Artificial Intelligence in Bronchopulmonary Dysplasia: A Review of the Literature
Abstract
:1. Background
1.1. Bronchopulmonary Dysplasia
1.2. Artificial Intelligence and Applications in Healthcare
1.3. Methods
2. Artificial Intelligence in Analyzing BPD Risk
3. Artificial Intelligence in BPD Diagnosis
4. Artificial Intelligence in BPD Management and Treatment
Multimodal Data Integration in BPD Prediction
5. Discussion
5.1. AI vs. Traditional Statistical Methods and Research Recommendations
- External validation and generalizability: Many AI models for BPD prediction are developed using single-center datasets, limiting their applicability across diverse patient populations. Future research should prioritize multicenter collaborations, where models are trained and tested on heterogeneous datasets from different NICUs to enhance robustness.
- Federated learning for data privacy: Due to strict data-sharing regulations (HIPAA, GDPR), hospitals are often unable to share patient data for AI model training. Federated learning (FL) provides a potential solution by enabling decentralized model training across multiple institutions without transferring sensitive patient data. This approach can improve model accuracy, while maintaining data security and compliance with privacy laws.
- Standardization of AI model reporting: A major barrier to AI integration in neonatal care is the lack of uniform reporting standards for model performance metrics. While AUC, sensitivity, and specificity are commonly reported, calibration plots, confidence intervals, and decision thresholds are often omitted, making it difficult to compare models. Future research should follow established guidelines, such as TRIPOD (Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis) to ensure reproducibility and facilitate regulatory approval.
- Improving model explainability: One of the major limitations of deep learning models in BPD prediction is their lack of transparency. Implementing post hoc interpretability methods, such as SHAP (Shapley additive explanations) and LIME (local interpretable model-agnostic explanations) can help clinicians understand which features contribute most to AI predictions. For example, if an AI model predicts a high risk of BPD, SHAP can highlight whether gestational age, oxygen therapy duration, or mechanical ventilation settings were the primary contributing factors.
- AI Integration into clinical workflows: Even the most accurate AI models hold little clinical value if they are not integrated into real-world NICU workflows. Future research should focus on developing user-friendly AI-based decision support tools that seamlessly integrate with EHRs, providing real-time risk predictions at the bedside.
5.2. Ethical and Practical Considerations
5.3. Future Directions and Research Opportunities
5.4. Limitations
5.5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Northway, W.H.; Rosan, R.C.; Porter, D.Y. Pulmonary Disease Following Respirator Therapy of Hyaline-Membrane Disease: Bronchopulmonary Dysplasia. N. Engl. J. Med. 1967, 276, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Thébaud, B.; Goss, K.N.; Laughon, M.; Whitsett, J.A.; Abman, S.H.; Steinhorn, R.H.; Aschner, J.L.; Davis, P.G.; McGrath-Morrow, S.A.; Soll, R.F.; et al. Bronchopulmonary Dysplasia. Nat. Rev. Dis. Primer 2019, 5, 78. [Google Scholar] [CrossRef]
- Dankhara, N.; Holla, I.; Ramarao, S.; Kalikkot Thekkeveedu, R. Bronchopulmonary Dysplasia: Pathogenesis and Pathophysiology. J. Clin. Med. 2023, 12, 4207. [Google Scholar] [CrossRef]
- Higano, N.S.; Spielberg, D.R.; Fleck, R.J.; Schapiro, A.H.; Walkup, L.L.; Hahn, A.D.; Tkach, J.A.; Kingma, P.S.; Merhar, S.L.; Fain, S.B.; et al. Neonatal Pulmonary Magnetic Resonance Imaging of Bronchopulmonary Dysplasia Predicts Short-Term Clinical Outcomes. Am. J. Respir. Crit. Care Med. 2018, 198, 1302–1311. [Google Scholar] [CrossRef]
- Younge, N.; Goldstein, R.F.; Bann, C.M.; Hintz, S.R.; Patel, R.M.; Smith, P.B.; Bell, E.F.; Rysavy, M.A.; Duncan, A.F.; Vohr, B.R.; et al. Survival and Neurodevelopmental Outcomes among Periviable Infants. N. Engl. J. Med. 2017, 376, 617–628. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.I.; Bell, E.F.; Walsh, M.C.; Carlo, W.A.; Shankaran, S.; Laptook, A.R.; Sánchez, P.J.; Van Meurs, K.P.; Wyckoff, M.; et al. Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993–2012. JAMA 2015, 314, 1039–1051. [Google Scholar] [CrossRef]
- Jensen, E.A.; Dysart, K.; Gantz, M.G.; McDonald, S.; Bamat, N.A.; Keszler, M.; Kirpalani, H.; Laughon, M.M.; Poindexter, B.B.; Duncan, A.F.; et al. The Diagnosis of Bronchopulmonary Dysplasia in Very Preterm Infants. An Evidence-Based Approach. Am. J. Respir. Crit. Care Med. 2019, 200, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Mestan, K.; Yu, Y.; Matoba, N.; Cerda, S.; Demmin, B.; Pearson, C.; Ortiz, K.; Wang, X. Placental Inflammatory Response Is Associated with Poor Neonatal Growth: Preterm Birth Cohort Study. Pediatrics 2010, 125, e891–e898. [Google Scholar] [CrossRef]
- Driscoll, D.N.; De Santi, C.; McKiernan, P.J.; McEneaney, V.; Molloy, E.J.; Greene, C.M. Expression of X-Linked Toll-like Receptor 4 Signaling Genes in Female vs. Male Neonates. Pediatr. Res. 2017, 81, 831–837. [Google Scholar] [CrossRef]
- Hartling, L.; Liang, Y.; Lacaze-Masmonteil, T. Chorioamnionitis as a Risk Factor for Bronchopulmonary Dysplasia: A Systematic Review and Meta-Analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2012, 97, F8–F17. [Google Scholar] [CrossRef]
- Morrow, L.A.; Wagner, B.D.; Ingram, D.A.; Poindexter, B.B.; Schibler, K.; Cotten, C.M.; Dagle, J.; Sontag, M.K.; Mourani, P.M.; Abman, S.H. Antenatal Determinants of Bronchopulmonary Dysplasia and Late Respiratory Disease in Preterm Infants. Am. J. Respir. Crit. Care Med. 2017, 196, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; St Julien, K.R.; Stevenson, D.K.; Hoffmann, T.J.; Witte, J.S.; Lazzeroni, L.C.; Krasnow, M.A.; Quaintance, C.C.; Oehlert, J.W.; Jelliffe-Pawlowski, L.L.; et al. A Genome-Wide Association Study (GWAS) for Bronchopulmonary Dysplasia. Pediatrics 2013, 132, 290–297. [Google Scholar] [CrossRef]
- Kwinta, P.; Bik-Multanowski, M.; Mitkowska, Z.; Tomasik, T.; Legutko, M.; Pietrzyk, J.J. Genetic Risk Factors of Bronchopulmonary Dysplasia. Pediatr. Res. 2008, 64, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Higgins, R.D.; Jobe, A.H.; Koso-Thomas, M.; Bancalari, E.; Viscardi, R.M.; Hartert, T.V.; Ryan, R.M.; Kallapur, S.G.; Steinhorn, R.H.; Konduri, G.G.; et al. Bronchopulmonary Dysplasia: Executive Summary of a Workshop. J. Pediatr. 2018, 197, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.; Jefferies, A.L.; Yoon, E.W.; Lee, S.K.; Shah, P.S.; Canadian Neonatal Network. Risk Factors and Outcomes of Late-Onset Bacterial Sepsis in Preterm Neonates Born at <32 Weeks’ Gestation. Am. J. Perinatol. 2015, 32, 675–682. [Google Scholar] [CrossRef]
- Tyson, J.E.; Wright, L.L.; Oh, W.; Kennedy, K.A.; Mele, L.; Ehrenkranz, R.A.; Stoll, B.J.; Lemons, J.A.; Stevenson, D.K.; Bauer, C.R.; et al. Vitamin A Supplementation for Extremely-Low-Birth-Weight Infants. National Institute of Child Health and Human Development Neonatal Research Network. N. Engl. J. Med. 1999, 340, 1962–1968. [Google Scholar] [CrossRef]
- Oh, W.; Poindexter, B.B.; Perritt, R.; Lemons, J.A.; Bauer, C.R.; Ehrenkranz, R.A.; Stoll, B.J.; Poole, K.; Wright, L.L.; Neonatal Research Network. Association between Fluid Intake and Weight Loss during the First Ten Days of Life and Risk of Bronchopulmonary Dysplasia in Extremely Low Birth Weight Infants. J. Pediatr. 2005, 147, 786–790. [Google Scholar] [CrossRef]
- Ehrenkranz, R.A.; Dusick, A.M.; Vohr, B.R.; Wright, L.L.; Wrage, L.A.; Poole, W.K. Growth in the Neonatal Intensive Care Unit Influences Neurodevelopmental and Growth Outcomes of Extremely Low Birth Weight Infants. Pediatrics 2006, 117, 1253–1261. [Google Scholar] [CrossRef]
- Clyman, R.I.; Liebowitz, M.; Kaempf, J.; Erdeve, O.; Bulbul, A.; Håkansson, S.; Lindqvist, J.; Farooqi, A.; Katheria, A.; Sauberan, J.; et al. PDA-TOLERATE Trial: An Exploratory Randomized Controlled Trial of Treatment of Moderate-to-Large Patent Ductus Arteriosus at 1 Week of Age. J. Pediatr. 2019, 205, 41–48.e6. [Google Scholar] [CrossRef]
- Lavoie, P.M.; Pham, C.; Jang, K.L. Heritability of Bronchopulmonary Dysplasia, Defined According to the Consensus Statement of the National Institutes of Health. Pediatrics 2008, 122, 479–485. [Google Scholar] [CrossRef]
- Yu, K.-H.; Li, J.; Snyder, M.; Shaw, G.M.; O’Brodovich, H.M. The Genetic Predisposition to Bronchopulmonary Dysplasia. Curr. Opin. Pediatr. 2016, 28, 318–323. [Google Scholar] [CrossRef]
- Lal, C.V.; Bhandari, V.; Ambalavanan, N. Genomics, Microbiomics, Proteomics, and Metabolomics in Bronchopulmonary Dysplasia. Semin. Perinatol. 2018, 42, 425–431. [Google Scholar] [CrossRef]
- Hoshino, Y.; Arai, J.; Cho, K.; Yukitake, Y.; Kajikawa, D.; Hinata, A.; Miura, R. Diagnosis and Management of Neonatal Respiratory Distress Syndrome in Japan: A National Survey. Pediatr. Neonatol. 2023, 64, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Popova, A.P. Mechanisms of Bronchopulmonary Dysplasia. J. Cell Commun. Signal. 2013, 7, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.; Roberts, R.S.; Davis, P.; Doyle, L.W.; Barrington, K.J.; Ohlsson, A.; Solimano, A.; Tin, W. Caffeine Therapy for Apnea of Prematurity. N. Engl. J. Med. 2006, 354, 2112–2121. [Google Scholar] [CrossRef] [PubMed]
- Zapata, H.A.; Fort, P.; Roberts, K.D.; Kaluarachchi, D.C.; Guthrie, S.O. Surfactant Administration Through Laryngeal or Supraglottic Airways (SALSA): A Viable Method for Low-Income and Middle-Income Countries. Front. Pediatr. 2022, 10, 853831. [Google Scholar] [CrossRef]
- Kribs, A.; Roberts, K.D.; Trevisanuto, D.; O’Donnell, C.; Dargaville, P.A. Surfactant Delivery Strategies to Prevent Bronchopulmonary Dysplasia. Semin. Perinatol. 2023, 47, 151813. [Google Scholar] [CrossRef]
- Wang, X.; Shi, Y. An Updated Review on Systemic Glucocorticoids in the Prevention and Treatment of Bronchopulmonary Dysplasia. Pediatr. Discov. 2023, 1, e6. [Google Scholar] [CrossRef]
- Homan, T.D.; Nayak, R.P. Short- and Long-Term Complications of Bronchopulmonary Dysplasia. Respir. Care 2021, 66, 1618–1629. [Google Scholar] [CrossRef]
- Resch, B.; Kurath-Koller, S.; Eibisberger, M.; Zenz, W. Prematurity and the Burden of Influenza and Respiratory Syncytial Virus Disease. World J. Pediatr. WJP 2016, 12, 8–18. [Google Scholar] [CrossRef]
- Smith, V.C.; Zupancic, J.A.F.; McCormick, M.C.; Croen, L.A.; Greene, J.; Escobar, G.J.; Richardson, D.K. Rehospitalization in the First Year of Life among Infants with Bronchopulmonary Dysplasia. J. Pediatr. 2004, 144, 799–803. [Google Scholar] [CrossRef] [PubMed]
- Collaco, J.M.; McGrath-Morrow, S.A. Respiratory Phenotypes for Preterm Infants, Children, and Adults: Bronchopulmonary Dysplasia and More. Ann. Am. Thorac. Soc. 2018, 15, 530–538. [Google Scholar] [CrossRef]
- MacLean, J.E.; DeHaan, K.; Fuhr, D.; Hariharan, S.; Kamstra, B.; Hendson, L.; Adatia, I.; Majaesic, C.; Lovering, A.T.; Thompson, R.B.; et al. Altered Breathing Mechanics and Ventilatory Response during Exercise in Children Born Extremely Preterm. Thorax 2016, 71, 1012–1019. [Google Scholar] [CrossRef]
- Vom Hove, M.; Prenzel, F.; Uhlig, H.H.; Robel-Tillig, E. Pulmonary Outcome in Former Preterm, Very Low Birth Weight Children with Bronchopulmonary Dysplasia: A Case-Control Follow-up at School Age. J. Pediatr. 2014, 164, 40–45.e4. [Google Scholar] [CrossRef] [PubMed]
- Bui, D.S.; Lodge, C.J.; Burgess, J.A.; Lowe, A.J.; Perret, J.; Bui, M.Q.; Bowatte, G.; Gurrin, L.; Johns, D.P.; Thompson, B.R.; et al. Childhood Predictors of Lung Function Trajectories and Future COPD Risk: A Prospective Cohort Study from the First to the Sixth Decade of Life. Lancet Respir. Med. 2018, 6, 535–544. [Google Scholar] [CrossRef]
- Hamet, P.; Tremblay, J. Artificial Intelligence in Medicine. Metabolism 2017, 69S, S36–S40. [Google Scholar] [CrossRef]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial Intelligence in Healthcare: Transforming the Practice of Medicine. Future Healthc. J. 2021, 8, e188–e194. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Savage, C.; Nair, M.; Larsson, I.; Svedberg, P.; Nygren, J.M. Artificial Intelligence Applications in Health Care Practice: Scoping Review. J. Med. Internet Res. 2022, 24, e40238. [Google Scholar] [CrossRef]
- Hirani, R.; Noruzi, K.; Khuram, H.; Hussaini, A.S.; Aifuwa, E.I.; Ely, K.E.; Lewis, J.M.; Gabr, A.E.; Smiley, A.; Tiwari, R.K.; et al. Artificial Intelligence and Healthcare: A Journey through History, Present Innovations, and Future Possibilities. Life 2024, 14, 557. [Google Scholar] [CrossRef]
- Yu, V.L.; Buchanan, B.G.; Shortliffe, E.H.; Wraith, S.M.; Davis, R.; Scott, A.C.; Cohen, S.N. Evaluating the Performance of a Computer-Based Consultant. Comput. Programs Biomed. 1979, 9, 95–102. [Google Scholar] [CrossRef]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial Intelligence in Healthcare: Past, Present and Future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Mazurowski, M.A.; Buda, M.; Saha, A.; Bashir, M.R. Deep Learning in Radiology: An Overview of the Concepts and a Survey of the State of the Art with Focus on MRI. J. Magn. Reson. Imaging JMRI 2019, 49, 939–954. [Google Scholar] [CrossRef] [PubMed]
- McBee, M.P.; Awan, O.A.; Colucci, A.T.; Ghobadi, C.W.; Kadom, N.; Kansagra, A.P.; Tridandapani, S.; Auffermann, W.F. Deep Learning in Radiology. Acad. Radiol. 2018, 25, 1472–1480. [Google Scholar] [CrossRef]
- Rahaman, M.J. A Comprehensive Review to Understand the Definitions, Advantages, Disadvantages and Applications of Machine Learning Algorithms. IJCA 2024, 186, 43–47. [Google Scholar] [CrossRef]
- Lei, J.; Sun, T.; Jiang, Y.; Wu, P.; Fu, J.; Zhang, T.; McGrath, E. Risk Identification of Bronchopulmonary Dysplasia in Premature Infants Based on Machine Learning. Front. Pediatr. 2021, 9, 719352. [Google Scholar] [CrossRef]
- Moreira, A.; Tovar, M.; Smith, A.M.; Lee, G.C.; Meunier, J.A.; Cheema, Z.; Moreira, A.; Winter, C.; Mustafa, S.B.; Seidner, S.; et al. Development of a Peripheral Blood Transcriptomic Gene Signature to Predict Bronchopulmonary Dysplasia. AJP Lung Cell. Mol. Physiol. 2022, 324, L76–L87. [Google Scholar] [CrossRef]
- Montagna, S.; Magno, D.; Ferretti, S.; Stelluti, M.; Gona, A.; Dionisi, C.; Simonazzi, G.; Martini, S.; Corvaglia, L.; Aceti, A. Combining Artificial Intelligence and Conventional Statistics to Predict Bronchopulmonary Dysplasia in Very Preterm Infants Using Routinely Collected Clinical Variables. Pediatr. Pulmonol. 2024, 59, 3400–3409. [Google Scholar] [CrossRef]
- Moreira, A.G.; Arora, T.; Arya, S.; Winter, C.; Valadie, C.T.; Kwinta, P. Leveraging Transcriptomics to Develop Bronchopulmonary Dysplasia Endotypes: A Concept Paper. Respir. Res. 2023, 24, 284. [Google Scholar] [CrossRef] [PubMed]
- Jassem-Bobowicz, J.M.; Klasa-Mazurkiewicz, D.; Żawrocki, A.; Stefańska, K.; Domżalska-Popadiuk, I.; Kwiatkowski, S.; Preis, K. Prediction Model for Bronchopulmonary Dysplasia in Preterm Newborns. Children 2021, 8, 886. [Google Scholar] [CrossRef]
- Verder, H.; Heiring, C.; Ramanathan, R.; Scoutaris, N.; Verder, P.; Jessen, T.E.; Höskuldsson, A.; Bender, L.; Dahl, M.; Eschen, C.; et al. Bronchopulmonary Dysplasia Predicted at Birth by Artificial Intelligence. Acta Paediatr. 2021, 110, 503–509. [Google Scholar] [CrossRef]
- Dai, D.; Chen, H.; Dong, X.; Chen, J.; Mei, M.; Lu, Y.; Yang, L.; Wu, B.; Cao, Y.; Wang, J.; et al. Bronchopulmonary Dysplasia Predicted by Developing a Machine Learning Model of Genetic and Clinical Information. Front. Genet. 2021, 12, 689071. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Yang, P.; Luo, C.; Lei, M.; Shi, Z.; Cheng, X.; Zhang, J.; Cao, W.; Ren, M.; Zhang, L.; et al. Machine Learning Predictive Models for Grading Bronchopulmonary Dysplasia: Umbilical Cord Blood IL-6 as a Biomarker. Front. Pediatr. 2023, 11, 1301376. [Google Scholar] [CrossRef]
- Chou, H.-Y.; Lin, Y.-C.; Hsieh, S.-Y.; Chou, H.-H.; Lai, C.-S.; Wang, B.; Tsai, Y.-S. Deep Learning Model for Prediction of Bronchopulmonary Dysplasia in Preterm Infants Using Chest Radiographs. J. Imaging Inform. Med. 2024, 37, 2063–2073. [Google Scholar] [CrossRef]
- Leigh, R.M.; Pham, A.; Rao, S.S.; Vora, F.M.; Hou, G.; Kent, C.; Rodriguez, A.; Narang, A.; Tan, J.B.C.; Chou, F.-S. Machine Learning for Prediction of Bronchopulmonary Dysplasia-Free Survival among Very Preterm Infants. BMC Pediatr. 2022, 22, 542. [Google Scholar] [CrossRef]
- Xing, W.; He, W.; Li, X.; Chen, J.; Cao, Y.; Zhou, W.; Shen, Q.; Zhang, X.; Ta, D. Early Severity Prediction of BPD for Premature Infants from Chest X-Ray Images Using Deep Learning: A Study at the 28th Day of Oxygen Inhalation. Comput. Methods Programs Biomed. 2022, 221, 106869. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Lin, W.-T.; Chen, Y.-J.; Chang, Y.-S.; Lin, C.-H.; Lin, Y.-J. Machine Learning to Predict Late Respiratory Support in Preterm Infants: A Retrospective Cohort Study. Sci. Rep. 2023, 13, 2839. [Google Scholar] [CrossRef]
- Tao, Y.; Ding, X.; Guo, W. Using Machine-Learning Models to Predict Extubation Failure in Neonates with Bronchopulmonary Dysplasia. BMC Pulm. Med. 2024, 24, 308. [Google Scholar] [CrossRef]
- Baowaly, M.K.; Lin, C.-C.; Liu, C.-L.; Chen, K.-T. Synthesizing Electronic Health Records Using Improved Generative Adversarial Networks. J. Am. Med. Inform. Assoc. JAMIA 2018, 26, 228–241. [Google Scholar] [CrossRef]
- Khan, B.; Fatima, H.; Qureshi, A.; Kumar, S.; Hanan, A.; Hussain, J.; Abdullah, S. Drawbacks of Artificial Intelligence and Their Potential Solutions in the Healthcare Sector. Biomed. Mater. Devices 2023, 1, 731–738. [Google Scholar] [CrossRef]
- Mohsen, F.; Ali, H.; El Hajj, N.; Shah, Z. Artificial Intelligence-Based Methods for Fusion of Electronic Health Records and Imaging Data. Sci. Rep. 2022, 12, 17981. [Google Scholar] [CrossRef]
- Liu, W.; Liu, A.; Chan, J.; Boldt, R.G.; Munoz-Schuffenegger, P.; Louie, A.V. What Is the Optimal Radiotherapy Utilization Rate for Lung Cancer?—A Systematic Review. Transl. Lung Cancer Res. 2019, 8 (Suppl. S2), S163–S171. [Google Scholar] [CrossRef] [PubMed]
Category | Specific Factors |
---|---|
Perinatal Factors | Extreme prematurity (<28 weeks gestational age) [6] Very low birth weight (<1500 g) [7] Intrauterine growth restriction [8] Male sex [9] Multiple gestation [6] Chorioamnionitis [10] Preeclampsia [11] |
Genetic Factors | Family history of asthma or atopy [12] Genetic polymorphisms (TGF-β, IL-4, IL-10) [13] Ancestry-specific genetic variants [6] |
Respiratory Factors | Respiratory distress syndrome [6] Mechanical ventilation > 7 days [7] High oxygen requirements (FiO2 > 0.4) [14] Ventilator-induced lung injury [6] Patent ductus arteriosus [19] |
Inflammatory Factors | Systemic inflammation [6] Early-onset sepsis [6] Late-onset sepsis [15] Elevated inflammatory markers (IL-6, IL-8, TNF-α) [22] |
Nutritional Factors | Vitamin A deficiency [16] Fluid overload in first week of life [17] Inadequate protein intake [6] Poor postnatal growth [18] |
AI Type | Core Methodology | Examples of Healthcare Applications |
---|---|---|
Machine Learning [37] | Pattern recognition from provided features about the data | Disease prediction Risk stratification Treatment response forecasting |
Deep Learning [37] | Leveraging complex neural network-based architectures to identify features and make predictions | Medical image analysis Radiology diagnostics Genomic interpretation |
Expert Systems [38] | Using rule-based reasoning to provide solutions in specific domains | Clinical decision support Diagnostic assistance Treatment recommendation |
Natural Language Processing [39] | Linguistic processing and feature extraction of human language to analyze, classify, or generate text | Electronic health record analysis Clinical documentation Patient communication |
AI Model | Use Cases | Strengths | Weaknesses |
---|---|---|---|
Logistic Regression [44] | Binary outcomes (e.g., mortality, BPD diagnosis) | Simple to interpret; works well with small datasets. | Limited to linear relationships; struggles with complex interactions. |
Random Forest (RF) [44] | Classifying neonates by risk level or predicting categorical outcomes (e.g., sepsis risk) | Handles non-linear data well; robust to overfitting; interpretable via feature importance. | Computationally intensive with large datasets; less transparent than simpler models. |
XGBoost [44] | Predicting rare outcomes (e.g., long-term complications) or improving accuracy on structured data | High accuracy; robust with imbalanced data; interpretable using SHAP values. | Requires parameter tuning; can be computationally expensive. |
CatBoost [44] | When dataset has categorical features (e.g., feeding methods, medications) | Optimized for categorical variables; fast and handles missing data. | Limited documentation compared to other models; requires careful preprocessing. |
Support Vector Machine (SVM) [44] | Identifying patterns in small, high-dimensional datasets (e.g., gene expression for BPD) | Effective in high-dimensional spaces; works well with limited data. | Difficult to interpret; computationally expensive with large datasets. |
Neural Networks (NNs) [44] | Complex problems with large datasets (e.g., image analysis, time-series prediction) | Capture complex non-linear relationships; adaptable to various data types. | Require large datasets; lack interpretability; prone to overfitting without proper tuning. |
k-Nearest Neighbors (kNNs) [44] | Simple classification tasks (e.g., identifying patient subgroups) | Easy to implement; no training phase; work well with small datasets. | Computationally expensive during prediction; sensitive to irrelevant features. |
Clustering [44] | Identifying subgroups in neonates (e.g., phenotyping BPD or sepsis) | Unsupervised learning; helps explore hidden patterns; simple to implement. | Requires pre-specification of cluster numbers; sensitive to outliers. |
Linear Discriminant Analysis (LDA) [44] | Classifying outcomes with clear group separations (e.g., birthweight categories) | Simple and interpretable; works well with small datasets. | Assumes linear separability; limited use with complex data. |
Recurrent Neural Networks (RNNs) [44] | Time series predictions (e.g., vital signs monitoring for sepsis or NEC) | Capture temporal patterns; useful for sequential data. | Require large datasets; risk of vanishing gradients; computationally expensive. |
Convolutional Neural Networks (CNNs) [44] | Image-based tasks (e.g., detecting pneumothorax or brain abnormalities in imaging) | Excellent for image analysis; captures spatial relationships well. | Require large datasets; limited interpretability; resource-intensive training. |
Ensemble Models [44] | Combining predictions from multiple models for tasks like risk scoring | Improve accuracy and robustness; reduce overfitting. | Can be complex to implement; less interpretable than single models. |
Study | Geographic Area | Sample Size | Algorithms Employed | Notable Features | Validation | Performance Metrics |
---|---|---|---|---|---|---|
Verder et al. [50] | Denmark | 61 | SVM | FTIR spectral analysis | Training, test split | 88% specificity 91% sensitivity |
Dai et al. [51] | China | 245 | LASSO | High risk genes OBSL1, GNAS, TCIRG1, C5, and others | 10-fold CV | 0.907 AUC, severe BPD 0.915 AUC, mild BPD |
Gao et al. [52] | China | 414 | XGBoost, CatBoost, Light GBM, RF | UCB-IL6 | 10-fold CV | 0.870 AUC |
Chou et al. [53] | Taiwan | 380 | U-Net, ResNet | Chest radiograph images | 5-fold CV | 0.80 F1 score |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jha, T.; Suhail, S.; Northcote, J.; Moreira, A.G. Artificial Intelligence in Bronchopulmonary Dysplasia: A Review of the Literature. Information 2025, 16, 262. https://doi.org/10.3390/info16040262
Jha T, Suhail S, Northcote J, Moreira AG. Artificial Intelligence in Bronchopulmonary Dysplasia: A Review of the Literature. Information. 2025; 16(4):262. https://doi.org/10.3390/info16040262
Chicago/Turabian StyleJha, Tony, Sana Suhail, Janet Northcote, and Alvaro G. Moreira. 2025. "Artificial Intelligence in Bronchopulmonary Dysplasia: A Review of the Literature" Information 16, no. 4: 262. https://doi.org/10.3390/info16040262
APA StyleJha, T., Suhail, S., Northcote, J., & Moreira, A. G. (2025). Artificial Intelligence in Bronchopulmonary Dysplasia: A Review of the Literature. Information, 16(4), 262. https://doi.org/10.3390/info16040262