Psychological Network Analysis for Risk and Protective Factors of Problematic Social Media Use
Abstract
1. Introduction
2. Related Work
2.1. Predictors of Problematic Social Media Use
2.2. Theory-Driven vs. Data-Driven Approaches
2.3. Psychological Network Analysis: A Data-Driven Approach to Understanding PSMU
2.4. The Current Study
3. Methodology
3.1. Participants and Procedure
3.2. Measures
3.2.1. At-Risk/Problematic SMU
3.2.2. Predictors of At-Risk/Problematic SMU
3.3. Analytical Approach
3.3.1. Imputation of Missing Data
Concept | Instrument | # of Items, Example Item | Cronbach’s (Range) | Likert Scale |
---|---|---|---|---|
Personal variables | ||||
ADHD symptoms | ADHD Questionnaire [48] | Subscale Attention Problems: 9 items, e.g., “I am often distracted or have unimportant thoughts” | 0.87–0.88 | 1 = never, 5 = very often |
Subscale Impulsivity: 6 items, e.g., “I go from one task to another without completing the first one” | 0.80–0.83 | |||
Subscale Hyperactivity: 6 items, e.g., “I have trouble sitting still when this is expected from me” | 0.83–0.86 | |||
Depressive symptoms | Depressive Mood Inventory [49] | 6 items, e.g., “How often did you have the following feelings in the last 12 months … felt unhappy, sad, or depressed?” | 0.81–0.86 | 1 = never, 5 = very often |
Life satisfaction | Student’s Life Satisfaction Scale [50] | 7 items, e.g., “I have a good life” | 0.83–0.85 | 1 = strongly disagree, 6 = strongly agree |
Self-esteem | Rosenberg Self-Esteem scale [51] | 5 items, e.g., “I feel that I have a number of good qualities” | 0.81–0.83 | 1 = completely untrue, 5 = completely true |
Physical self-esteem | Self-Perception Profile for Adolescents [52] | Subscale Physical Appearance: 5 items, e.g., “I am happy with how I look” | 0.84–0.85 | 1 = completely untrue, 5 = completely true |
Narcissism | Childhood Narcissism Scale [53] | 10 items, e.g., “Kids like me deserve something extra” | 0.84–0.85 | 1 = completely untrue, 4 = completely true scores summed |
Fear of missing out (FoMO) | Fear of Missing Out scale [23] | 5 items, e.g., “I get worried when I find out that my friends are having fun without me” | 0.82–0.84 | 1 = completely untrue, 5 = completely true |
Peer variables | ||||
Perceived social competence | Self-Perception Profile for Adolescents [52] | Subscale Close Friendship: 5 items, e.g., “I can keep a friendship for a long time” | 0.65–0.70 | 1 = completely untrue, 5 = completely true |
Intensity of meeting with friends | [54] | 4 items, e.g., “How often are you at your friend’s house?” | 0.85–0.87 | 1 = never, 6 = very often |
Parent variables | ||||
Restrictive parental rules regarding SMU | [31] | 5 items, e.g., “How often are you allowed to use the Internet/games or your smartphone/tablet … while your homework isn’t finished yet?” | 0.76–0.84 | 1 = never, 5 = very often reverse coded |
Reactive parental rules regarding SMU | [31] | 4 items, e.g., “How often do your parents tell you that you have to turn off the computer/tablet or smartphone?” | 0.83–0.87 | 1 = (almost) never, 5 = more than five times a day |
Quality of communication | [55] | 3 items, e.g., “I feel comfortable talking about Internet or game use with my parents | 0.91 | 1 = completely untrue, 5 = completely true |
3.3.2. Data Analysis
4. Results
4.1. Descriptive Statistics
4.2. Logistic Regression Analyses
4.3. Psychological Network Analyses
4.3.1. Network Structure
4.3.2. Centrality
5. Discussion
5.1. General Findings
5.2. Logistic Regression vs. Psychological Network Analysis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADHD | Attention-deficit/hyperactivity disorder |
CI | Confidence interval |
CS | Correlation-stability |
EBIC | Extended Bayesian information criterion |
I-PACE | Interaction of Person–Affect–Cognition–Execution |
FoMO | Fear of missing out |
LASSO | Least absolute shrinkage and selection operator |
M | Mean |
MI | Multiple imputation |
OR | Odds ratio |
PSMU | Problematic social media use |
SD | Standard deviation |
SEM-NN | Structural equation modeling neural network |
SMDS | Social Media Disorder Scale |
SMU | Social media use |
References
- Boer, M.; Van Dorsselaer, S.; De Looze, M.E.; De Roos, S.; Brons, H.; Van den Eijnden, R.J.J.M.; Monshouwer, K.; Huijnk, W.; Ter Bogt, T.F.M.; Vollebergh, W.A.M.; et al. HBSC 2021. Gezondheid en welzijn van jongeren in Nederland; Universiteit Utrecht: Utrecht, The Netherlands, 2022. [Google Scholar]
- Inchley, J.; Currie, D.; Budisavljevic, S.; Torsheim, T.; Jåstad, A.; Cosma, A.; Kelly, C.; Arnarsson, Á.; Samdal, O. Spotlight on Adolescent Health and Wellbeing. Findings from the 2017/2018 Health Behaviour in School-Aged Children (HBSC) Survey in Europe and Canada. International Report: Key Data (Volume 2); WHO Regional Office for Europe: Copenhagen, Denmark, 2020. [Google Scholar]
- Vogels, E.A.; Gelles-Watnick, R.; Massarat, N. Teens, Social Media and Technology; Pew Research Center: Washington, DC, USA, 2022. [Google Scholar]
- Andreassen, C.S. Online social network site addiction: A comprehensive review. Curr. Addict. Rep. 2015, 2, 175–184. [Google Scholar] [CrossRef]
- Kuss, D.J.; Griffiths, M.D. Social networking sites and addiction: Ten lessons learned. Int. J. Environ. Res. Public Health 2017, 14, 311. [Google Scholar] [CrossRef] [PubMed]
- Marino, C.; Gini, G.; Vieno, A.; Spada, M.M. The associations between problematic Facebook use, psychological distress and well-being among adolescents and young adults: A systematic review and meta-analysis. J. Affect. Disord. 2018, 226, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.W.J.; Ho, S.S.; Lwin, M.O. Explicating problematic social network sites use: A review of concepts, theoretical frameworks, and future directions for communication theorizing. New Media Soc. 2017, 19, 308–326. [Google Scholar] [CrossRef]
- Boer, M.; Van den Eijnden, R.J.J.M.; Boniel-Nissim, M.; Wong, S.L.; Inchley, J.C.; Badura, P.; Craig, W.M.; Gobina, I.; Kleszczewska, D.; Klanšček, H.J.; et al. Adolescents’ intense and problematic social media use and their well-being in 29 countries. J. Adolesc. Health 2020, 66, S89–S99. [Google Scholar] [CrossRef]
- Van den Eijnden, R.J.J.M.; Koning, I.M.; Doornwaard, S.M.; Van Gurp, F.; Ter Bogt, T.F.M. The impact of heavy and disordered use of games and social media on adolescents’ psychological, social, and school functioning. J. Behav. Addict. 2018, 7, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Boer, M.; Stevens, G.W.J.M.; Finkenauer, C.; Van den Eijnden, R.J.J.M. Attention deficit hyperactivity disorder-symptoms, social media use intensity, and social media use problems in adolescents: Investigating directionality. Child Dev. 2020, 91, e853–e865. [Google Scholar] [CrossRef]
- Mérelle, S.; Kleiboer, A.; Schotanus, M.; Cluitmans, T.; Waardenburg, C. Which health-related problems are associated with problematic video-gaming or social media use in adolescents? A large-scale cross-sectional study. Clin. Neuropsychiatry 2017, 14, 11–19. [Google Scholar]
- Alonzo, R.; Hussain, J.; Stranges, S.; Anderson, K. Interplay between social media use, sleep quality, and mental health in youth: A systematic review. Sleep Med. Rev. 2020, 56, 101414. [Google Scholar] [CrossRef]
- Šablatúrová, N.; Rečka, K.; Blinka, L. Validation of the Social Media Disorder Scale using network analysis in a large representative sample of Czech adolescents. Front. Public Health 2022, 10, 907522. [Google Scholar] [CrossRef]
- Domoff, S.E.; Foley, R.P.; Ferkel, R. Addictive phone use and academic performance in adolescents. Hum. Behav. Emerg. Technol. 2020, 2, 33–38. [Google Scholar] [CrossRef]
- Boer, M.; Stevens, G.W.J.M.; Finkenauer, C.; Koning, I.M.; Van den Eijnden, R.J.J.M. Validation of the Social Media Disorder Scale in adolescents: Findings from a large-scale nationally representative sample. Assessment 2022, 29, 1658–1675. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Humphreys, K.L.; Flory, K.; Liu, R.; Glass, K. Prospective association of childhood attention-deficit/hyperactivity disorder (ADHD) and substance use and abuse/dependence: A meta-analytic review. Clin. Psychol. Rev. 2011, 31, 328–341. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Billieux, J.; Griffiths, M.D.; Kuss, D.J.; Demetrovics, Z.; Mazzoni, E.; Pallesen, S. The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychol. Addict. Behav. 2016, 30, 252–262. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Pallesen, S.; Griffiths, M.D. The relationship between addictive use of social media, narcissism, and self-esteem: Findings from a large national survey. Addict. Behav. 2017, 64, 287–293. [Google Scholar] [CrossRef]
- Oberst, U.; Wegmann, E.; Stodt, B.; Brand, M.; Chamarro, A. Negative consequences from heavy social networking in adolescents: The mediating role of fear of missing out. J. Adolesc. 2017, 55, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Vejmelka, L.; Matković, R. Online interactions and problematic internet use of croatian students during the covid-19 pandemic. Information 2021, 12, 399. [Google Scholar] [CrossRef]
- Elhai, J.D.; Yang, H.; Fang, J.; Bai, X.; Hall, B.J. Depression and anxiety symptoms are related to problematic smartphone use severity in Chinese young adults: Fear of missing out as a mediator. Addict. Behav. 2020, 101, 105962. [Google Scholar] [CrossRef]
- Casale, S.; Banchi, V. Narcissism and problematic social media use: A systematic literature review. Addict. Behav. Rep. 2020, 11, 100252. [Google Scholar] [CrossRef]
- Przybylski, A.K.; Murayama, K.; Dehaan, C.R.; Gladwell, V. Motivational, emotional, and behavioral correlates of fear of missing out. Comput. Hum. Behav. 2013, 29, 1841–1848. [Google Scholar] [CrossRef]
- Fioravanti, G.; Casale, S.; Benucci, S.B.; Prostamo, A.; Falone, A.; Ricca, V.; Rotella, F. Fear of missing out and social networking sites use and abuse: A meta-analysis. Comput. Hum. Behav. 2021, 122, 106839. [Google Scholar] [CrossRef]
- Ryan, R.; Deci, E.L. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 2000, 55, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Bronfenbrenner, U. Ecological systems theory. Ann. Child Dev. 1989, 6, 187–249. [Google Scholar]
- Sameroff, A. The transactional model. In The Transactional Model of Development: How Children and Contexts Shape Each Other; Sameroff, A., Ed.; American Psychological Association: Washington, DC, USA, 2009; pp. 3–21. [Google Scholar]
- Nielsen, P.; Favez, N.; Rigter, H. Parental and family factors associated with problematic gaming and problematic internet use in adolescents: A systematic literature review. Curr. Addict. Rep. 2020, 7, 365–386. [Google Scholar] [CrossRef]
- Caplan, S.E. Preference for online social interaction: A theory of problematic Internet use and psychosocial well-being. Commun. Res. 2003, 30, 625–648. [Google Scholar] [CrossRef]
- Geurts, S.M.; Koning, I.M.; Vossen, H.G.M.; van den Eijnden, R.J.J.M. Rules, role models or overall climate at home? Relative associations of different family aspects with adolescents’ problematic social media use. Compr. Psychiatry 2022, 116, 152318. [Google Scholar] [CrossRef]
- Koning, I.M.; Peeters, M.; Finkenauer, C.; Van den Eijnden, R.J.J.M. Bidirectional effects of internet-specific parenting practices and compulsive social media and internet game use. J. Behav. Addict. 2018, 7, 624–632. [Google Scholar] [CrossRef]
- Van den Eijnden, R.J.J.M.; Geurts, S.M.; Ter Bogt, T.F.M.; Van der Rijst, V.G.; Koning, I.M. Social media use and adolescents’ sleep: A longitudinal study on the protective role of parental rules regarding Internet use before sleep. Int. J. Environ. Res. Public Health 2021, 18, 1346. [Google Scholar] [CrossRef]
- Lakić, N.; Bernik, A.; ep, A. Addiction and Spending in Gacha Games. Information 2023, 14, 399. [Google Scholar] [CrossRef]
- Di Franco, G.; Santurro, M. Machine learning, artificial neural networks and social research. Qual. Quant. 2021, 55, 1007–1025. [Google Scholar] [CrossRef]
- Hofman, J.M.; Watts, D.J.; Athey, S.; Garip, F.; Griffiths, T.L.; Kleinberg, J.; Margetts, H.; Mullainathan, S.; Salganik, M.J.; Vazire, S.; et al. Integrating explanation and prediction in computational social science. Nature 2021, 595, 181–188. [Google Scholar] [CrossRef]
- Shmueli, G. To Explain or to Predict? Stat. Sci. 2010, 25, 289–310. [Google Scholar] [CrossRef]
- Borsboom, D. A network theory of mental disorders. World Psychiatry 2017, 16, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Borsboom, D.; Cramer, A.O.J.; Kalis, A. Brain disorders? Not really: Why network structures block reductionism in psychopathology research. Behav. Brain Sci. 2019, 42, 1–63. [Google Scholar] [CrossRef]
- Epskamp, S.; Borsboom, D.; Fried, E.I. Estimating psychological networks and their accuracy: A tutorial paper. Behav. Res. Methods 2018, 50, 195–212. [Google Scholar] [CrossRef] [PubMed]
- Epskamp, S.; Fried, E.I. A tutorial on regularized partial correlation networks. Psychol. Methods 2018, 23, 617–634. [Google Scholar] [CrossRef] [PubMed]
- Baggio, S.; Starcevic, V.; Studer, J.; Simon, O.; Gainsbury, S.M.; Gmel, G.; Billieux, J. Technology-mediated addictive behaviors constitute a spectrum of related yet distinct conditions: A network perspective. Psychol. Addict. Behav. 2018, 32, 564–572. [Google Scholar] [CrossRef]
- Faelens, F.; Hoorelbeke, K.; Fried, E.; De Raedt, R.; Koster, E.H.W. Negative influences of Facebook use through the lens of network analysis. Comput. Hum. Behav. 2019, 96, 13–22. [Google Scholar] [CrossRef]
- Li, L.; Niu, Z.; Mei, S.; Griffiths, M.D. A network analysis approach to the relationship between fear of missing out (FoMO), smartphone addiction, and social networking site use among a sample of Chinese university students. Comput. Hum. Behav. 2022, 128, 107086. [Google Scholar] [CrossRef]
- Esfahlani, F.Z.; Visser, K.; Strauss, G.P.; Sayama, H. A network-based classification framework for predicting treatment response of schizophrenia patients. Expert Syst. Appl. 2018, 109, 152–161. [Google Scholar] [CrossRef]
- Van den Eijnden, R.J.J.M.; Lemmens, J.S.; Valkenburg, P.M. The Social Media Disorder Scale: Validity and psychometric properties. Comput. Hum. Behav. 2016, 61, 478–487. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar] [CrossRef]
- Manly, C.A.; Wells, R.S. Reporting the use of multiple imputation for missing data in higher education research. Res. High. Educ. 2015, 56, 397–409. [Google Scholar] [CrossRef]
- Scholte, E.; Van der Ploeg, J. De ontwikkeling en toetsing van de ADHD vragenlijst. Kind Adolesc. 1999, 20, 50–60. [Google Scholar] [CrossRef]
- Kandel, D.B.; Davies, M. Epidemiology of depressive mood in adolescents: An empirical study. Arch. Gen. Psychiatry 1982, 39, 1205–1212. [Google Scholar] [CrossRef]
- Huebner, E.S. Initial development of the student’s life satisfaction scale. Sch. Psychol. Int. 1991, 12, 231–240. [Google Scholar] [CrossRef]
- Rosenberg. Rosenberg. Rosenberg self-esteem scale (RSE). In Acceptance and Commitment Therapy. Measures Package; Ciarrochi, J., Bilich, L., Eds.; University of Wollongong: Wollongong, Australia, 1965; pp. 61–62. [Google Scholar]
- Harter, S. Self-Perception Profile for Adolescents: Manual and Questionnaires; University of Denver: Denver, CO, USA, 1985. [Google Scholar]
- Thomaes, S.; Stegge, H.; Bushman, B.J.; Olthof, T.; Denissen, J. Development and validation of the Childhood Narcissism Scale. J. Personal. Assess. 2008, 90, 382–391. [Google Scholar] [CrossRef]
- Baams, L.; Van de Bongardt, D.; Doornwaard, S.M. Codebook Project Stars: Studies on trajectories of adolescent relationships and sexuality. In Romantic Relationships and Sexuality in Adolescence and Young Adulthood; Routledge: Oxfordshire, UK, 2017; pp. 46–47. [Google Scholar]
- Van den Eijnden, R.J.J.M.; Spijkerman, R.; Vermulst, A.A.; Van Rooij, T.J.; Engels, R.C. Compulsive Internet use among adolescents: Bidirectional parent–child relationships. J. Abnorm. Child Psychol. 2010, 38, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Van Buuren, S.; Groothuis-Oudshoorn, C.G.M. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Lauritzen, S.L. Graphical Models; Clarendon Press: Oxford, UK, 1996. [Google Scholar]
- Friedman, J.; Hastie, T.; Tibshirani, R. Glasso: Graphical Lasso: Estimation of Gaussian Graphical Models. CRAN. 2019. Available online: https://CRAN.R-project.org/package=glasso (accessed on 29 June 2025).
- Epskamp, S.; Cramer, A.O.; Waldorp, L.J.; Schmittmann, V.D.; Borsboom, D. qgraph: Network visualizations of relationships in psychometric data. J. Stat. Softw. 2012, 48, 1–18. [Google Scholar] [CrossRef]
- Beard, C.; Millner, A.J.; Forgeard, M.J.; Fried, E.I.; Hsu, K.J.; Treadway, M.T.; Leonard, C.V.; Kertz, S.J.; Björgvinsson, T. Network analysis of depression and anxiety symptom relationships in a psychiatric sample. Psychol. Med. 2016, 46, 3359–3369. [Google Scholar] [CrossRef]
- Bringmann, L.F.; Elmer, T.; Epskamp, S.; Krause, R.W.; Schoch, D.; Wichers, M.; Wigman, J.T.W.; Snippe, E. What do centrality measures measure in psychological networks? J. Abnorm. Psychol. 2019, 128, 892–903. [Google Scholar] [CrossRef]
- Forrest, L.N.; Jones, P.J.; Ortiz, S.N.; Smith, A.R. Core psychopathology in anorexia nervosa and bulimia nervosa: A network analysis. Int. J. Eat. Disord. 2018, 51, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Boer, M.; Stevens, G.W.J.M.; Finkenauer, C.; De Looze, M.E.; Van den Eijnden, R.J.J.M. Social media use intensity, social media use problems, and mental health among adolescents: Investigating directionality and mediating processes. Comput. Hum. Behav. 2021, 116, 106645. [Google Scholar] [CrossRef]
- Sheldon, P.; Antony, M.G.; Sykes, B. Predictors of problematic social media use: Personality and life-position indicators. Psychol. Rep. 2021, 124, 1110–1133. [Google Scholar] [CrossRef]
- Oddo, L.E.; Felton, J.W.; Meinzer, M.C.; Mazursky-Horowitz, H.; Lejuez, C.W.; Chronis-Tuscano, A. Trajectories of depressive symptoms in adolescence: The interplay of maternal emotion regulation difficulties and youth ADHD symptomatology. J. Atten. Disord. 2021, 25, 954–964. [Google Scholar] [CrossRef] [PubMed]
- Vazire, S.; Funder, D.C. Impulsivity and the self-defeating behavior of narcissists. Personal. Soc. Psychol. Rev. 2006, 10, 154–165. [Google Scholar] [CrossRef]
- Brand, M.; Young, K.S.; Laier, C.; Wölfling, K.; Potenza, M.N. Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet-use disorders: An Interaction of Person-Affect-Cognition-Execution (I-PACE) model. Neurosci. Biobehav. Rev. 2016, 71, 252–266. [Google Scholar] [CrossRef]
- Robinaugh, D.J.; Millner, A.J.; McNally, R.J. Identifying highly influential nodes in the complicated grief network. J. Abnorm. Psychol. 2016, 125, 747–757. [Google Scholar] [CrossRef]
T1 | T2 | T3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Total | Norm. SMU | Risk SMU | Total | Norm. SMU | Risk SMU | Total | Norm. SMU | Risk SMU | |
(N = 2441) | (n = 1598) | (n = 843) | (N = 2441) | (n = 1619) | (n = 822) | (N = 2441) | (n = 1548) | (n = 893) | |
Variable | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | |
Age | 13.26 (0.95) | 13.26 (1.10) | 13.27 (1.18) | 14.37 (0.96) | 14.40 (1.10) | 14.31 (1.24) | 15.46 (0.97) | 15.50 (1.25) | 15.40 (1.26) |
Attention prob. | 2.24 (0.74) | 2.10 (0.85) | 2.51 (0.82) | 2.39 (0.74) | 2.28 (0.77) | 2.61 (0.77) | 2.44 (0.72) | 2.36 (0.80) | 2.58 (1.02) |
Impulsivity | 1.93 (0.71) | 1.80 (0.77) | 2.18 (0.86) | 2.00 (0.70) | 1.90 (0.69) | 2.21 (0.77) | 2.01 (0.64) | 1.94 (0.72) | 2.14 (0.83) |
Hyperactivity | 2.23 (0.88) | 2.09 (0.90) | 2.51 (1.12) | 2.22 (0.84) | 2.12 (0.85) | 2.43 (0.89) | 2.24 (0.79) | 2.15 (1.09) | 2.38 (1.05) |
Depres. symp. | 2.21 (0.75) | 2.07 (0.81) | 2.48 (0.80) | 2.31 (0.77) | 2.18 (0.80) | 2.55 (0.86) | 2.39 (0.77) | 2.28 (1.20) | 2.59 (1.01) |
Life satisfaction | 4.73 (0.84) | 4.85 (0.82) | 4.51 (1.00) | 4.56 (0.85) | 4.67 (0.95) | 4.34 (1.04) | 4.44 (0.82) | 4.54 (1.12) | 4.26 (1.18) |
Self-esteem | 3.88 (0.71) | 3.97 (0.87) | 3.71 (0.76) | 3.78 (0.72) | 3.87 (0.77) | 3.59 (0.82) | 3.73 (0.67) | 3.81 (1.27) | 3.59 (1.17) |
Phys. self-esteem | 3.61 (0.81) | 3.71 (0.86) | 3.43 (1.06) | 3.47 (0.79) | 3.54 (0.87) | 3.31 (0.88) | 3.43 (0.75) | 3.50 (0.86) | 3.32 (0.89) |
Narcissism | 2.31 (0.53) | 2.29 (0.57) | 2.34 (0.65) | 2.21 (0.54) | 2.19 (0.61) | 2.25 (0.57) | 2.20 (0.49) | 2.18 (0.59) | 2.22 (0.74) |
FoMO | 1.73 (0.68) | 1.60 (0.71) | 1.99 (0.88) | 1.78 (0.69) | 1.68 (0.71) | 1.98 (0.78) | 1.85 (0.67) | 1.76 (0.78) | 2.00 (1.04) |
Perc. soc. comp. | 4.33 (0.66) | 4.37 (0.74) | 4.26 (0.87) | 4.31 (0.67) | 4.34 (0.79) | 4.25 (0.72) | 4.27 (0.63) | 4.32 (0.92) | 4.19 (1.03) |
Int. meet. friends | 3.45 (1.04) | 3.39 (1.13) | 3.57 (1.15) | 3.40 (1.08) | 3.35 (1.11) | 3.50 (1.22) | 3.44 (1.05) | 3.44 (1.24) | 3.44 (1.26) |
Restr. par. rules | 3.25 (0.98) | 3.32 (1.03) | 3.10 (1.00) | 2.94 (1.03) | 2.97 (1.10) | 2.89 (1.15) | 2.63 (0.98) | 2.65 (1.03) | 2.60 (1.27) |
React. par. rules | 1.72 (0.72) | 1.65 (0.69) | 1.84 (0.82) | 1.64 (0.72) | 1.56 (0.73) | 1.79 (0.96) | 1.54 (0.63) | 1.49 (0.89) | 1.62 (0.85) |
Qual. comm. | 3.19 (1.06) | 3.25 (1.13) | 3.07 (1.31) | 3.42 (1.03) | 3.51 (1.16) | 3.23 (1.20) | 3.51 (0.94) | 3.57 (1.45) | 3.39 (1.52) |
Variable | T1 | T2 | T3 | |||
---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | |
Attention problems | 1.22 | [0.97, 1.53] | 1.15 | [0.94, 1.40] | 1.02 | [0.82, 1.27] |
Impulsivity | 1.26 * | [1.01, 1.58] | 1.27 * | [1.03, 1.56] | 1.22 | [0.94, 1.59] |
Hyperactivity | 1.07 | [0.91, 1.27] | 1.00 | [0.86, 1.17] | 1.02 | [0.84, 1.23] |
Depressive symptoms | 1.17 | [0.97, 1.41] | 1.32 ** | [1.10, 1.58] | 1.29 ** | [1.07, 1.55] |
Life satisfaction | 0.91 | [0.74, 1.12] | 0.89 | [0.75, 1.05] | 0.92 | [0.70, 1.22] |
Self-esteem | 0.87 | [0.67, 1.13] | 0.76 * | [0.60, 0.97] | 0.81 | [0.57, 1.15] |
Physical self-esteem | 0.85 | [0.70, 1.03] | 0.94 | [0.79, 1.11] | 0.96 | [0.80, 1.14] |
Narcissism | 1.21 | [0.90, 1.63] | 1.36 * | [1.03, 1.78] | 1.30 | [0.96, 1.77] |
Fear of missing out (FoMO) | 1.54 *** | [1.23, 1.92] | 1.24 * | [1.05, 1.46] | 1.23 * | [1.03, 1.47] |
Perceived social competence | 1.00 | [0.84, 1.19] | 1.05 | [0.88, 1.27] | 0.87 | [0.71, 1.05] |
Intensity of meeting friends | 1.20 *** | [1.08, 1.33] | 1.20 ** | [1.07, 1.35] | 1.08 | [0.97, 1.20] |
Restrictive parental rules | 0.84 ** | [0.75, 0.94] | 0.93 | [0.84, 1.03] | 0.95 | [0.84, 1.08] |
Reactive parental rules | 1.32 *** | [1.15, 1.51] | 1.39 *** | [1.20, 1.61] | 1.26 ** | [1.08, 1.47] |
Quality of communication | 0.94 | [0.84, 1.05] | 0.80 *** | [0.71, 0.90] | 0.94 | [0.82, 1.08] |
Variable | Logistic Regression | Psychological Network | ||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | |
Attention problems | + | + | + | |||
Impulsivity | + | + | + | + | + | |
Hyperactivity | ||||||
Depressive symptoms | + | + | + | + | + | |
Life satisfaction | − | − | − | − | ||
Self-esteem | − | − | − | − | ||
Physical self-esteem | ||||||
Narcissism | + | + | ||||
Fear of missing out (FoMO) | + | + | + | |||
Perceived social competence | ||||||
Intensity of meeting friends | + | + | ||||
Restrictive parental rules | − | |||||
Reactive parental rules | + | + | + | |||
Quality of communication | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doornwaard, S.M.; Hazeleger, V.; Koning, I.M.; Salah, A.A.; Vos, S.; van den Eijnden, R.J.J.M. Psychological Network Analysis for Risk and Protective Factors of Problematic Social Media Use. Information 2025, 16, 567. https://doi.org/10.3390/info16070567
Doornwaard SM, Hazeleger V, Koning IM, Salah AA, Vos S, van den Eijnden RJJM. Psychological Network Analysis for Risk and Protective Factors of Problematic Social Media Use. Information. 2025; 16(7):567. https://doi.org/10.3390/info16070567
Chicago/Turabian StyleDoornwaard, Suzan M., Vladimir Hazeleger, Ina M. Koning, Albert Ali Salah, Sven Vos, and Regina J. J. M. van den Eijnden. 2025. "Psychological Network Analysis for Risk and Protective Factors of Problematic Social Media Use" Information 16, no. 7: 567. https://doi.org/10.3390/info16070567
APA StyleDoornwaard, S. M., Hazeleger, V., Koning, I. M., Salah, A. A., Vos, S., & van den Eijnden, R. J. J. M. (2025). Psychological Network Analysis for Risk and Protective Factors of Problematic Social Media Use. Information, 16(7), 567. https://doi.org/10.3390/info16070567