Advances in Application of Federated Machine Learning for Oncology and Cancer Diagnosis
Abstract
1. Introduction
Contributions of This Paper
- Comprehensive Literature Review: We present a systematic review of FL applications in oncology, summarizing key methodologies, datasets, and advancements in cancer detection using FL.
- Benchmark Datasets and Challenges: We provide an in-depth discussion of publicly available cancer datasets commonly used in FL research, explicitly outlining their challenges, such as data distribution issues and privacy concerns.
- Critical Analysis of FL Challenges: We discuss key challenges associated with FL in medical applications, including data heterogeneity, privacy risks, communication bottlenecks, and regulatory constraints.
- Future Research Directions: We propose a research direction for advancing FL in oncology, emphasizing improvements in privacy-preserving techniques, model optimization, and federated architectures tailored to medical applications.
2. Benchmark Datasets
2.1. BRATS 2018 Dataset
2.2. HAM10000 Dataset
2.3. WBCD Dataset
2.4. BreakHis Dataset
2.5. DDSM Dataset
3. Federated Learning in Healthcare
3.1. Federated Learning Foundations and Aggregation Techniques
3.2. Recent Advances in FL for Privacy and Personalization
3.3. Comparative Summary of FL Aggregation Techniques
4. Machine Learning in Cancer
5. Federated Learning Applications in Cancer
5.1. Breast Cancer
5.2. Brain Tumor
5.3. Pancreas Cancer
5.4. Skin Cancer
5.5. Cancer Study in Histology
5.6. Lung Cancer
5.7. Thyroid Cancer
5.8. Cervical Cancer
5.9. Prostate Cancer
5.10. Colorectal Cancer
6. Comparative Analysis of Federated Learning Approaches in Oncology
7. Challenges
7.1. Data Heterogeneity
7.2. Label Deficiency
7.3. Non-IID (Non-Independent and Identically Distributed)
7.4. Domain Shift
7.5. Data Protection
7.6. Communication Cost
8. Future Directions
8.1. Solving Medical Data Heterogeneity Issues of FL Systems
8.2. Privacy Protection Model Based on Device-Specific Restrictions
8.3. Addressing Label Scarcity with Novel Semi-Supervised and Unsupervised Learning Approaches
8.4. Managing Domain Shift
8.5. Optimizing Communication in Federated Learning Systems
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elgendy, N.; Elragal, A. Big data analytics: A literature review paper. In Proceedings of the Industrial Conference on Data Mining, St. Petersburg, Russia, 16–20 July 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 214–227. [Google Scholar]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Harrington, P. Machine Learning in Action; Simon and Schuster: New York, NY, USA, 2012. [Google Scholar]
- Ghoddusi, H.; Creamer, G.G.; Rafizadeh, N. Machine learning in energy economics and finance: A review. Energy Econ. 2019, 81, 709–727. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Zantalis, F.; Koulouras, G.; Karabetsos, S.; Kandris, D. A review of machine learning and IoT in smart transportation. Future Internet 2019, 11, 94. [Google Scholar] [CrossRef]
- Wiens, J.; Shenoy, E.S. Machine learning for healthcare: On the verge of a major shift in healthcare epidemiology. Clin. Infect. Dis. 2018, 66, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Mahdavinejad, M.S.; Rezvan, M.; Barekatain, M.; Adibi, P.; Barnaghi, P.; Sheth, A.P. Machine learning for Internet of Things data analysis: A survey. Digit. Commun. Netw. 2018, 4, 161–175. [Google Scholar] [CrossRef]
- Sun, W.; Cai, Z.; Li, Y.; Liu, F.; Fang, S.; Wang, G. Data processing and text mining technologies on electronic medical records: A review. J. Healthc. Eng. 2018, 2018, 4302425. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Nambiar, A.R.; Dutta, D. A study of machine learning in healthcare. In Proceedings of the 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), Turin, Italy, 4–8 July 2017; IEEE: Piscataway, NJ, USA, 2017; Volume 2, pp. 236–241. [Google Scholar]
- Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.L. Machine learning for medical imaging. Radiographics 2017, 37, 505–515. [Google Scholar] [CrossRef]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2015, 13, 8–17. [Google Scholar] [CrossRef]
- Wong, D.; Yip, S. Machine learning classifies cancer. Nature 2018, 22, 446–447. [Google Scholar] [CrossRef]
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the Artificial Intelligence and Statistics, PMLR, Lauderdale, FL, USA, 20–22 April 2017; pp. 1273–1282. [Google Scholar]
- Bakas, S.; Reyes, M.; Jakab, A.; Bauer, S.; Rempfler, M.; Crimi, A.; Shinohara, R.T.; Berger, C.; Ha, S.M.; Rozycki, M.; et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv 2018, arXiv:1811.02629. [Google Scholar]
- Li, W.; Milletarì, F.; Xu, D.; Rieke, N.; Hancox, J.; Zhu, W.; Baust, M.; Cheng, Y.; Ourselin, S.; Cardoso, M.J.; et al. Privacy-Preserving Federated Brain Tumour Segmentation. In Proceedings of the International Workshop on Machine Learning in Medical Imaging, Shenzhen, China, 13 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 133–141. [Google Scholar]
- Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 2018, 5, 180161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, J.; Vijayakumar, P.; Sharma, P.K.; Ghosh, U. Homomorphic Encryption-based Privacy-preserving Federated Learning in IoT-enabled Healthcare System. IEEE Trans. Netw. Sci. Eng. 2022, 10, 2864–2880. [Google Scholar] [CrossRef]
- Newman, C.L.; Blake, D.J. UCI Repository of Machine Learning Databases. 1998. Available online: http://www.ics.uci.edu/~mlearn/MLRepository.html (accessed on 21 February 2025).
- Salmeron, J.L.; Arévalo, I. A privacy-preserving, distributed and cooperative FCM-based learning approach for cancer research. In Proceedings of the Rough Sets: International Joint Conference, IJCRS 2020, Havana, Cuba, 29 June–3 July 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 477–487. [Google Scholar]
- Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 2015, 63, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xie, N.; Yuan, S. A Federated Learning Framework for Breast Cancer Histopathological Image Classification. Electronics 2022, 11, 3767. [Google Scholar] [CrossRef]
- Heath, M.; Bowyer, K.; Kopans, D.; Kegelmeyer, P.; Moore, R.; Chang, K.; Munishkumaran, S. Current status of the digital database for screening mammography. In Digital Mammography: Nijmegen; Springer: Berlin/Heidelberg, Germany, 1998; pp. 457–460. [Google Scholar]
- Tan, Y.N.; Tinh, V.P.; Lam, P.D.; Nam, N.H.; Khoa, T.A. A Transfer Learning Approach to Breast Cancer Classification in a Federated Learning Framework. IEEE Access 2023, 11, 27462–27476. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 2019, 10, 12. [Google Scholar] [CrossRef]
- Liu, Y.; Kang, Y.; Xing, C.; Chen, T.; Yang, Q. A secure federated transfer learning framework. IEEE Intell. Syst. 2020, 35, 70–82. [Google Scholar] [CrossRef]
- Nasajpour, M.; Karakaya, M.; Pouriyeh, S.; Parizi, R.M. Federated Transfer Learning For Diabetic Retinopathy Detection Using CNN Architectures. In Proceedings of the SoutheastCon 2022, Mobile, AL, USA, 26 March–3 April 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 655–660. [Google Scholar]
- Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2020, 2, 429–450. [Google Scholar]
- Karimireddy, S.P.; Kale, S.; Mohri, M.; Reddi, S.; Stich, S.; Suresh, A.T. Scaffold: Stochastic controlled averaging for federated learning. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 5132–5143. [Google Scholar]
- Wang, J.; Liu, Q.; Liang, H.; Joshi, G.; Poor, H.V. Tackling the objective inconsistency problem in heterogeneous federated optimization. Adv. Neural Inf. Process. Syst. 2020, 33, 7611–7623. [Google Scholar]
- Reddi, S.; Charles, Z.; Zaheer, M.; Garrett, Z.; Rush, K.; Konečnỳ, J.; Kumar, S.; McMahan, H.B. Adaptive federated optimization. arXiv 2020, arXiv:2003.00295. [Google Scholar]
- McMahan, H.B.; Ramage, D.; Talwar, K.; Zhang, L. Learning differentially private recurrent language models. arXiv 2017, arXiv:1710.06963. [Google Scholar]
- Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMahan, H.B.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical secure aggregation for privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 1175–1191. [Google Scholar]
- Fallah, A.; Mokhtari, A.; Ozdaglar, A. Personalized federated learning: A meta-learning approach. arXiv 2020, arXiv:2002.07948. [Google Scholar]
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2020. [Google Scholar]
- Mccarthy, J.F.; Marx, K.A.; Hoffman, P.E.; Gee, A.G.; O’neil, P.; Ujwal, M.L.; Hotchkiss, J. Applications of machine learning and high-dimensional visualization in cancer detection, diagnosis, and management. Ann. N. Y. Acad. Sci. 2004, 1020, 239–262. [Google Scholar] [CrossRef] [PubMed]
- Annas, G.J. HIPAA regulations: A new era of medical-record privacy? N. Engl. J. Med. 2003, 348, 1486. [Google Scholar] [CrossRef]
- Sadad, T.; Munir, A.; Saba, T.; Hussain, A. Fuzzy C-means and region growing based classification of tumor from mammograms using hybrid texture feature. J. Comput. Sci. 2018, 29, 34–45. [Google Scholar] [CrossRef]
- Boyd, N.F.; Byng, J.; Jong, R.; Fishell, E.; Little, L.; Miller, A.; Lockwood, G.; Tritchler, D.; Yaffe, M.J. Quantitative classification of mammographic densities and breast cancer risk: Results from the Canadian National Breast Screening Study. JNCI J. Natl. Cancer Inst. 1995, 87, 670–675. [Google Scholar] [CrossRef]
- Razzaghi, H.; Troester, M.A.; Gierach, G.L.; Olshan, A.F.; Yankaskas, B.C.; Millikan, R.C. Mammographic density and breast cancer risk in White and African American Women. Breast Cancer Res. Treat. 2012, 135, 571–580. [Google Scholar] [CrossRef]
- Roth, H.R.; Chang, K.; Singh, P.; Neumark, N.; Li, W.; Gupta, V.; Gupta, S.; Qu, L.; Ihsani, A.; Bizzo, B.C.; et al. Federated learning for breast density classification: A real-world implementation. In Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning; Springer: Berlin/Heidelberg, Germany, 2020; pp. 181–191. [Google Scholar]
- Beguier, C.; Terrail, J.O.d.; Meah, I.; Andreux, M.; Tramel, E.W. Differentially Private Federated Learning for Cancer Prediction. arXiv 2021, arXiv:2101.02997. [Google Scholar]
- Yang, Z.; Hu, S.; Chen, K. FPGA-Based Hardware Accelerator of Homomorphic Encryption for Efficient Federated Learning. arXiv 2020, arXiv:2007.10560. [Google Scholar]
- Awan, S.; Li, F.; Luo, B.; Liu, M. Poster: A Reliable and Accountable Privacy-Preserving Federated Learning Framework using the Blockchain. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November 2019. [Google Scholar]
- WenJie, S.; Xuan, S. Vertical federated learning based on DFP and BFGS. arXiv 2021, arXiv:2101.09428. [Google Scholar]
- Jiménez-Sánchez, A.; Tardy, M.; Ballester, M.A.G.; Mateus, D.; Piella, G. Memory-aware curriculum federated learning for breast cancer classification. arXiv 2021, arXiv:2107.02504. [Google Scholar] [CrossRef]
- Andreux, M.; du Terrail, J.O.; Beguier, C.; Tramel, E.W. Siloed federated learning for multi-centric histopathology datasets. In Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning; Springer: Berlin/Heidelberg, Germany, 2020; pp. 129–139. [Google Scholar]
- Chu, K.F.; Zhang, L. Privacy-Preserving Self-Taught Federated Learning for Heterogeneous Data. arXiv 2021, arXiv:2102.05883. [Google Scholar]
- Scheibner, J.; Ienca, M.; Kechagia, S.; Troncoso-Pastoriza, J.R.; Raisaro, J.L.; Hubaux, J.P.; Fellay, J.; Vayena, E. Data protection and ethics requirements for multisite research with health data: A comparative examination of legislative governance frameworks and the role of data protection technologies. J. Law Biosci. 2020, 7, lsaa010. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 248–255. [Google Scholar]
- Lu, M.Y.; Kong, D.; Lipkova, J.; Chen, R.J.; Singh, R.; Williamson, D.F.; Chen, T.Y.; Mahmood, F. Federated learning for computational pathology on gigapixel whole slide images. arXiv 2020, arXiv:2009.10190. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.; Khan, M.A.; Saba, T.; Rehman, A. Brain tumor detection from MRI images using multi-level wavelets. In Proceedings of the 2019 International Conference on Computer and Information Sciences (ICCIS), Sakaka, Saudi Arabia, 3–4 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Bercea, C.I.; Wiestler, B.; Rueckert, D.; Albarqouni, S. FedDis: Disentangled Federated Learning for Unsupervised Brain Pathology Segmentation. arXiv 2021, arXiv:2103.03705. [Google Scholar]
- Sheller, M.J.; Reina, G.A.; Edwards, B.; Martin, J.; Bakas, S. Multi-institutional deep learning modeling without sharing patient data: A feasibility study on brain tumor segmentation. In Proceedings of the International MICCAI Brainlesion Workshop, Granada, Spain, 16 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 92–104. [Google Scholar]
- Yi, L.; Zhang, J.; Zhang, R.; Shi, J.; Wang, G.; Liu, X. SU-Net: An Efficient Encoder-Decoder Model of Federated Learning for Brain Tumor Segmentation; Springer: Cham, Switzerland, 2020; pp. 761–773. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Wang, P.; Shen, C.; Roth, H.R.; Yang, D.; Xu, D.; Oda, M.; Misawa, K.; Chen, P.T.; Liu, K.L.; Liao, W.C.; et al. Automated pancreas segmentation using multi-institutional collaborative deep learning. In Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning; Springer: Cham, Switzerland, 2020; pp. 192–200. [Google Scholar]
- Shen, C.; Wang, P.; Roth, H.R.; Yang, D.; Xu, D.; Oda, M.; Wang, W.; Fuh, C.S.; Chen, P.T.; Liu, K.L.; et al. Multi-task federated learning for heterogeneous pancreas segmentation. In Proceedings of the Clinical Image-Based Procedures, Distributed and Collaborative Learning, Artificial Intelligence for Combating COVID-19 and Secure and Privacy-Preserving Machine Learning: 10th Workshop, CLIP 2021, Second Workshop, DCL 2021, First Workshop, LL-COVID19 2021, and First Workshop and Tutorial, PPML 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, 27 September–1 October 2021; Proceedings 2. Springer: Berlin/Heidelberg, Germany, 2021; pp. 101–110. [Google Scholar]
- Bdair, T.; Navab, N.; Albarqouni, S. Peer Learning for Skin Lesion Classification. arXiv 2021, arXiv:2103.03703. [Google Scholar]
- Al-Rakhami, M.S.; AlQahtani, S.A.; Alawwad, A. Effective Skin Cancer Diagnosis Through Federated Learning and Deep Convolutional Neural Networks. Appl. Artif. Intell. 2024, 38, 2364145. [Google Scholar] [CrossRef]
- Yaqoob, M.M.; Alsulami, M.; Khan, M.A.; Alsadie, D.; Saudagar, A.K.J.; AlKhathami, M. Federated machine learning for skin lesion diagnosis: An asynchronous and weighted approach. Diagnostics 2023, 13, 1964. [Google Scholar] [CrossRef]
- Ke, J.; Shen, Y.; Lu, Y. Style Normalization in Histology with Federated Learning. In Proceedings of the 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 13–16 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 953–956. [Google Scholar]
- Gunesli, G.N.; Bilal, M.; Raza, S.E.A.; Rajpoot, N.M. A Federated Learning Approach to Tumor Detection in Colon Histology Images. J. Med. Syst. 2023, 47, 99. [Google Scholar] [CrossRef]
- Howard, F.M.; Hieromnimon, H.M.; Ramesh, S.; Dolezal, J.; Kochanny, S.; Zhang, Q.; Feiger, B.; Peterson, J.; Fan, C.; Perou, C.M.; et al. Generative adversarial networks accurately reconstruct pan-cancer histology from pathologic, genomic, and radiographic latent features. Sci. Adv. 2024, 10, eadq0856. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, S.; Chandrasekar, C. Lung nodule detection using fuzzy clustering and support vector machines. Int. J. Eng. Technol. 2013, 5, 179–185. [Google Scholar]
- Baheti, P.; Sikka, M.; Arya, K.; Rajesh, R. Federated Learning on Distributed Medical Records for Detection of Lung Nodules. In Proceedings of the VISIGRAPP (4: VISAPP), 15th International Conference on Computer Vision Theory and Applications, Valletta, Malta, 27–29 February 2020; pp. 445–451. [Google Scholar]
- Rajendran, S.; Obeid, J.S.; Binol, H.; Foley, K.; Zhang, W.; Austin, P.; Brakefield, J.; Gurcan, M.N.; Topaloglu, U. Cloud-based federated learning implementation across medical centers. JCO Clin. Cancer Inform. 2021, 5, 1–11. [Google Scholar] [CrossRef]
- Lee, H.; Chai, Y.J.; Joo, H.; Lee, K.; Hwang, J.Y.; Kim, S.M.; Kim, K.; Nam, I.C.; Choi, J.Y.; Yu, H.W.; et al. Federated Learning for Thyroid Ultrasound Image Analysis to Protect Personal Information: Validation Study in a Real Health Care Environment. JMIR Med. Inform. 2021, 9, e25869. [Google Scholar] [CrossRef]
- Xiang, Z.; Tian, X.; Liu, Y.; Chen, M.; Zhao, C.; Tang, L.N.; Xue, E.S.; Zhou, Q.; Shen, B.; Li, F.; et al. Federated learning via multi-attention guided UNET for thyroid nodule segmentation of ultrasound images. Neural Netw. 2025, 181, 106754. [Google Scholar] [CrossRef]
- Wang, G.; Dang, C.X.; Zhou, Z. Measure contribution of participants in federated learning. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2597–2604. [Google Scholar]
- Wang, G. Interpret federated learning with shapley values. arXiv 2019, arXiv:1905.04519. [Google Scholar]
- Joynab, N.S.; Islam, M.N.; Aliya, R.R.; Hasan, A.R.; Khan, N.I.; Sarker, I.H. A federated learning aided system for classifying cervical cancer using PAP-SMEAR images. Inform. Med. Unlocked 2024, 47, 101496. [Google Scholar] [CrossRef]
- Sarma, K.V.; Harmon, S.; Sanford, T.; Roth, H.R.; Xu, Z.; Tetreault, J.; Xu, D.; Flores, M.G.; Raman, A.G.; Kulkarni, R.; et al. Federated learning improves site performance in multicenter deep learning without data sharing. J. Am. Med. Inform. Assoc. 2021, 28, 1259–1264. [Google Scholar] [CrossRef]
- Yan, Z.; Wicaksana, J.; Wang, Z.; Yang, X.; Cheng, K.T. Variation-Aware federated learning with multi-source decentralized medical image data. IEEE J. Biomed. Health Inform. 2021, 25, 2615–2628. [Google Scholar] [CrossRef]
- Nergiz, M. Collaborative Colorectal Cancer Classification on Highly Class Imbalanced Data Setting via Federated Neural Style Transfer Based Data Augmentation. Int. Inf. Eng. Technol. Assoc. 2022, 39, 2077. [Google Scholar] [CrossRef]
- Arthi, N.T.; Mubin, K.E.; Rahman, J.; Rafi, G.; Sheja, T.T.; Reza, M.T.; Alam, M.A. Decentralized federated learning and deep learning leveraging xai-based approach to classify colorectal cancer. In Proceedings of the 2022 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Gold Coast, Australia, 18–20 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar]
- Geyer, R.C.; Klein, T.; Nabi, M. Differentially Private Federated Learning: A Client Level Perspective. arXiv 2017, arXiv:1712.07557. [Google Scholar]
- Aono, Y.; Hayashi, T.; Trieu, N.; Wang, L. Privacy-Preserving Deep Learning via Additively Homomorphic Encryption. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1333–1345. [Google Scholar]
- Attya, S.M.; Jumaa, D.A.; Hwezy, N.N.K.; Sajid, W.A.; Khaleefah, A.M.; Zhyrov, G.; Ali, H. Harnessing Federated Learning for Secure Data Sharing in Healthcare Systems. In Proceedings of the 2024 36th Conference of Open Innovations Association (FRUCT), Tampere, Finland, 24–26 April 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 390–399. [Google Scholar]
- Smith, V.; Chiang, C.K.; Sanjabi, M.; Talwalkar, A. Federated Multi-Task Learning. In Proceedings of the NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Mandal, P.K. Vertical federated alzheimer’s detection on multimodal data. arXiv 2023, arXiv:2312.10237v2. [Google Scholar]
- Jiang, M.; Wang, Z.; Dou, Q. Harmofl: Harmonizing local and global drifts in federated learning on heterogeneous medical images. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 22 February–1 March 2022; Volume 36, pp. 1087–1095. [Google Scholar]
- He, C.; Yang, Z.; Mushtaq, E.; Lee, S.; Soltanolkotabi, M.; Avestimehr, S. Ssfl: Tackling label deficiency in federated learning via personalized self-supervision. arXiv 2021, arXiv:2110.02470. [Google Scholar]
- Yan, R.; Qu, L.; Wei, Q.; Huang, S.C.; Shen, L.; Rubin, D.; Xing, L.; Zhou, Y. Label-efficient self-supervised federated learning for tackling data heterogeneity in medical imaging. IEEE Trans. Med. Imaging 2023, 42, 1932–1943. [Google Scholar]
- Li, X.; Gu, Y.; Dvornek, N.; Staib, L.H.; Ventola, P.; Duncan, J.S. Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results. Med. Image Anal. 2020, 65, 101765. [Google Scholar]
- Lu, W.; Wang, J.; Chen, Y.; Qin, X.; Xu, R.; Dimitriadis, D.; Qin, T. Personalized federated learning with adaptive batchnorm for healthcare. IEEE Trans. Big Data 2022, 10, 915–925. [Google Scholar]
- Islam, T.U.; Ghasemi, R.; Mohammed, N. Privacy-Preserving Federated Learning Model for Healthcare Data. In Proceedings of the IEEE 12th CCWC, Las Vegas, NA, USA, 26–29 January 2022; pp. 0281–0287. [Google Scholar] [CrossRef]
- Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Ingerman, A.; Ivanov, V.; Kiddon, C.; Konečnỳ, J.; Mazzocchi, S.; McMahan, B.; et al. Towards federated learning at scale: System design. Proc. Mach. Learn. Syst. 2019, 1, 374–388. [Google Scholar]
- Van Berkel, C. Multi-core for mobile phones. In Proceedings of the 2009 Design, Automation & Test in Europe Conference & Exhibition, Nice, France, 20–24 April 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1260–1265. [Google Scholar]
- Lakhan, A.; Mohammed, M.A.; Nedoma, J.; Martinek, R.; Tiwari, P.; Vidyarthi, A.; Alkhayyat, A.; Wang, W. Federated-Learning Based Privacy Preservation and Fraud-Enabled Blockchain IoMT System for Healthcare. IEEE J. Biomed. Health Inform. 2022, 27, 664–672. [Google Scholar]
- Zhang, C.; Xie, Y.; Bai, H.; Yu, B.; Li, W.; Gao, Y. A survey on federated learning. Knowl.-Based Syst. 2021, 216, 106775. [Google Scholar]
- Stripelis, D.; Ambite, J.L.; Lam, P.; Thompson, P. Scaling neuroscience research using federated learning. In Proceedings of the 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 13–16 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1191–1195. [Google Scholar]
- Fu, L.; Zhang, H.; Gao, G.; Wang, H.; Zhang, M.; Liu, X. Client Selection in Federated Learning: Principles, Challenges, and Opportunities. arXiv 2022, arXiv:2211.01549. [Google Scholar]
- Rauniyar, A.; Hagos, D.H.; Jha, D.; Håkegård, J.E.; Bagci, U.; Rawat, D.B.; Vlassov, V. Federated learning for medical applications: A taxonomy, current trends, challenges, and future research directions. arXiv 2022, arXiv:2208.03392. [Google Scholar]
- Shi, J.; Wan, W.; Hu, S.; Lu, J.; Zhang, L.Y. Challenges and approaches for mitigating byzantine attacks in federated learning. In Proceedings of the 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Wuhan, China, 9–11 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 139–146. [Google Scholar]
- Ji, S.; Saravirta, T.; Pan, S.; Long, G.; Walid, A. Emerging trends in federated learning: From model fusion to federated x learning. arXiv 2021, arXiv:2102.12920. [Google Scholar]
- Nazir, S.; Kaleem, M. Federated Learning for Medical Image Analysis with Deep Neural Networks. Diagnostics 2023, 13, 1532. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Liu, M. Federated Learning for Medical Image Analysis: A Survey. arXiv 2023, arXiv:2306.05980. [Google Scholar]
- Shen, Y.; Sowmya, A.; Luo, Y.; Liang, X.; Shen, D.; Ke, J. A federated learning system for histopathology image analysis with an orchestral stain-normalization gan. IEEE Trans. Med. Imaging 2022, 42, 1969–1981. [Google Scholar]
- Agrawal, S.; Sarkar, S.; Aouedi, O.; Yenduri, G.; Piamrat, K.; Alazab, M.; Bhattacharya, S.; Maddikunta, P.K.R.; Gadekallu, T.R. Federated learning for intrusion detection system: Concepts, challenges and future directions. Comput. Commun. 2022, 195, 346–361. [Google Scholar]
- Gadekallu, T.R.; Pham, Q.V.; Huynh-The, T.; Bhattacharya, S.; Maddikunta, P.K.R.; Liyanage, M. Federated learning for big data: A survey on opportunities, applications, and future directions. arXiv 2021, arXiv:2110.04160. [Google Scholar]
Aggregation Method | Key Features | Strengths | Limitations |
---|---|---|---|
FedAvg [14] | Averaging model updates from clients | Simple, widely used | Struggles with non-IID data |
FedProx [28] | Adds proximal term to local training | Stabilizes training in heterogeneous data | Slightly increased computational cost |
SCAFFOLD [29] | Variance reduction to correct client drift | Improves convergence speed | Requires additional storage for control variates |
FedNova [30] | Normalizes updates to balance training epochs | Works well with variable local updates | Higher complexity in aggregation |
FedOpt [31] | Adaptive optimizatio for FL | Faster convergence, better performance | Requires tuning of optimizer parameters |
References | Methodology | Datasets | Data-Availability |
---|---|---|---|
Roth et al. [41] | Implementing federated learning in a real-world scenario for mammography breast density classification without centralizing data | BI-RADS | ✓ |
Beguier et al. [42] | Preserve sensitivity and privacy of data via introducing SGD with Differential Privacy method to predict breast cancer. | BC-TCGA | ✓ |
Yang et al. [43] | Reducing the encryption time in the training phase in federated learning to overcome overhead | Breast Cancer Wisconsin | ✓ |
Awan et al. [44] | Preserving privacy by integrating blockchain and FL to provide transparency and verifiability | Breast Cancer Dataset UCI ML | ✓ |
Song et al. [45] | Handle communication efficiency and non-iid data with DFP and BFGS without using SGD, which is a first-order accuracy method. | Breast Cancer Dataset | × |
Sánches et al. [46] | Privacy-preserving and memory-aware FL-based model to control the order of the training samples prioritizing and preventing forgotten samples | Full Field Digital Mammography (FFDM) | × |
Andreux et al. [47] | Privacy-preserving vertical federated learning for tumorous histopathology image classification and decreasing communication times | Camelyon16 and Camelyon17 | ✓ |
Chu et al. [48] | Self-taught FL framework to accelerate training and handle non-matching IDs, evaluated on the Breast Cancer Wisconsin dataset. | ✓ | |
Lu et al. [51] | Differential privacy-preserving FL-based model on computational pathology and preventing the high cost of transmission | Breast Cancer Wisconsin (Diagnostic) | ✓ |
References | Framework | Datasets | Data-Availability |
---|---|---|---|
Li et al. [16] | Explore privacy leaking using Differential Privacy method in FL | BraTs | ✓ |
Bercea et al. [53] | Explore privacy protection via separating shape and appearance parameters, sharing only shape parameters for privacy. | MSLUB, MSISBI, MSI and GBI | ✓ |
Sheller et al. [54] | Introducing FL-based deep learning model for multi-institutional collaboration without centralized patient data | BraTs | ✓ |
Yi et al. [55] | Privacy-preserving FL with encoder–decoder architecture for brain tumor segmentation | Brain MRI Segmentation | ✓ |
FL Approach | FL Architecture | Privacy-Preserving Techniques | Performance Metrics | Challenges Faced |
---|---|---|---|---|
FedAvg [14] | Centralized (HFL) | None/Basic Secure Aggregation | Accuracy, AUC | Struggles with non-IID data, slow convergence |
FedProx [28] | Centralized (HFL) | None/Basic Secure Aggregation | Accuracy, F1-score | High computation, scalability issues |
Differentially Private FL [77] | Decentralized | Differential Privacy (DP) | Accuracy, Privacy Budget | Trade-off between privacy and accuracy |
Homomorphic Encryption (HE) FL [78] | Centralized (HFL) | Homomorphic Encryption (HE) | Accuracy, Computational cost | High computational cost |
Blockchain-Based FL [79] | Centralized (HFL) | DP, Blockchain | Accuracy, Privacy Budget | Privacy-Utility Tradeoff, Blockchain Scalability |
Transfer Learning in FL [25] | Centralized (HFL) | Homomorphic Encryption (HE) | Classification accuracy, F1-score, and model generalization | Data Heterogeneity, Personalization, Computational Costs |
Personalized FL [80] | Centralized Federated Multi-task Learning | None/Secure Aggregation | Prediction error, Convergence speed | Statistical heterogeneity, Communication cost, System heterogeneity |
Memory-Aware Curriculum FL [46] | Centralized/ Decentralized | DP + Curriculum Learning | AUC, PR-AUC | non-IID challenges |
Vertical FL (VFL) [81] | Vertical Partitioning | None/Basic Secure Aggregation | AUC, F1-score | Computational complexity, communication overhead |
FL Approach | Advantages | Limitations & Drawbacks |
---|---|---|
FedAvg | Simple, widely adopted, efficient for IID data | Struggles with non-IID data, slow convergence, privacy risks without additional techniques |
FedProx | Addresses non-IID challenges better than FedAvg | Higher computation cost, requires careful tuning of the proximal term |
DP-based FL | Strong privacy guarantees | Decreased model accuracy, privacy budget needs careful calibration |
HE-based FL | Strong cryptographic security, enables secure computation | High computational cost, impractical for real-time applications |
Blockchain-based FL | Ensures model integrity, decentralized trust | High energy consumption, blockchain scalability limitations |
Personalized FL | Handles heterogeneity, better adaptation to diverse clients | Higher computational complexity, communication overhead |
Transfer Learning in FL | Enhances model generalization, reduces data dependency | Requires effective domain adaptation, may not work well with highly dissimilar datasets |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasajpour, M.; Pouriyeh, S.; Parizi, R.M.; Han, M.; Mosaiyebzadeh, F.; Xie, Y.; Liu, L.; Batista, D.M. Advances in Application of Federated Machine Learning for Oncology and Cancer Diagnosis. Information 2025, 16, 487. https://doi.org/10.3390/info16060487
Nasajpour M, Pouriyeh S, Parizi RM, Han M, Mosaiyebzadeh F, Xie Y, Liu L, Batista DM. Advances in Application of Federated Machine Learning for Oncology and Cancer Diagnosis. Information. 2025; 16(6):487. https://doi.org/10.3390/info16060487
Chicago/Turabian StyleNasajpour, Mohammad, Seyedamin Pouriyeh, Reza M. Parizi, Meng Han, Fatemeh Mosaiyebzadeh, Yixin Xie, Liyuan Liu, and Daniel Macêdo Batista. 2025. "Advances in Application of Federated Machine Learning for Oncology and Cancer Diagnosis" Information 16, no. 6: 487. https://doi.org/10.3390/info16060487
APA StyleNasajpour, M., Pouriyeh, S., Parizi, R. M., Han, M., Mosaiyebzadeh, F., Xie, Y., Liu, L., & Batista, D. M. (2025). Advances in Application of Federated Machine Learning for Oncology and Cancer Diagnosis. Information, 16(6), 487. https://doi.org/10.3390/info16060487