Applications of Generative Artificial Intelligence in Electronic Medical Records: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
- Search:
- (LLM or “large language model*” or (GenAI or “generative AI” or “generative artificial intelligence”) or ChatGPT).ab,tw,kf,kw.
- (“electronic health record*” or “medical records system*” or “electronic medical record*” or “health information system*” or “decision support system*” or “EHR*” or “EMR*” or “CDSS*”).ab,tw,kf,kw.
- 1 and 2
3. Results
3.1. GenAI for Data Manipulation
3.2. GenAI for Patient Communication
3.3. GenAI for Clinical Decision Making
3.4. GenAI for Clinical Prediction
3.5. GenAI for Summarization
3.6. GenAI for Other Use Cases
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
EMR | Electronic Medical Record |
GenAI | Generative Artificial Intelligence |
LLM | Large Language Model |
ML | Machine Learning |
References
- Introducing ChatGPT. OpenAI Blog. Available online: https://openai.com/index/chatgpt/ (accessed on 12 November 2024).
- Zeinali, N.; Albashayreh, A.; Fan, W.; White, S.G. Symptom-BERT: Enhancing Cancer Symptom Detection in EHR Clinical Notes. J. Pain Symptom Manag. 2024, 68, 190–198.e1. [Google Scholar] [CrossRef] [PubMed]
- Pathak, A.; Yu, Z.; Paredes, D.; Monsour, E.P.; Rocha, A.O.; Brito, J.P.; Ospina, N.S.; Wu, Y. Extracting Thyroid Nodules Characteristics from Ultrasound Reports Using Transformer-based Natural Language Processing Methods. AMIA Annu. Symp. Proc. 2023, 2023, 1193–1200. [Google Scholar] [PubMed]
- Wu, J.; Dong, H.; Li, Z.; Wang, H.; Li, R.; Patra, A.; Dai, C.; Ali, W.; Scordis, P.; Wu, H. A hybrid framework with large language models for rare disease phenotyping. BMC Med. Inform. Decis. Mak. 2024, 24, 289. [Google Scholar] [CrossRef]
- Cho, H.; Yoo, S.; Kim, B.; Jang, S.; Sunwoo, L.; Kim, S.; Lee, D.; Kim, S.; Nam, S.; Chung, J.-H. Extracting lung cancer staging descriptors from pathology reports: A generative language model approach. J. Biomed. Inform. 2024, 157, 104720. [Google Scholar] [CrossRef]
- Morales-Sánchez, R.; Montalvo, S.; Riaño, A.; Martínez, R.; Velasco, M. Early diagnosis of HIV cases by means of text mining and machine learning models on clinical notes. Comput. Biol. Med. 2024, 179, 108830. [Google Scholar] [CrossRef]
- Hu, D.; Liu, B.; Zhu, X.; Lu, X.; Wu, N. Zero-shot information extraction from radiological reports using ChatGPT. Int. J. Med. Inform. 2024, 183, 105321. [Google Scholar] [CrossRef]
- Scott, M.; Muncey, W.; Seranio, N.; Belladelli, F.; Del Giudice, F.; Li, S.; Ha, A.; Glover, F.; Zhang, C.A.; Eisenberg, M.L. Assessing Artificial Intelligence–Generated Responses to Urology Patient In-Basket Messages. Urol. Pract. 2024, 11, 793–798. [Google Scholar] [CrossRef]
- Soroudi, D.B.; Gozali, A.M.; Knox, J.A.; Parmeshwar, N.; Sadjadi, R.; Wilson, J.C.B.; Lee, S.A.; Piper, M.L. Comparing Provider and ChatGPT Responses to Breast Reconstruction Patient Questions in the Electronic Health Record. Ann. Plast. Surg. 2024, 93, 541–545. [Google Scholar] [CrossRef]
- Liu, S.; McCoy, A.B.; Wright, A.P.; Carew, B.; Genkins, J.Z.; Huang, S.S.; Peterson, J.F.; Steitz, B.; Wright, A. Leveraging large language models for generating responses to patient messages—A subjective analysis. J. Am. Med. Inform. Assoc. 2024, 31, 1367–1379. [Google Scholar] [CrossRef]
- Garcia, P.; Ma, S.P.; Shah, S.; Smith, M.; Jeong, Y.; Devon-Sand, A.; Tai-Seale, M.; Takazawa, K.; Clutter, D.; Vogt, K.; et al. Artificial Intelligence–Generated Draft Replies to Patient Inbox Messages. JAMA Netw. Open 2024, 7, e243201. [Google Scholar] [CrossRef]
- Small, W.R.; Wiesenfeld, B.; Brandfield-Harvey, B.; Jonassen, Z.; Mandal, S.; Stevens, E.R.; Major, V.J.; Lostraglio, E.; Szerencsy, A.; Jones, S.; et al. Large Language Model–Based Responses to Patients’ In-Basket Messages. JAMA Netw. Open 2024, 7, e2422399. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, K.; Nadelman, D.; Durgin, J.; Ansah-Addo, S.; Cole, D.; Fayne, R.; Harrell, J.; Ratycz, M.; Runge, M.; Shepard-Hayes, A.; et al. Comparing the quality of ChatGPT- and physician-generated responses to patients’ dermatology questions in the electronic medical record. Clin. Exp. Dermatol. 2024, 49, 715–718. [Google Scholar] [CrossRef]
- Williams, C.Y.K.; Miao, B.Y.; Kornblith, A.E.; Butte, A.J. Evaluating the use of large language models to provide clinical recommendations in the Emergency Department. Nat. Commun. 2024, 15, 8236. [Google Scholar] [CrossRef] [PubMed]
- Fraser, H.; Crossland, D.; Bacher, I.; Ranney, M.; Madsen, T.; Hilliard, R. Comparison of Diagnostic and Triage Accuracy of Ada Health and WebMD Symptom Checkers, ChatGPT, and Physicians for Patients in an Emergency Department: Clinical Data Analysis Study. JMIR mHealth uHealth 2023, 11, e49995. [Google Scholar] [CrossRef] [PubMed]
- van Nuland, M.; Snoep, J.D.; Egberts, T.; Erdogan, A.; Wassink, R.; van der Linden, P.D. Poor performance of ChatGPT in clinical rule-guided dose interventions in hospitalized patients with renal dysfunction. Eur. J. Clin. Pharmacol. 2024, 80, 1133–1140. [Google Scholar] [CrossRef]
- Bridges, J.M. Computerized diagnostic decision support systems—A comparative performance study of Isabel Pro vs. ChatGPT4. Diagnosis 2024, 11, 250–258. [Google Scholar] [CrossRef]
- Chung, P.; Fong, C.T.; Walters, A.M.; Aghaeepour, N.; Yetisgen, M.; O’reilly-Shah, V.N. Large Language Model Capabilities in Perioperative Risk Prediction and Prognostication. JAMA Surg. 2024, 159, 928–937. [Google Scholar] [CrossRef]
- Beaulieu-Jones, B.K.; Villamar, M.F.; Scordis, P.; Bartmann, A.P.; Ali, W.; Wissel, B.D.; Alsentzer, E.; de Jong, J.; Patra, A.; Kohane, I. Predicting seizure recurrence after an initial seizure-like episode from routine clinical notes using large language models: A retrospective cohort study. Lancet Digit. Health 2023, 5, e882–e894. [Google Scholar] [CrossRef]
- Zaretsky, J.; Kim, J.M.; Baskharoun, S.; Zhao, Y.; Austrian, J.; Aphinyanaphongs, Y.; Gupta, R.; Blecker, S.B.; Feldman, J. Generative Artificial Intelligence to Transform Inpatient Discharge Summaries to Patient-Friendly Language and Format. JAMA Netw. Open 2024, 7, e240357. [Google Scholar] [CrossRef]
- Doshi, R.; Amin, K.S.; Khosla, P.; Bajaj, S.; Chheang, S.; Forman, H.P. Quantitative Evaluation of Large Language Models to Streamline Radiology Report Impressions: A Multimodal Retrospective Analysis. Radiology 2024, 310, e231593. [Google Scholar] [CrossRef]
- Tan, R.E.S.; Teo, W.Z.W.; Puhaindran, M.E. Artificial Intelligence in Hand Surgery–How Generative AI is Transforming the Hand Surgery Landscape. J. Hand Surg. 2024, 29, 81–87. [Google Scholar] [CrossRef]
- Xie, K.; Ojemann, W.K.S.; Gallagher, R.S.; Shinohara, R.T.; Lucas, A.; Hill, C.E.; Hamilton, R.H.; Johnson, K.B.; Roth, D.; Litt, B.; et al. Disparities in seizure outcomes revealed by large language models. J. Am. Med. Inform. Assoc. 2023, 31, 1348–1355. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Jiang, L.Y.; Liu, X.C.; Pour Nejatian, N.; Nasir-Moin, M.; Wang, D.; Abidin, A.; Eaton, K.; Riina, H.A.; Laufer, I.; Punjabi, P.; et al. Health system-scale language models are all-purpose prediction engines. Nature 2023, 619, 357–362. [Google Scholar] [CrossRef]
- Gandomi, A.; Wu, P.; Clement, D.R.; Xing, J.; Aviv, R.; Federbush, M.; Yuan, Z.; Jing, Y.; Wei, G.; Hajizadeh, N. ARDSFlag: An NLP/machine learning algorithm to visualize and detect high-probability ARDS admissions independent of provider recognition and billing codes. BMC Med. Inform. Decis. Mak. 2024, 24, 195. [Google Scholar] [CrossRef]
- Capoot, A. Epic Systems is building more than 100 new AI features for doctors and patients. Here’s what’s coming. CNBC, 21 August 2024. Available online: https://www.cnbc.com/2024/08/21/epic-systems-ugm-2024-ai-tools-in-mychart-cosmos-.html (accessed on 14 November 2024).
- Milliard, M. New Oracle EHR Promises AI-Enabled Reinvention. Healthcare IT News, 30 October 2024. Available online: https://www.healthcareitnews.com/news/new-oracle-ehr-promises-ai-enabled-reinvention (accessed on 13 November 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morjaria, L.; Gandhi, B.; Haider, N.; Mellon, M.; Sibbald, M. Applications of Generative Artificial Intelligence in Electronic Medical Records: A Scoping Review. Information 2025, 16, 284. https://doi.org/10.3390/info16040284
Morjaria L, Gandhi B, Haider N, Mellon M, Sibbald M. Applications of Generative Artificial Intelligence in Electronic Medical Records: A Scoping Review. Information. 2025; 16(4):284. https://doi.org/10.3390/info16040284
Chicago/Turabian StyleMorjaria, Leo, Bhavya Gandhi, Nabil Haider, Matthew Mellon, and Matthew Sibbald. 2025. "Applications of Generative Artificial Intelligence in Electronic Medical Records: A Scoping Review" Information 16, no. 4: 284. https://doi.org/10.3390/info16040284
APA StyleMorjaria, L., Gandhi, B., Haider, N., Mellon, M., & Sibbald, M. (2025). Applications of Generative Artificial Intelligence in Electronic Medical Records: A Scoping Review. Information, 16(4), 284. https://doi.org/10.3390/info16040284