populations in Africa: Insights from South Africa. Information, 16(7), 612. https://doi.org/10.3390/info16070612