Green NFTs: Technologies Related to Energy-Efficient Non-Fungible Tokens
Abstract
:1. Introduction
- (a)
- Considerations about the status of green NFTs.
- (b)
- An analysis of the essential blockchain processes and protocols supporting green NFT processes, such as processes related to the creation and transfer of NFTs.
- (c)
- The identification and categorization of certain blockchain factors (e.g., interoperability, scalability, etc.) that appear to have direct impacts on green NFT technologies, thus providing a different point of view regarding the symbiotic relationship between blockchain platforms and NFTs.
- (d)
- The identification of critical gaps in various industrial areas (e.g., supply chain, digital art, etc.), highlighting further innovation areas.
2. Related Studies
3. A Technical Description of a Typical NFT Model
4. Blockchain Technologies for Green NFTs
4.1. Consensus Mechanisms Used in Creating Energy-Efficient NFTs
4.2. Token Standards and Their Role in Green NFTs
4.3. Blockchain Layered Architecture
5. Blockchain Factors Involved in Developing Green NFTs Solutions
5.1. Interoperability
5.2. Scalability
5.3. Sustainability
6. Environmental Impact of NFTs
6.1. Energy Consumption in PoW Systems
6.2. Ethereum’s Transition to PoS
6.3. Challenges in the Post-Merge Era
6.4. Broader Ecosystem Considerations
7. Industrial Use Cases of Green NFTs
7.1. Supply Chain
7.1.1. Engaging Supply Chain Stakeholders with NFTs
7.1.2. Sustainable Supply Chains and the Emergence of Green NFTs
7.2. Digital Art
7.3. Gaming Sector
8. Challenges and Future Directions
8.1. Usability Challenges
8.2. Privacy Challenges
8.3. Security Threats and Centralization Risks in Energy-Efficient Consensus Models
8.4. Interoperability Challenges
8.5. Fostering the Metaverse
8.6. Legal and Regulatory Considerations
8.7. Policy Interventions and the Future of Green NFTs
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lohar, P.; Rathi, K. Evaluation of non-fungible token (NFT). arXiv 2023, arXiv:2308.14389. [Google Scholar]
- Parham, A.; Breitinger, C. Non-fungible tokens: Promise or peril? arXiv 2022, arXiv:2202.06354. [Google Scholar]
- Rehman, W.; Zainab, H.; Imran, J.; Bawany, N.Z. NFTs: Applications and challenges. In Proceedings of the 22nd International Arab Conference on Information Technology (ACIT), Muscat, Oman, 21–23 December 2021. [Google Scholar] [CrossRef]
- Xia, Y.; Li, J.; Fu, Y. Are non-fungible tokens (NFTs) different asset classes? Evidence from quantile connectedness approach. Financ. Res. Lett. 2022, 49, 103156. [Google Scholar] [CrossRef]
- Taherdoost, H. Non-fungible tokens (NFT): A systematic review. Information 2023, 14, 26. [Google Scholar] [CrossRef]
- Guidi, B.; Michienzi, A. The social impact of NFTs in the metaverse economy. In Proceedings of the ACM Conference on Information Technology for Social Good (GoodIT ’23), Lisbon, Portugal, 6–8 September 2023; pp. 428–436. [Google Scholar]
- Gebreab, S.A.; Salah, K.; Jayaraman, R.; Zemerly, J. Trusted traceability and certification of refurbished medical devices using dynamic composable NFTs. IEEE Access 2023, 11, 30373–30389. [Google Scholar] [CrossRef]
- Marro, S.; Donno, L. Green NFTs: A study on the environmental impact of cryptoart technologies. arXiv 2022, arXiv:2202.00003v3. [Google Scholar]
- Lal, A.; You, F. Climate concerns and the future of nonfungible tokens: Leveraging environmental benefits of the Ethereum merge. Proc. Natl. Acad. Sci. USA 2023, 120, e2303109120. [Google Scholar] [CrossRef]
- Zhang, Y.-Q. Impact of green finance and environmental protection on green economic recovery in South Asian economies: Mediating role of FinTech. Econ. Chang. Restruct. 2023, 56, 2069–2086. [Google Scholar] [CrossRef]
- Hedera. How Much Energy Do NFTs Use? Available online: https://hedera.com/learning/nfts/nfts-energy-use (accessed on 16 October 2024).
- Truby, J.; Brown, R.D.; Dahdal, A.; Ibrahim, I. Blockchain, climate damage, and death: Policy interventions to reduce the carbon emissions, mortality, and net-zero implications of non-fungible tokens and Bitcoin. Energy Res. Soc. Sci. 2022, 88, 102499. [Google Scholar] [CrossRef]
- Qin, Μ.; Su, C.W.; Lobont, O.R.; Umar, M. Blockchain: A carbon-neutral facilitator or an environmental destroyer? Int. Rev. Econ. Financ. 2023, 86, 604–615. [Google Scholar] [CrossRef]
- Javarone, M.A.; Di Antonio, G.; Vinci, G.V.; Pietronero, L.; Gola, C. Evolutionary dynamics of sustainable blockchains. arXiv 2022, arXiv:2209.12809. [Google Scholar]
- Bachman, J.; Chakravorti, S.; Rane, S.; Thyagarajan, K. Incentivizing gigaton-scale carbon dioxide removal via a climate-positive blockchain. arXiv 2023, arXiv:2308.02653. [Google Scholar]
- Saito, K.; Soejima, Y.; Sugiura, T.; Kitamura, Y.; Iwamura, M. Is Ethereum proof of stake sustainable?—Considering from the perspective of competition among smart contract platforms. arXiv 2023, arXiv:2309.11394. [Google Scholar] [CrossRef]
- Ethereum Energy Consumption Index. Available online: https://digiconomist.net/ethereum-energy-consumption (accessed on 20 September 2024).
- Ali, O.; Momin, M.; Shrestha, A.; Das, R.; Alhajj, F.; Dwivedi, Y.K. A review of the key challenges of non-fungible tokens. Technol. Forecast. Soc. Change 2023, 187, 122248. [Google Scholar] [CrossRef]
- Hammi, B.; Zeadally, S.; Perez, A.J. Non-fungible tokens: A review. IEEE Internet Things Mag. 2023, 6, 46–50. [Google Scholar] [CrossRef]
- Bao, H.; Roubaud, D. Non-fungible token: A systematic review and research agenda. J. Risk Financ. Manag. 2022, 15, 215. [Google Scholar] [CrossRef]
- Petraschuk, H. Blockchain in Green Finance: Transforming the Future of Finance. Available online: https://4irelabs.com/articles/blockchain-for-sustainable-finance/ (accessed on 25 February 2025).
- Global X Research Team. Staking, Consensus, and Economic Incentives. Available online: https://www.globalxetfs.com/staking-consensus-and-economic-incentives (accessed on 25 February 2025).
- Carbon Credits. Available online: https://sustainability-directory.com/area/carbon-credits/ (accessed on 25 February 2025).
- Razi, Q.; Devranti, A.; Abhyankari, H.; Chalapathi, G.S.S.; Hassija, V.; Guizani, M. Non-fungible tokens (NFTs)-Survey of current applications, evolution, and future directions. IEEE Open J. Commun. Soc. 2023, 5, 2765–2791. [Google Scholar] [CrossRef]
- Bhujel, S.; Rahulamathavan, Y. A survey: Security, transparency, and scalability issues of NFT’s and its marketplaces. Sensors 2022, 22, 8833. [Google Scholar] [CrossRef]
- Kumar, N. 40 NFT Statistics 2024 (Global Data). Available online: https://www.demandsage.com/nft-statistics (accessed on 15 November 2024).
- Carter, R. How Many People Own NFTs in 2023? Available online: https://www.banklesstimes.com/how-many-people-own-nfts/ (accessed on 14 November 2024).
- Vishwa, S. The Future of NFTs in 2024 and Beyond. Available online: https://www.tokenmetrics.com/blog/what-are-nfts-nft-art-future (accessed on 30 October 2024).
- Sharma, R.; Pandey, V.; Pankhade, R. Non-Fungible Token (NFT) Market. Available online: https://dataintelo.com/report/non-fungible-token-nft-market/ (accessed on 15 December 2024).
- Non-Fungible Token Market Size to Reach $211.7 Billion by 2030. Available online: https://www.grandviewresearch.com/press-release/global-non-fungible-token-market (accessed on 10 November 2024).
- Kräussl, R.; Tugnetti, A. Non-fungible tokens (NFTs): A review of pricing determinants, applications and opportunities. J. Econ. Surv. 2024, 38, 555–574. [Google Scholar] [CrossRef]
- Valeonti, F.; Bikakis, A.; Terras, M.; Speed, C.; Hudson-Smith, A.; Chalkias, K. Crypto collectibles, museum funding, and OpenGLAM: Challenges, opportunities, and the potential of non-fungible tokens (NFTs). Appl. Sci. 2021, 11, 9931. [Google Scholar] [CrossRef]
- Wu, W.; Liu, E.; Gong, X.; Wang, R. Blockchain based zero-knowledge proof of location in IoT. In Proceedings of the International IEEE Conference on Communications (ICC’20), Dublin, Ireland, 7–11 June 2020. [Google Scholar]
- Buck, C.; Olenberger, C.; Schweizer, A.; Volter, F.; Eymann, T. Never trust, always verify: A multivocal literature review on current knowledge and research gaps of zero-trust. Comput. Secur. 2021, 110, 102436. [Google Scholar] [CrossRef]
- Rasool, S.; Saleem, A.; Haq, M.I.U.; Jacobsen, R.H. Towards zero trust security for prosumer-driven verifiable green energy certificates. In Proceedings of the 7th International Conference on Energy Conservation and Efficiency (ICECE), Lahore, Pakistan, 6–7 March 2024; pp. 1–6. [Google Scholar]
- Ko, K.; Jeong, T.; Woo, J.; Hong, J.W.K. Survey on blockchain-based non-fungible tokens: History, technologies, standards, and open challenges. Int. J. Netw. Manag. 2023, 34, e2245. [Google Scholar] [CrossRef]
- Poposki, Z. Corpus-based critical discourse analysis of NFT art within mainstream art-market discourse and implications for the political economy of digital art. Humanit. Soc. Sci. Commun. 2024, 11, 1296. [Google Scholar] [CrossRef]
- Horky, F.; Rachel, C.; Fidrmuc, J. Price determinants of non-fungible tokens in the digital art market. Financ. Res. Lett. 2022, 48, 103007. [Google Scholar] [CrossRef]
- Stublic, H.; Bilogrivic, M.; Zlodi, G. Blockchain and NFTs in the cultural heritage domain: A review of current research topics. Heritage 2023, 6, 3801–3819. [Google Scholar] [CrossRef]
- Nogueira, A.; Marques, C.G.; Manso, A.; Almeida, P. NFTs and the danger of loss. Heritage 2023, 6, 5410–5423. [Google Scholar] [CrossRef]
- Wu, C.-H.; Liu, C.-Y.; Weng, T.-S. Critical factors and trends in NFT technology innovations. Sustainability 2023, 15, 7573. [Google Scholar] [CrossRef]
- Musamih, A.; Salah, K.; Jayaraman, R.; Yaqoob, I.; Puthal, D.; Ellahham, S. NFTs in healthcare: Vision, opportunities, and challenges. IEEE Consum. Electron. Mag. 2023, 12, 21–32. [Google Scholar] [CrossRef]
- Nunes, T.; da Cunha, P.R.; de Abreu, J.M.; Duarte, J.; Corte-Real, A. Non-fungible tokens (NFTs) in healthcare: A systematic review. Int. J. Environ. Res. Public Health 2024, 21, 965. [Google Scholar] [CrossRef]
- Nobanee, G.H.; Ellili, N.O.D. Non-fungible tokens (NFTs): A bibliometric and systematic review, current streams, developments, and directions for future research. Int. Rev. Econ. Financ. 2023, 84, 460–473. [Google Scholar] [CrossRef]
- Tian, Z. Post-merge carbon footprint analysis and sustainability in the NFT art market. Arts 2023, 12, 211. [Google Scholar] [CrossRef]
- Rani, P.; Sharma, P.; Gupta, I. Toward a greener future: A survey on sustainable blockchain applications and impact. J. Environ. Manag. 2024, 354, 120273. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R.; Wang, Q.; Chen, S. Non-fungible token (nft): Overview, evaluation, opportunities and challenges. arXiv 2021, arXiv:2105.07447v3. [Google Scholar]
- Cholevas, C.; Angeli, E.R.; Sereti, Z.; Mavrikos, E.; Tsekouras, G.E. Anomaly detection in blockchain networks using unsupervised learning: A survey. Algorithms 2024, 17, 201. [Google Scholar] [CrossRef]
- Patil, K.P.; Pramod, D.; Joseph, S. Green blockchain technology for organization performance without risky activities: Natural-resource-based view. In Proceedings of the 6th International Conference on Computational Intelligence and Communication Technologies (CCICT), Sonepat, India, 19–20 April 2024; pp. 471–476. [Google Scholar]
- Phansalkar, S.; Mishra, D.; Chaube, N.; Sonkamble, R. Towards adoption of green blockchain with emphasis on blockchain type, consensus protocols, data sharding and smart contracts. In Proceedings of the IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS), Naya Raipur, India, 6–8 October 2023; pp. 1–8. [Google Scholar]
- Yakovenko, A. Solana: A New Architecture for a High Performance Blockchain v0.8.13. Available online: https://solana.com/solana-whitepaper.pdf (accessed on 2 October 2024).
- Nano—Digital Money for the Modern World. Available online: https://docs.nano.org/living-whitepaper (accessed on 4 November 2024).
- Anandhabalaji, V.; Babu, M. Research trends in energy consumption within the cryptocurrency ecosystem. In Proceedings of the 2nd International Conference on Smart Technologies for Power and Renewable Energy (SPECon), Ernakulam, India, 2–4 April 2024; pp. 1–8. [Google Scholar]
- Wendl, M.; Doan, M.H.; Sassen, R. The environmental impact of cryptocurrencies using proof of work and proof of stake consensus algorithms: A systematic review. J. Environ. Manag. 2023, 326, 116530. [Google Scholar] [CrossRef] [PubMed]
- Alzoubi, Y.I.; Mishra, A. Green blockchain—A move towards sustainability. J. Clean. Prod. 2023, 430, 139541. [Google Scholar] [CrossRef]
- Davies, J.; Sharifi, H.; Lyons, A.; Forster, R.; Khaled, O.; Elsayed, S.M. Non-fungible tokens: The missing ingredient for sustainable supply chains in the metaverse age? Transp. Res. Part E 2024, 182, 103412. [Google Scholar] [CrossRef]
- Crosby, M.; Nachiappan Pattanayak, P.; Verma, S.; Kalyanaraman, V. Blockchain technology: Beyond Bitcoin. Appl. Innov. Rev. 2016, 2, 6–10. [Google Scholar]
- Musamih, A.; Dirir, A.; Yaqoob, I.; Salah, K.; Jayaraman, R.; Puthal, D. NFTs in smart cities: Vision, applications, and challenges. IEEE Consum. Electron. Mag. 2024, 13, 9–23. [Google Scholar] [CrossRef]
- Das, D.; Bose, P.; Ruaro, N.; Kruegel, C.; Vigna, G. Understanding security issues in the NFT ecosystem. In Proceedings of the ACM Conference on Computer and Communications Security (CCS’22), Los Angeles, CA, USA, 7–11 November 2022; pp. 667–681. [Google Scholar]
- Cornelius, K. Betraying blockchain: Accountability, transparency and document standards for non-fungible tokens (NFTs). Information 2021, 12, 358. [Google Scholar] [CrossRef]
- Lashkari, B.; Musilek, P. A comprehensive review of blockchain consensus mechanisms. IEEE Access 2021, 9, 43620–43652. [Google Scholar] [CrossRef]
- Xie, M.; Liu, J.; Chen, S.; Lin, M. A survey on blockchain consensus mechanism: Research overview, current advances and future directions. Int. J. Intell. Comput. Cybern. 2023, 16, 314–340. [Google Scholar] [CrossRef]
- Chen, J.; Micali, S. Algorand: A secure and efficient distributed ledger. Theor. Comput. Sci. 2019, 777, 155–183. [Google Scholar] [CrossRef]
- Gilad, Y.; Hemo, R.; Micali, S.; Vlachos, G.; Zeldovich, N. Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai, China, 28 October 2017; pp. 51–68. [Google Scholar]
- Saad, S.M.S.; Radzi, R.Z.R.M. Comparative review of the blockchain consensus algorithm between proof of stake (pos) and delegated proof of stake (dpos). Int. J. Innov. Comput. 2020, 10, 27–32. [Google Scholar]
- Zhao, H.; Deng, S.; Liu, Z.; Xiang, Z.; Yin, J.; Dustdar, S.; Zomaya, A.Y. DPoS: Decentralized, privacy-preserving, and low-complexity online slicing for multi-tenant networks. IEEE Trans. Mob. Comput. 2021, 21, 4296–4309. [Google Scholar] [CrossRef]
- Wood, G. Polkadot: Vision for a Heterogeneous Multi-Chain Framework. White Paper. Available online: https://www.allcryptowhitepapers.com/wp-content/uploads/2019/08/PolkaDotPaper.pdf (accessed on 4 December 2024).
- Burdges, J.; Cevallos, A.; Czaban, P.; Habermeier, R.; Hosseini, S.; Lama, F.; Alper, H.K.; Luo, X.; Shirazi, F.; Stewart, A.; et al. Overview of Polkadot and its design considerations. arXiv 2020, arXiv:2005.13456v3. [Google Scholar]
- Zhang, C.; Wu, C.; Wang, X. Overview of blockchain consensus mechanism. In Proceedings of the 2nd International Conference on Big Data Engineering, Shanghai, China, 29–31 May 2020; pp. 7–12. [Google Scholar]
- Dimitri, N. Liquid proof-of-stake in Tezos: An Economic Analysis. Information 2022, 13, 556. [Google Scholar] [CrossRef]
- Manolache, M.A.; Manolache, S.; Tapus, N. Decision making using the blockchain proof of authority consensus. Procedia Comput. Sci. 2022, 199, 580–588. [Google Scholar] [CrossRef]
- Tang, Y.; Yan, J.; Chakraborty, C.; Sun, Y. Hedera: A permissionless and scalable hybrid blockchain consensus algorithm in multiaccess edge computing for IoT. IEEE Internet Things J. 2023, 10, 21187–21202. [Google Scholar] [CrossRef]
- Buxton, N.; Madsen, P.; Brylski, S. Data Privacy Compliance Using Hedera Consensus Service. Available online: https://hedera.com/HH_Data-Privacy-Compliance-Paper_200613.pdf (accessed on 16 November 2024).
- Hellani, H.; Sliman, L.; Hassine, M.B.; Samhat, A.E.; Exposito, E.; Kmimech, M. Tangle the blockchain: Toward IOTA and blockchain integration for IoT environment. In Proceedings of the 19th International Conference on Hybrid Intelligent Systems (HIS ’19), Bhopal, India, 10–12 December 2019; pp. 429–440. [Google Scholar]
- Silvano, W.F.; Marcelino, R. Iota Tangle: A cryptocurrency to communicate Internet-of-Things data. Future Gener. Comput. Syst. 2020, 112, 307–319. [Google Scholar] [CrossRef]
- Akcora, C.G.; Gel, Y.R.; Kantarcioglu, M. Blockchain networks: Data structures of bitcoin, monero, zcash, ethereum, ripple, and iota. WIREs Data Min. Knowl. Discov. 2022, 12, e1436. [Google Scholar] [CrossRef]
- Armknecht, F.; Karame, G.O.; Mandal, A.; Youssef, F.; Zenner, E. Ripple: Overview and outlook. In Trust and Trustworthy Computing, Proceedings of the 8th International Conference, Heraklion, Greece, 24–16 August 2015; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 9229, pp. 163–180. [Google Scholar]
- Mazieres, D. The Stellar Consensus Protocol: A Federated Model for Internet-Level Consensus. Available online: https://johnpconley.com/wp-content/uploads/2021/01/stellar-consensus-protocol.pdf (accessed on 25 November 2024).
- Casale-Brunet, S.; Ribeca, P.; Doyle, P.; Mattavelli, M. Networks of Ethereum non-fungible tokens: A graph-based analysis of the ERC-721 ecosystem. arXiv 2021, arXiv:2110.12545. [Google Scholar]
- Bauer, D.P. Getting Started with Ethereum: A Step-by-Step Guide to Becoming a Blockchain Developer; Apress: Berkeley, CA, USA, 2022. [Google Scholar]
- Marin, O.; Cioara, T.; Anghel, I. Blockchain solution for buildings’ multi-energy flexibility trading using multi-token standards. Future Internet 2023, 15, 177. [Google Scholar] [CrossRef]
- Di Angelo, M.; Salzer, G. Tokens, types, and standards: Identification and utilization in Ethereum. In Proceedings of the IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS), Oxford, UK, 3–6 August 2020; pp. 1–10. [Google Scholar]
- Sikder, S.; Farin, M.A.; Islam, M.A.; Tahlil, T.; Ahmed, M.T. Unlocking DeFi literacy: Understanding NFT market microstructure in the decentralized finance landscape. In Proceedings of the IEEE International Conference on Blockchain and Cryptocurrency (CryptoEx 2024), Dublin, Ireland, 27–31 May 2024. [Google Scholar] [CrossRef]
- Hasan, H.R.; Madine, M.; Musamih, A.; Jayaraman, R.; Salah, K.; Yaqoob, I.; Omar, M. Non-fungible tokens (NFTs) for digital twins in the industrial metaverse: Overview, use cases, and open challenges. Comput. Ind. Eng. 2024, 193, 110315. [Google Scholar] [CrossRef]
- Eshghie, M.; Kasche, G.A. A dynamic tree architecture for hierarchical on-chain asset management. arXiv 2024, arXiv:2412.06026v1. [Google Scholar]
- Oz, B.; Gebele, J.; Singh, P.; Rezabek, F.; Matthes, F. Playing the MEV game on a first-come-first-served blockchain. arXiv 2024, arXiv:2401.07992v1. [Google Scholar]
- Tanana, D. Avalanche blockchain protocol for distributed computing security. In Proceedings of the IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Sochi, Russia, 3–6 June 2019. [Google Scholar]
- Rocket, T. Snowflake to Avalanche: A Novel Metastable Consensus Protocol Family for Cryptocurrencies. Available online: https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV (accessed on 4 December 2018).
- BEP-721. Available online: https://academy.binance.com/en/glossary/bep-721 (accessed on 22 November 2024).
- Native Tokens. Available online: https://docs.cardano.org/developer-resources/native-tokens (accessed on 19 September 2024).
- Muzammil, M.; Wu, Z.; Harisha, L.; Kondracki, B.; Nikiforakis, N. Typosquatting 3.0: Characterizing squatting in blockchain naming systems. arXiv 2024, arXiv:2411.00352v1. [Google Scholar]
- Prestwich, J. CIP20—Extensible Hash Function Precompile. Available online: https://forum.celo.org/t/cip20-extensible-hash-function-precompile/675/1 (accessed on 19 September 2024).
- Introduction to CW721 NFTs. Available online: https://docs.aura.network/developer/tutorials/non-fungible-tokens/cw721-intro/ (accessed on 2 December 2024).
- Jiang, Z.; Zheng, W.; Liu, B.; Dai, H.-N.; Xie, H.; Luo, X. Unravelling token ecosystem of EOSIO blockchain. IEEE Trans. Knowl. Data Eng. 2024, 36, 5423–5439. [Google Scholar] [CrossRef]
- HIP-412: NFT Token Metadata JSON Schema v2. Available online: https://hips.hedera.com/hip/hip-412 (accessed on 10 December 2024).
- Drasutis, E. Proxima: A DAG–based cooperative distributed ledger. arXiv 2024, arXiv:2411.16456v1. [Google Scholar]
- Sguanci, C.; Spatafora, R.; Vergani, A.M. Layer 2 blockchain scaling: A survey. arXiv 2021, arXiv:2107.10881v1. [Google Scholar]
- Sabol, S. The Tokenomics of SPL-404. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4907351 (accessed on 12 December 2024).
- Li, C.; Xu, R.; Palanisamy, B.; Duan, L.; Shen, M.; Liu, J.; Wang, W. Blockchain Takeovers in Web 3.0: An Empirical Study on the TRON-Steem Incident. ACM Trans. Web 2024. [Google Scholar] [CrossRef]
- Urtecho, R.L.P.; Rodríguez-Molina, J.; Martínez-Núñez, M.; Garbajosa, J. Enhancing agriculture through IoT and blockchain: A VeChain-enhanced sustainable development approach for small-scale agricultural exploitations. IEEE Access 2024, 12, 179962–179980. [Google Scholar] [CrossRef]
- Mukhopadhyay, M.; Ghosh, K. Market microstructure of Non Fungible Tokens. arXiv 2021, arXiv:2112.03172. [Google Scholar] [CrossRef]
- Hosseinalibeiki, H.; Zaree, M. A blockchain based solution to improve loyalty program with NFT in agribusiness. J. Smart Environ. Green Comput. 2023, 3, 127–146. [Google Scholar] [CrossRef]
- Ishida, T.; Watanabe, H.; Ohashi, S.; Fujimura, S.; Nakadaira, A.; Hidaka, K.; Kishigami, J. Tokenizing and managing the copyrights of digital content on blockchains. In Proceedings of the 8th IEEE Global Conference on Consumer Electronics (GCCE’19), Osaka, Japan, 15–18 October 2019; pp. 170–172. [Google Scholar]
- Lalav, R. Blockchain Layers L0, L1, L2, L3: Discover the Different Blockchain Layers and Their Functions. Available online: https://bitpowr.com/blog/blockchain-layers-l0-l1-l2-l3 (accessed on 10 December 2024).
- Obasi, S. Blockchain Layers 01, 2, 3: Understanding the Blockchain Scaling Solutions. Available online: https://medium.com/@mapongo/blockchain-layers-0-1-2-3-understanding-the-blockchain-scaling-solutions-8eeb3e23a250 (accessed on 2 December 2024).
- Chaseling, B. Layer 0s: The Infrastructure for Interoperable Systems. Available online: https://zerocap.com/insights/research-lab/layer-0s-the-infrastructure-for-interoperable-ecosystems/ (accessed on 22 December 2024).
- Max. What Is a Layer 0 Blockchain? Available online: https://www.liquidloans.io/vault/research/blockchain/layer-0-blockchain (accessed on 22 December 2024).
- Garcia, M. What Is a Layer 1 Network? A Comprehensive Guide. Available online: https://www.diadata.org/blog/post/what-is-a-layer-1-blockchain/ (accessed on 15 December 2024).
- Wade, J.; Silberstein, S.; Velasquez, V. Layer 1 vs. Layer 2: The Difference Between Blockchain Scaling Solutions. Available online: https://www.investopedia.com/what-are-layer-1-and-layer-2-blockchain-scaling-solutions-7104877 (accessed on 8 December 2024).
- Gangwal, A.; Gangavalli, H.R.; Thirupathi, A. A survey of Layer-two blockchain protocols. J. Netw. Comput. Appl. 2023, 209, 103539. [Google Scholar] [CrossRef]
- Gudgeon, L.; Perez, D.; Harz, D.; Livshits, B.; Gervais, A. SoK: Layer-two blockchain protocols. In Financial Cryptography and Data Security, Proceedings of the 24th International Conference (FC 2020), Kota Kinabalu, Malaysia, 10–14 February 2020; Revised Selected Papers; Springer International Publishing: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Song, H.; Qu, Z.; Wei, Y. Advancing Blockchain Scalability: An Introduction to Layer 1 and Layer 2 Solutions. arXiv 2024, arXiv:2406.13855. [Google Scholar]
- Saif, M.B.; Migliorini, S.; Spoto, F. A Survey on Data Availability in Layer 2 Blockchain Rollups: Open Challenges and Future Improvements. Future Internet 2024, 16, 315. [Google Scholar] [CrossRef]
- Huang, C.; Song, R.; Gao, S.; Guo, Y.; Xiao, B. Data Availability and Decentralization: New Techniques for zk-Rollups in Layer 2 Blockchain Networks. arXiv 2024, arXiv:2403.10828. [Google Scholar]
- Belchior, R.; Vasconcelos, A.; Correia, M.; Gomes, D. A survey on blockchain interoperability: Past, present, and future trends. arXiv 2020, arXiv:2005.14282. [Google Scholar] [CrossRef]
- Kapengut, E.; Mizrach, B. An event study of the Ethereum transition to proof-of-stake. Commodities 2023, 2, 96–110. [Google Scholar] [CrossRef]
- Tang, M.; Feng, X.; Chen, W. Exploring the NFT market on Ethereum: A comprehensive analysis and daily volume forecasting. Connect. Sci. 2023, 35, 2286912. [Google Scholar] [CrossRef]
- Kwon, J.; Buchman, E. Cosmos Whitepaper—A Network of Distributed Ledgers. Available online: https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md (accessed on 2 December 2024).
- Essaid, M.; Kim, J.; Ju, H. Inter-blockchain communication message relay time measurement and analysis in Cosmos. Appl. Sci. 2023, 13, 11135. [Google Scholar] [CrossRef]
- Peelam, M.S.; Pandey, S.; Singh, R.; Pathak, V.; Bhargava, B. Unlocking the potential of interconnected blockchains: A comprehensive study of Cosmos blockchain interoperability. IEEE Access 2024, 12, 171753–171776. [Google Scholar] [CrossRef]
- Wu, O.; Li, S.; Wang, Y.; Li, H.; Zhang, H. Modeling cross-blockchain process using queueing theory: The case of Cosmos. In Proceedings of the IEEE 28th International Conference on Parallel and Distributed Systems (ICPADS), Hong Kong, China, 10–12 January 2023; pp. 274–281. [Google Scholar]
- Abbas, H.; Caprolu, M.; Di Pietro, R. Analysis of Polkadot: Architecture, internals, and contradictions. arXiv 2022, arXiv:2207.14128. [Google Scholar]
- Yin, L.; Xu, J.; Tang, Q. Sidechains with fast cross-chain transfers. IEEE Trans. Dependable Secur. Comput. 2021, 19, 3925–3940. [Google Scholar] [CrossRef]
- Worley, C.; Skjellum, A. Blockchain tradeoffs and challenges for current and emerging applications: Generalization, fragmentation, sidechains, and scalability. In Proceedings of the IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1582–1587. [Google Scholar]
- Zheng, W.; Zheng, Z.; Dai, H.N.; Chen, X.; Zheng, P. XBlock-EOS: Extracting and exploring blockchain data from EOSIO. Inf. Process. Manag. 2021, 58, 102477. [Google Scholar] [CrossRef]
- Christodoulou, K.; Iosif, E.; Inglezakis, A.; Themistocleous, M. Consensus crash testing: Exploring Ripple’s decentralization degree in adversarial environments. Future Internet 2020, 12, 53. [Google Scholar] [CrossRef]
- Rana, S.K.; Rana, A.K.; Rana, S.K.; Sharma, V.; Lilhore, U.K.; Khalaf, O.I.; Galletta, A. Decentralized model to protect digital evidence via smart contracts using layer 2 polygon blockchain. IEEE Access 2023, 11, 83289–83300. [Google Scholar] [CrossRef]
- Busayatananphon, C.; Boonchieng, E. Financial technology DeFi protocol: A review. In Proceedings of the Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON), Chiang Mai, Thailand, 26–29 January 2022; pp. 267–272. [Google Scholar]
- Masekar, H.; Patel, S.B. Overview of challenges of NFT marketplaces and introduction to Elixer. Int. J. Res. Appl. Sci. Eng. Technol. 2023, 11, 398–411. [Google Scholar] [CrossRef]
- Pierro, G.A.; Tonelli, R. Can Solana be the solution to the blockchain scalability problem? In Proceedings of the 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), Honolulu, HI, USA, 15–18 March 2022; pp. 1219–1226. [Google Scholar]
- Song, H.; Wei, Y.; Qu, Z.; Wang, W. Unveiling decentralization: A comprehensive review of technologies, comparison, challenges in Bitcoin, Ethereum, and Solana blockchain. arXiv 2024, arXiv:2404.04841. [Google Scholar]
- Shukla, A.; Das, T.K.; Roy, S.S. TRX cryptocurrency profit and transaction success rate prediction using whale optimization-based ensemble learning framework. Mathematics 2023, 11, 2415. [Google Scholar] [CrossRef]
- CCRI. Available online: https://carbon-ratings.com (accessed on 25 November 2024).
- Chainspect App. Available online: https://chainspect.app/ (accessed on 25 February 2025).
- Glassnode Studio. Available online: https://studio.glassnode.com/home (accessed on 27 February 2025).
- Mastilak, L.; Suchy, R.; Kostal, K.; Kotuliak, I. Blockchain-based sustainable retail loyalty program. IEEE Access 2023, 11, 150216–150228. [Google Scholar] [CrossRef]
- Schädler, L.; Lustenberger, M.; Spychiger, F. Analyzing decision-making in blockchain governance. Front. Blockchain 2023, 6, 1256651. [Google Scholar] [CrossRef]
- Ellahi, R.M.; Wood, L.C.; Bekhit, A.E.D.A. Blockchain-based frameworks for food traceability: A systematic review. Foods 2023, 12, 3026. [Google Scholar] [CrossRef]
- NFT Club. Available online: https://nftclub.com (accessed on 2 December 2024).
- De Vries, A. Cryptocurrencies on the road to sustainability: Ethereum paving the way for Bitcoin. Patterns 2023, 4, 100633. [Google Scholar] [CrossRef] [PubMed]
- Ho, C. One Year After the Merge: Sustainability of Ethereum’s Proof-of-Stake is Uncertain. Available online: https://www.forbes.com/sites/digital-assets/2023/10/11/one-year-after-the-merge-sustainability-of-ethereums-proof-of-stake-is-uncertain/ (accessed on 12 December 2024).
- Smith, C.; Raj, A.; Loureiro, N.; Wackerow, P. Maximal Extractable Value (MEV). Available online: https://ethereum.org/en/developers/docs/mev/ (accessed on 8 December 2024).
- Chang, A.J.; El-Rayes, N.; Shi, J. Blockchain technology for supply chain management: A comprehensive review. FinTech 2022, 1, 191–205. [Google Scholar] [CrossRef]
- Rejeb, A.; Suhaiza, Z.; Rejeb, K.; Seuring, S.; Treiblmaier, H. The internet of things and the circular economy: A systematic literature review and research agenda. J. Clean. Prod. 2022, 350, 131439. [Google Scholar] [CrossRef]
- Sajedul Alam, A.N.M.; Kibria, J.B.; Mahamud, A.H.; Dey, A.K.; Amin, H.M.Z.; Hossain, M.S.; Rasel, A.A. A Survey: Implementations of non-fungible token system in different fields. arXiv 2022, arXiv:2209.15288. [Google Scholar]
- Kechagias, E.; Gayialis, S.; Papadopoulos, G.; Papoutsis, G. An Ethereum-based distributed application for enhancing food supply chain traceability. Foods 2023, 12, 1220. [Google Scholar] [CrossRef]
- Anjum, N.; Dutta, P. Identifying counterfeit products using blockchain technology in supply chain system. arXiv 2022, arXiv:2206.08565v1. [Google Scholar]
- Yang, S.; Xiao, Y.; Zheng, Y.; Liu, Y. The green supply chain design and marketing strategy for perishable food based on temperature control. Sustainability 2017, 9, 1511. [Google Scholar] [CrossRef]
- Babel, M.; Gramlich, V.; Korner, M.F.; Sedlmeir, J.; Strüker, J.; Zwede, T. Enabling end-to-end digital carbon emission tracing with shielded NFTs. Energy Inform. 2022, 5, 27. [Google Scholar] [CrossRef]
- Paliwal, V.; Chandra, S.; Sharma, S. Blockchain technology for sustainable supply chain management: A systematic literature review and a classification framework. Sustainability 2020, 12, 7638. [Google Scholar] [CrossRef]
- Zhang, S.; Lim, W.Y.B.; Ng, W.C.; Xiong, Z.; Niyato, D.; Shen, S.X.; Miao, C. Towards green metaverse networking: Technologies, advancements and future directions. arXiv 2022, arXiv:2211.03057v1. [Google Scholar] [CrossRef]
- Tang, W. Trading and wealth evolution in the proof of stake protocol. arXiv 2023, arXiv:2308.01803. [Google Scholar] [CrossRef]
- Trautman, L.J. Virtual art and non-fungible tokens. Hofstra Law Rev. 2021, 50, 361–426. [Google Scholar] [CrossRef]
- Multazam, M.T. Exploring the legal and policy implications of non-fungible tokens. J. Polit. Pemerintah. Drh. 2022, 4, 293–303. [Google Scholar] [CrossRef]
- Aliano, M.; Boido, C. Digital art and Non-fungible token: Bubble or revolution? Financ. Res. Lett. 2023, 52, 103380. [Google Scholar]
- Vasan, K.; Janosov, M.; Barabási, A.-L. Quantifying NFT-Driven Networks in Crypto Art. Sci. Rep. 2022, 12, 2769. [Google Scholar] [CrossRef]
- Farhia, Y.; Zahra, A. Art history towards digital acculturation in a non-Fungible token (NFT) art. In Proceedings of the 3rd Asia Pacific International Conference on Industrial Engineering and Operations Management, Johor Bahru, Malaysia, 13–15 September 2022; pp. 3638–3645. [Google Scholar]
- Franceschet, M.; Colavizza, G.; Smith, T.; Finucane, B.; Ostachowski, M.L.; Scalet, S.; Perkins, J.; Morgan, J.; Hernandez, S. Crypto art: A decentralized view. arXiv 2019, arXiv:1906.03263. [Google Scholar] [CrossRef]
- Calvo, P. Cryptoart: Ethical challenges of the NFT revolution. Humanit. Soc. Sci. Commun. 2024, 11, 370. [Google Scholar] [CrossRef]
- Schletz, M.; Cardoso, A.; Prata Dias, G.; Salomo, S. How Can Blockchain Technology Accelerate Energy Efficiency Interventions? A Use Case Comparison. Energies 2020, 13, 5869. [Google Scholar] [CrossRef]
- Immutable Play, Your Hub for Web3 Gaming. Available online: https://www.immutable.com/ (accessed on 12 December 2024).
- Nagpal, G.K.; Renneboog, L. Valuing Digital Art: On Non-Fungible Tokens, Blockchain Hypes, and the Creation of Scarcity. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4622618 (accessed on 28 November 2024).
- Riso, T.; Morrone, C. To align technological advancement and ethical conduct: An analysis of the relationship between digital technologies and sustainable decision-making processes. Sustainability 2023, 15, 1911. [Google Scholar] [CrossRef]
Consensus Mechanism | Method of Validator Selection | Level of Decentralization | Energy Efficiency | References |
---|---|---|---|---|
Proof of Stake (PoS) | Proportional to staked tokens (a malicious validator is subjected to the loss of the locked funds). | High | High | [61,62] |
Pure Proof of Stake (PPoS) | Randomized selection among stakeholders (all the stakeholders have a probability of being elected as validators, while large holders are not allowed to dominate the network). | High | High | [63,64] |
Delegated Proof of Stake (DPoS) | Delegates are elected by token holders, who are voted to perform the endorsement and the block creation (the voting power is based on the staked amount). | Moderate | High | [65,66] |
Nominated Proof of Stake (NPoS) | Nominators back up potential validators (participants assign their stakes to potential validators, whose selection is determined the stake amount and by their reputation). | High | High | [67,68] |
Liquid Proof of Stake (LPoS) | Delegation with retained ownership (delegates are chosen based on their reputation and performance). | High | High | [69,70] |
Proof of Authority (PoA) | Known, trusted validators (less decentralization in exchange for higher speed and lower energy consumption—well-suited for private blockchains). | Low to Moderate | Very High | [71] |
Asynchronous Byzantine Fault Tolerance (ABFT) | BFT, no timing dependency (even if some nodes are unreliable or act maliciously, the network can still reach a consensus). | High | High | [72,73] |
Directed Acyclic Grap (DAG) | Transactions validate previous transactions (the need for traditional validators is minimized). | High | Very High | [74,75] |
Ripple Protocol Consensus Algorithm (RPCA) | Voting with trusted peers (each network’s node votes to determine the transactions that should be included in the public ledger). | Low to Moderate | High | [76,77] |
Stellar Consensus Protocol (SCP) | Federated voting, with selected peers (nodes make independent decisions regarding whom to trust without requiring the entire network to reach a consensus). | Moderate | High | [78] |
Consensus Mechanism | Use Cases | Key Differentiators |
---|---|---|
PoS | Ethereum 2.0, Cardano | Simple staking model |
PPoS | Algorand | Inclusive validation |
DPoS | EOS, Tron, Lisk | Representative model |
NPoS | Polkadot, Kusama | Nominator-based system, emphasis on security |
LPoS | Tezos | Delegation without losing stake ownership |
PoA | VeChain, XOD, POA | Faster, suited for private use cases |
ABFT | Hedera Hash, Fantom | Enhanced fault tolerance, no timing constraints |
DAG | IOTA, Nano | Parallel processing, no mining, high scalability |
RPCA | Ripple | Quick validation, consistency |
SCP | Stellar | Independent trust choices, flexible network |
Token Protocol | Blockchain | NFT Features | Environmental Impact\Description | Use Cases |
---|---|---|---|---|
ERC-721 [81] | Ethereum | Unique tokens, no batch operations | Moderate\High gas fees | Art, Collectibles |
ERC-1155 [82] | Ethereum | Multi-token support, batch operations | Lower\Efficient with batch processing | Gaming, Digital Collectibles |
ERC-2309 [9,82] | Ethereum | Mass minting in a single transaction | Lower\Ideal for large-scale NFT projects | Large Collections |
ERC-2981 [83] | Ethereum | Automated royalties | Neutral\Adds value without increasing energy costs | Royalties for Artists |
ERC-998 [84] | Ethereum | Composable NFTs, batch transfers for complex assets | Lower\Reduces transaction volume | Gaming, Complex Assets |
ASA [85,86] | Algorand | High-efficiency, carbon-neutral NFTs | Very Low\Carbon-neutral commitment | DeFi, NFTs, Payments |
AVIP-001 [87,88] | Avalanche | Cross-chain NFT compatibility | Low\Energy efficient consensus | Cross-chain NFTs, DeFi |
BEP-721, BEP-1155 [89] | Binance Smart Chain | Supports unique and multi-token standards | Moderate\Lower energy than PoW but limited decentralization | Art, Collectibles |
Native Tokens [90,91] | Cardano | Flexible native tokens for NFTs | Low\Highly efficient PoS | Art, Collectibles, Gaming |
CIP-20 [92] | Celo | Supports NFTs with a mobile-first approach | Low\Energy-efficient PoS | Mobile Payments, DeFi |
CW-721 [93] | Cosmos | NFT-focused, cross-chain with IBC compatibility | Low\Designed for interoperability | Cross-chain Collectibles |
EOSIO.Token [94] | EOS | High-speed transactions, suitable for NFTs | Moderate\Energy-efficient DPoS system | Gaming, Collectibles |
HIP-412, HIP-17 [95] | Hedera Hashgraph | Supports unique tokens and NFTs | Low\Energy efficient with low carbon footprint | Enterprise NFTs, DeFi |
IOTA NFT Standard [96] | IOTA | NFTs with zero transaction fees | Very Low\Low energy consumption due to DAG structure | IoT, Micropayments |
Substrate Tokens [67,68] | Polkadot | Cross-chain compatibility with para chains | Low\Energy-efficient PoS | Cross-chain NFTs, DeFi |
Polygon [97] | Polygon (Ethereum L2) | EVM-compatible supports ERC standards for NFTs | Very Low\Efficient Layer-2 scaling solution | Gaming, DeFi, Art |
SPL Tokens [98] | Solana | Low-cost, high-speed transactions for NFTs | Low\Energy-efficient for large-scale applications | Gaming, High-Frequency NFTs |
SEP-6 [78] | Stellar | Supports unique assets, optimized for micropayments | Low\Low-energy consensus model | Micropayments, Asset Tokenization |
FA2 [70] | Tezos | Supports fungible and non-fungible tokens | Low\Energy-efficient PoS system | Art, Collectibles |
TRC-721, TRC-1155 [99] | Tron | Supports unique and multi-token standards | Moderate\Energy-efficient | Gaming, Collectibles |
VIP-181 [100] | VeChain | Suitable for NFTs in the supply chain | Moderate\Lower energy consumption using PoA | Supply Chain, Asset Tracking |
Blockchain | Consensus | Interoperability | Web Sites |
---|---|---|---|
Algorand | PPoS | Medium | https://algorand.co/ |
Avalanche | PoS Avalanche Consensus | Multi-Chain | https://www.avax.network/ |
Binance SC | PoS | Multi-Chain | https://www.binance.com/ |
Cardano | Ouroboros PoS | Medium | https://cardano.org/ |
Celo | PoS | Multi-Chain | https://celo.org/ |
Cosmos | PoS | Cross-Chain | https://cosmos.network/ |
EOS | DPoS | Low | https://eosnetwork.com/ |
Ethereum | PoS | High | https://ethereum.org/ |
Hashgraph | ABFT | Low | https://hedera.com/ |
IOTA | DAG | Low | https://www.iota.org/ |
Polkadot | NPoS | Cross-Chain | https://polkadot.com/ |
Polygon | PoS + Plasma | Multi-Chain | https://polygon.technology/ |
Solana | PoS + PoH | Medium | https://solana.com |
Stellar | SCP | Medium | https://stellar.org/ |
Tezos | LPoS | Low | https://tezos.com/ |
Tron | DPoS | Low | https://tron.network/ |
VeChain | PoA | Low | https://vechain.org/ |
XRP | RPCA | Cross-Chain | https://xrpl.org/ |
Blockchain | Annual Electricity (GWh) (+) | CO2 Emissions (Tons) (+) | Average Tx/s (++) | Max Theoretical Tx/s (++) | Market Share (+++) |
---|---|---|---|---|---|
Algorand | 1.31 | 429.1 | 17.36 | 9384 | 0.08% |
Avalanche | 3.52 | 1026.5 | 3.96 | 1191 | 0.33% |
Cardano | 0.55 | 189.9 | 0.95 | 18.02 | 0.12% |
Celo | 0.03 | 10.6 | 18.50 | 476 | 0.01% |
Ethereum | 6.01 | 1927 | 14.71 | 119 | 9.70% |
Hashgraph | 0.03 | 10.2 | 7.60 | 10,000 | 0.35% |
Polkadot | 0.87 | 265.4. | 0.70 | 10,000 | 0.25% |
Polygon | 0.18 | 74.5 | 37.73 | 714 | 0.08% |
Solana | 15.9 | 4931.2 | 1157 | 65,000 | 2.87% |
Stellar | 0.07 | 24.8 | 103 | 1137 | 0.34% |
Tron | 3.43 | 1296 | 84 | 2516 | 0.67% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sereti, Z.; Mavrikos, E.; Cholevas, C.; Tsekouras, G.E. Green NFTs: Technologies Related to Energy-Efficient Non-Fungible Tokens. Information 2025, 16, 305. https://doi.org/10.3390/info16040305
Sereti Z, Mavrikos E, Cholevas C, Tsekouras GE. Green NFTs: Technologies Related to Energy-Efficient Non-Fungible Tokens. Information. 2025; 16(4):305. https://doi.org/10.3390/info16040305
Chicago/Turabian StyleSereti, Zacharoula, Emmanouil Mavrikos, Christos Cholevas, and George E. Tsekouras. 2025. "Green NFTs: Technologies Related to Energy-Efficient Non-Fungible Tokens" Information 16, no. 4: 305. https://doi.org/10.3390/info16040305
APA StyleSereti, Z., Mavrikos, E., Cholevas, C., & Tsekouras, G. E. (2025). Green NFTs: Technologies Related to Energy-Efficient Non-Fungible Tokens. Information, 16(4), 305. https://doi.org/10.3390/info16040305