The Impact of Information Acquisition on Farmers’ Drought Responses: Evidence from China
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Variable Selection
- (1)
- Dependent Variable: Farmers’ drought response behaviors
- (2)
- Independent Variable: Information acquisition ability
- (3)
- Mediating Variable: Value perception
- (4)
- Threshold Variable: Information acquisition ability
- (5)
- Control Variables: Individual and household characteristics
2.3. Descriptive Analysis
2.4. Research Methods
- (1)
- Information Acquisition Ability Assessment Model
- (2)
- Regression Model
- (3)
- Threshold Model
- (4)
- Mediation Effect Model
3. Results
3.1. Measurement of Farmers’ Information Acquisition Ability
3.2. The Impact of Information Acquisition Ability on Farmers’ Drought Response Behaviors
3.3. Analysis of the Threshold Effect of Information Acquisition Ability
3.4. Heterogeneity Analysis
3.5. Analysis of the Mediating Effect of Value Perception
4. Discussion
4.1. Policy Implications
4.2. Limitations
4.3. Future Research Directions
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdullahi, A.M.; Kalengyo, R.B.; Warsame, A.A. The unmet demand of food security in East Africa: Review of the triple challenges of climate change, economic crises, and conflicts. Discov. Sustain. 2024, 5, 244. [Google Scholar] [CrossRef]
- Abdul-Salam, Y.; Phimister, E. Efficiency effects of access to information on small-scale agriculture: Empirical evidence from uganda using stochastic frontier and IRT models. J. Agric. Econ. 2017, 68, 494–517. [Google Scholar] [CrossRef]
- Alpízar, F.; Saborío-Rodríguez, M.; Martínez-Rodríguez, M.R.; Viguera, B.; Vignola, R.; Capitan, T.; Harvey, C.A. Determinants of food insecurity among smallholder farmer households in Central America: Recurrent versus extreme weather-driven events. Reg. Environ. Change 2020, 20, 22. [Google Scholar] [CrossRef]
- Anh, D.L.; Anh, N.T.; Chandio, A.A. Climate change and its impacts on Vietnam agriculture: A macroeconomic perspective. Ecol. Inform. 2023, 74, 101960. [Google Scholar] [CrossRef]
- Aryal, J.P.; Sapkota, T.B.; Rahut, D.B.; Krupnik, T.J.; Shahrin, S.; Jat, M.L.; Stirling, C.M. Major climate risks and adaptation strategies of smallholder farmers in coastal Bangladesh. Environ. Manag. 2020, 66, 105–120. [Google Scholar] [CrossRef]
- Chen, S.; Huang, S.; Huang, K.; He, Y. Analysis on the Influence of Information Acquisition on the Willingness of Farmers to Sort Garbage. Taiwan Agric. Res. 2022, 44, 45–51. [Google Scholar] [CrossRef]
- Cheng, Z.Q.; Zhu, Z.; Zhang, H.J.; Liu, H.L. Does early disaster exposure affect household agricultural income? Evidence from China. Int. J. Disaster Risk Reduct. 2023, 91, 103702. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Yan, H.; Liu, D.L.; Meinke, H.; Hoogenboom, G.; Wang, B.; Peng, B.; Guan, K.; Jaegermeyr, J.; et al. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun. 2023, 14, 765. [Google Scholar] [CrossRef]
- Espinosa-Tasón, J.; Berbel, J.; Gutiérrez-Martín, C.; Musolino, D.A. Socioeconomic impact of 2005–2008 drought in Andalusian agriculture. Sci. Total Environ. 2022, 826, 154148. [Google Scholar] [CrossRef]
- Grigorieva, E.; Livenets, A.; Stelmakh, E. Adaptation of agriculture to climate change: A scoping review. Climate 2023, 11, 202. [Google Scholar] [CrossRef]
- Hou, L.L.; Huang, J.K.; Wang, J.X. Early warning information, farmers’ perceptions of, and adaptations to drought in China. Clim. Change 2017, 141, 197–212. [Google Scholar] [CrossRef]
- Lan, J.; Song, B.Q.; Li, Q.M.; Liu, Z. Farmers’ livelihood strategies and sensitivity to climate change: Evidence from southwest China. Indoor Built Environ. 2023, 32, 1537–1561. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Liu, Y.; Liu, H. Impacts and effects of government regulation on farmers’ responses to drought: A case study of North China Plain. J. Geogr. Sci. 2017, 27, 1481–1498. [Google Scholar] [CrossRef]
- Liu, F.X.; Shahzad, M.A.; Feng, Z.C.; Wang, L.F.; He, J. An analysis of the effect of agriculture subsidies on technical efficiency: Evidence from rapeseed production in China. Heliyon 2024, 10, e33819. [Google Scholar] [CrossRef]
- Maya, K.A.; Sarker, M.A.R.; Gow, J. Factors influencing rice farmers’ adaptation strategies to climate change and extreme weather event. Clim. Change Econ. 2019, 10, 1950012. [Google Scholar] [CrossRef]
- Munyaka, J.C.B.; Gallay, O.; Hlal, M.; Mutandwa, E.; Chenal, J. Optimizing the sweet potato supply chain in Zimbabwe using discrete event simulation: A focus on production, distribution, and market dynamics. Sustainability 2024, 16, 9166. [Google Scholar] [CrossRef]
- Ncoyini, Z.; Savage, M.J.; Strydom, S. Limited access and use of climate information by small-scale sugarcane farmers in South Africa: A case study. Clim. Serv. 2022, 26, 100285. [Google Scholar] [CrossRef]
- Nyoni, R.S.; Bruelle, G.; Chikowo, R.; Andrieu, N. Targeting smallholder farmers for climate information services adoption in Africa: A systematic literature review. Clim. Serv. 2024, 34, 100450. [Google Scholar] [CrossRef]
- Ogundeji, A.A.; Danso-Abbeam, G.; Jooste, A. Climate information pathways and farmers? adaptive capacity: Insights from South Africa. Environ. Dev. 2022, 44, 100743. [Google Scholar] [CrossRef]
- Ozturk, I. The dynamic relationship between agricultural sustainability and food-energy-water poverty in a panel of selected Sub-Saharan African Countries. Energy Policy 2017, 107, 289–299. [Google Scholar] [CrossRef]
- Qtaishat, T.; El-Habbab, M.S.; Bumblauskas, D.P.; Tabieh, M. The impact of drought on food security and sustainability in Jordan. GeoJournal 2023, 88, 1389–1400. [Google Scholar] [CrossRef]
- Sarku, R.; Kranjac-Berisavljevic, G.; Tröger, S. Just transformations in climate information services provision: Perspectives of farmers in southern Ghana. Clim. Dev. 2024, 17, 211–225. [Google Scholar] [CrossRef]
- Selvaraju, R.; Gommes, R.; Bernardi, M. Climate science in support of sustainable agriculture and food security. Clim. Res. 2011, 47, 95–110. [Google Scholar] [CrossRef]
- Shao, H.; Zhang, Y.D.; Gu, F.X.; Shi, C.M.; Miao, N.; Liu, S.R. Impacts of climate extremes on ecosystem metrics in southwest China. Sci. Total Environ. 2021, 776, 145979. [Google Scholar] [CrossRef]
- Tang, J.J.; Wang, J.; Feng, X.L. Early warning systems and farmers’ adaptation to extreme weather: Empirical evidence from the North China Plain. Mitig. Adapt. Strateg. Glob. Change 2024, 29, 86. [Google Scholar] [CrossRef]
- Ukaro, O.A.; Davina, O. Migration among farmers in delta state, Nigeria: Is it a climate change adaptation strategy? J. Agric. Environ. Int. Dev. 2022, 116, 5–28. [Google Scholar] [CrossRef]
- VanderMolen, K.; Horangic, A. Implications of regulatory drought for farmer use of climate information in the Klamath Basin. Weather Clim. Soc. 2018, 10, 269–274. [Google Scholar] [CrossRef]
- Wang, J.X.; Yang, Y.; Huang, J.K.; Chen, K. Information provision, policy support, and farmers’ adaptive responses against drought: An empirical study in the North China Plain. Ecol. Model. 2015, 318, 275–282. [Google Scholar] [CrossRef]
- Yang, C.Y.; Huang, W.H.; Xiao, Y.; Qi, Z.H.; Li, Y.; Zhang, K. Adoption of fertilizer-reduction and efficiency-increasing technologies in China: The role of information acquisition ability. Agriculture 2024, 14, 1339. [Google Scholar] [CrossRef]
- Yiridomoh, G.Y.; Owusu, V. Do women farmers cope or adapt to strategies in response to climate extreme events? Evidence from rural Ghana. Clim. Dev. 2022, 14, 678–687. [Google Scholar] [CrossRef]
- Yue, S.M.; Xue, Y.; Lyu, J.; Wang, K.K. The effect of information acquisition ability on farmers’ agricultural productive service behavior: An empirical analysis of corn farmers in Northeast China. Agriculture 2023, 13, 573. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, Y.; Yu, X.; Zhang, Y. Geographical indication, agricultural products export and urban–rural income gap. Agriculture 2023, 13, 378. [Google Scholar] [CrossRef]
- Zuo, J.P.; Qian, C.C. Assessment for the response and uncertainty of energy poverty to climate extremes in China. Environ. Dev. Sustain. 2024; in press. [Google Scholar] [CrossRef]
Variable Category | Variable Name | Definition and Assignment | Mean | Standard Deviation |
---|---|---|---|---|
Dependent Variables | Capital-oriented behavior | Do you address drought by increasing agricultural investment, applying for agricultural credit, purchasing agricultural insurance, or engaging in non-agricultural activities (e.g., working in secondary/tertiary industries)? Yes = 1, No = 0 | 0.243 | 0.036 |
Labor-oriented behavior | Do you address drought by adjusting crop planting schedules, increasing irrigation frequency/facilities, intensifying fertilizer/pesticide use, or using mulch/straw coverage? Yes = 1, No = 0 | 0.735 | 0.132 | |
Technology-oriented behavior | Do you address drought by choosing drought-resistant crops, adopting water-saving irrigation, pest control techniques, or scientific fertilization methods? Yes = 1, No = 0 | 0.307 | 0.461 | |
Independent Variables | Information acquisition channels | Do you obtain drought response information through online media channels? Yes = 1, No = 0 | 0.624 | 0.398 |
Do you obtain drought response information through interpersonal communication channels? Yes = 1, No = 0 | 0.631 | 0.854 | ||
Do you obtain drought response information through agricultural training channels? Yes = 1, No = 0 | 0.186 | 0.073 | ||
Do you obtain drought response information through government departments? Yes = 1, No = 0 | 0.435 | 0.448 | ||
Mediating Variable | Value perception | Do you agree that drought response can stabilize income and reduce economic risks? Strongly disagree ~ Strongly agree (1 ~ 5) | 3.141 | 1.682 |
Control Variables | Individual characteristics | Gender: Male = 1, Female = 0 | 0.653 | 0.821 |
Age: Actual age of the respondent | 51.54 | 11.69 | ||
Education level: Illiterate = 1, Primary school = 2, Junior high school = 3, High school = 4, College (or above) = 5 | 3.015 | 0.917 | ||
Health status: Poor = 1, Average = 2, Good = 3 | 2.037 | 1.536 | ||
Household characteristics | Internet connectivity: Yes = 1, No = 0 | 0.731 | 0.048 | |
Cultivated land area (ha) | 0.250 | 2.224 | ||
Proportion of agricultural income: 0~50% = 1, 50%~90% = 2, 90%~100% = 3 | 1.768 | 0.885 | ||
Participation in land transfer: No transfer = 1, Land transfer in = 2, Land transfer out = 3 | 1.593 | 1.028 | ||
Household labor force: 1–2 people = 1, 3–4 people = 2, 5 or more people = 3 | 1.976 | 1.005 | ||
Number of natural disasters in the past five years: 1 or less = 1, 2–4 = 2, 5 or more = 3 | 2.368 | 1.558 |
Information Acquisition Channels | Discrimination Parameter | Difficulty Parameter | ||
---|---|---|---|---|
Estimated Value | Standard Error | Estimated Value | Standard Error | |
Online Media Channel | 1.575 ** | 0.642 | 1.231 ** | 0.586 |
Interpersonal Communication Channel | 0.448 *** | 0.101 | 0.536 *** | 0.164 |
Agricultural Training Channel | 2.271 *** | 0.848 | 4.432 *** | 0.896 |
Government Department Channel | 1.003 *** | 0.258 | 1.392 *** | 0.491 |
Combination Type of Channels | Information Acquisition Ability Parameter | Proportion (%) |
---|---|---|
No Channels | −0.917 | 10.67 |
Online Media | 0.116 | 19.03 |
Interpersonal Communication | −0.335 | |
Agricultural Training | −0.468 | |
Government Department | 0.097 | |
Online + Interpersonal | 0.106 | 28.78 |
Online + Training | 0.394 | |
Online + Government | 0.209 | |
Interpersonal + Training | 0.137 | |
Interpersonal + Government | 0.153 | |
Training + Government | 0.228 | |
Online + Interpersonal + Training | 0.878 | 33.51 |
Online + Interpersonal + Government | 0.774 | |
Interpersonal + Training + Government | 0.635 | |
Online + Interpersonal + Training + Government | 1.839 | 8.01 |
Variable | COB | LOB | TOB | CLOB | CTOB | LTOB | CLTOB |
---|---|---|---|---|---|---|---|
Information Acquisition Ability | 0.114 *** (0.015) | 0.043 *** (0.002) | 0.235 *** (0.046) | 0.164 *** (0.011) | 0.243 *** (0.003) | 0.255 *** (0.046) | 0.418 *** (0.065) |
Value Perception | 0.115 *** (0.031) | 0.142 *** (0.067) | 0.104 *** (0.018) | 0.236 *** (0.031) | 0.157 *** (0.007) | 0.302 *** (0.033) | 0.426 *** (0.004) |
Gender | 0.054 (0.066) | 0.047 (0.715) | 0.008 (0.073) | 0.023 (0.015) | 0.047 (0.026) | 0.005 (0.142) | 0.069 (0.645) |
Age | −0.033 (0.029) | −0.021 (0.067) | −0.019 (0.021) | −0.033 (0.029) | −0.011 (0.067) | −0.063 (0.021) | −0.010 (0.009) |
Education Level | 0.031 *** (0.001) | 0.088 *** (0.067) | 0.141 *** (0.002) | 0.091 *** (0.030) | 0.169 *** (0.027) | 0.128 *** (0.013) | 0.339 *** (0.054) |
Health Status | 0.054 *** (0.007) | 0.250 *** (0.039) | 0.139 *** (0.027) | 0.108 *** (0.002) | 0.094 *** (0.021) | 0.122 *** (0.017) | 0.284 *** (0.021) |
Household Cultivated Land Area | 0.043 (0.032) | 0.078 (0.030) | 0.062 (0.054) | 0.075 (0.023) | 0.084 (0.043) | 0.082 (0.064) | 0.033 (0.017) |
Proportion of Agricultural Income | 0.001 (0.001) | 0.011 (0.013) | 0.021 (0.019) | 0.043 (0.041) | 0.082 (0.066) | 0.095 (0.084) | 0.007 (0.008) |
Land Transfer Participation | 0.312 *** (0.039) | 0.357 *** (0.025) | 0.074 *** (0.004) | 0.121 *** (0.020) | 0.232 *** (0.032) | 0.097 *** (0.004) | 0.208 *** (0.095) |
Household Labor Force | 0.075 (0.062) | 0.171 (0.157) | 0.064 (0.065) | 0.063 (0.060) | 0.112 (0.133) | 0.067 (0.055) | 0.059 (0.037) |
Frequency of Natural Disasters in Past Five Years | −0.151 *** (0.055) | −0.427 *** (0.068) | −0.122 *** (0.047) | −0.136 *** (0.021) | −0.327 *** (0.051) | −0.421 *** (0.057) | −0.319 *** (0.058) |
Constant | 0.493 ** | 0.554 *** | 0.252 *** | 0.772 ** | 0.769 *** | 0.773 *** | 0.868 *** |
Provinces | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
p-Value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
R2 | 0.224 | 0.276 | 0.217 | 0.109 | 0.334 | 0.258 | 0.328 |
Variable | COB | LOB | TOB | CLOB | CTOB | LTOB | CLTOB |
---|---|---|---|---|---|---|---|
Information Acquisition Ability | 0.042 *** (0.007) | 0.353 *** (0.026) | 0.066 *** (0.031) | 0.107 *** (0.009) | 0.162 *** (0.068) | 0.214 *** (0.053) | 0.275 *** (0.072) |
Control Variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Provinces | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
R2 | 0.144 | 0.253 | 0.169 | 0.197 | 0.285 | 0.226 | 0.279 |
Threshold Value | 0.262 | 0.014 | 0.374 | 0.421 | 0.535 | 0.406 | 1.109 |
LM Test Value | 32.284 | 28.469 | 34.269 | 35.554 | 39.857 | 34.273 | 50.263 |
Bootstrap p Value | 0.004 | 0.006 | 0.004 | 0.003 | 0.036 | 0.011 | 0.026 |
95% Confidence Interval | [−0.917, 1.839] | ||||||
Heteroskedasticity Test p Value | 0.013 | 0.010 | 0.21 | 0.024 | 0.032 | 0.028 | 0.036 |
Variable | COB | LOB | TOB | CLOB | CTOB | LTOB | CLTOB |
---|---|---|---|---|---|---|---|
Information Acquisition Ability | 0.133 *** (0.001) | 0.356 *** (0.026) | 0.266 *** (0.028) | 0.253 *** (0.015) | 0.285 *** (0.036) | 0.236 *** (0.024) | 0.447 *** (0.075) |
Control Variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Provinces | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
R2 | 0.106 | 0.224 | 0.169 | 0.197 | 0.285 | 0.226 | 0.279 |
Threshold Value | 0.262 | 0.014 | 0.374 | 0.421 | 0.535 | 0.406 | 1.109 |
LM Test Value | 32.284 | 28.469 | 34.269 | 35.554 | 39.857 | 34.273 | 50.263 |
Bootstrap p Value | 0.004 | 0.006 | 0.004 | 0.003 | 0.036 | 0.011 | 0.026 |
95% Confidence Interval | [−0.917, 1.839] | ||||||
Heteroskedasticity Test p Value | 0.013 | 0.010 | 0.21 | 0.024 | 0.032 | 0.028 | 0.036 |
Variable | Unconnected Households | Connected Households | Older Farmers | Younger Farmers |
---|---|---|---|---|
Information Acquisition Ability | 0.069 (0.057) | 0.226 *** (0.029) | 0.104 (0.098) | 0.342 *** (0.085) |
Constant Term | 0.332 * | 0.025 *** | 0.173 ** | 0.054 *** |
Control Variables | Yes | Yes | Yes | Yes |
Provinces | Yes | Yes | Yes | Yes |
p-value | 0.000 | 0.000 | 0.000 | 0.000 |
R2 | 0.021 | 0.158 | 0.044 | 0.236 |
Variable | Value Perception | COB | LOB | TOB | CLOB | CTOB | LTOB | CLTOB |
---|---|---|---|---|---|---|---|---|
Information Acquisition Ability | 0.324 *** (0.022) | 0.076 *** (0.025) | 0.087 *** (0.008) | 0.081 *** (0.013) | 0.076 *** (0.0250) | 0.087 *** (0.008) | 0.078 *** (0.009) | 0.084 *** (0.007) |
Value Perception | 0.064 *** (0.003) | 0.079 *** (0.007) | 0.078 *** (0.021) | 0.064 *** (0.003) | 0.079 *** (0.007) | 0.068 *** (0.008) | 0.097 *** (0.006) | |
Constant | 1.281 *** | 0.233 *** | 0.524 *** | 0.337 *** | 0.233 *** | 0.524 *** | 0.267 *** | 0.374 *** |
Control Variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Province | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
R2 | 0.145 | 0.061 | 0.079 | 0.068 | 0.061 | 0.079 | 0.058 | 0.049 |
Mediating Effect Ratio | 0.276 | 0.263 | 0.256 | 0.284 | 0.363 | 0.308 | 0.433 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Yang, J.; Zhang, Y. The Impact of Information Acquisition on Farmers’ Drought Responses: Evidence from China. Information 2025, 16, 576. https://doi.org/10.3390/info16070576
Han H, Yang J, Zhang Y. The Impact of Information Acquisition on Farmers’ Drought Responses: Evidence from China. Information. 2025; 16(7):576. https://doi.org/10.3390/info16070576
Chicago/Turabian StyleHan, Huiqing, Jianqiang Yang, and Yingjia Zhang. 2025. "The Impact of Information Acquisition on Farmers’ Drought Responses: Evidence from China" Information 16, no. 7: 576. https://doi.org/10.3390/info16070576
APA StyleHan, H., Yang, J., & Zhang, Y. (2025). The Impact of Information Acquisition on Farmers’ Drought Responses: Evidence from China. Information, 16(7), 576. https://doi.org/10.3390/info16070576