Smart Car Damage Assessment Using Enhanced YOLO Algorithm and Image Processing Techniques
Abstract
:1. Introduction
2. Related Works
2.1. Overview of YOLO Algorithm
2.2. Problem Identification
2.3. Convolutional Block Attention Module
2.4. SCYLLA Intersection over Union
3. Material and Methodology
3.1. Proposed Architecture
3.1.1. Backbone Layer
3.1.2. Neck and Auxiliary Layers
3.2. Dataset
3.3. Color Space Transformation
Algorithm 1: Image Conversion from RGB to HSV |
Input: and value Output: and value 1: Find the maximum minimum , and middle of 2: Assign 3: Calculate delta with: 4: if then 5: 6: else if 7: 8: 9: 10: if or or then 11: 12: end if 13: 14: end if 15: return |
3.4. Image Augmentation
3.5. Damage Severity Index
Algorithm 2: Damage Severity Index |
Input: Output: Severity score 1: For i in range 1 to N: 2: 3: 4: 5: End for 6: 7: return DSI |
3.6. Metrics Evaluation
4. Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doshi, S.; Gupta, A.; Gupta, J.; Hariya, N.; Pavate, A. Vehicle Damage Analysis Using Computer Vision: Survey. In Proceedings of the 2023 4th International Conference on Communication Systems, Computing and IT Applications, Mumbai, India, 31 March–1 April 2023; pp. 132–135. [Google Scholar]
- Yan, C.; Li, M.; Liu, W.; Qi, M.; Yan, C.; Li, M.; Liu, W.; Qi, M. Improved Adaptive Genetic Algorithm for the Vehicle Insurance Fraud Identification Model Based on a BP Neural Network. Theor. Comput. Sci. 2020, 817, 12–23. [Google Scholar] [CrossRef]
- Aleksandrova, A.; Ninova, V.; Zhelev, Z. A Survey on AI Implementation in Finance, (Cyber) Insurance and Financial Controlling. Risks 2023, 11, 91. [Google Scholar] [CrossRef]
- Aslam, F.; Hunjra, A.I.; Ftiti, Z.; Louhichi, W.; Shams, T. Insurance Fraud Detection: Evidence from Artificial Intelligence and Machine Learning. Res. Int. Bus. Financ. 2022, 62, 101744. [Google Scholar] [CrossRef]
- Hassebo, A.; Tealab, M. Global Models of Smart Cities and Potential IoT Applications: A Review. Internet Things 2023, 4, 366–411. [Google Scholar] [CrossRef]
- Asif, R.; Hassan, S.R. Exploring the Confluence of IoT and Metaverse: Future Opportunities and Challenges. Internet Things 2023, 4, 412–429. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012. [Google Scholar]
- Sruthy, C.M.; Kunjumon, S.; Nandakumar, R. Car Damage Identification and Categorization Using Various Transfer Learning Models. In Proceedings of the 5th International Conference on Trends in Electronics and Informatics, ICOEI 2021, Tirunelveli, India, 3–5 June 2021; pp. 1097–1101. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv 2015, arXiv:1506.01497. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Widjojo, D.; Setyati, E.; Kristian, Y. Integrated Deep Learning System for Car Damage Detection and Classification Using Deep Transfer Learning. In Proceedings of the IEEE 8th Information Technology International Seminar, ITIS 2022, Surabaya, Indonesia, 19–21 October 2022; pp. 21–26. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Zheng, Z.; Wang, P.; Ren, D.; Liu, W.; Ye, R.; Hu, Q.; Zuo, W. Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation. IEEE Trans. Cybern. 2020, 52, 8574–8586. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Wang, C.-Y.; Yeh, I.-H.; Liao, H.-Y.M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. arXiv 2024, arXiv:2402.13616. [Google Scholar]
- Shirode, A.; Rathod, T.; Wanjari, P.; Halbe, A. Car Damage Detection and Assessment Using CNN. In Proceedings of the 2022 IEEE Delhi Section Conference, DELCON 2022, New Delhi, India, 11–13 February 2022. [Google Scholar]
- Elroy Martis, J.; Sannidhan, M.S.; Aravinda, C.V.; Balasubramani, R. Car Damage Assessment Recommendation System Using Neural Networks. Mater. Today Proc. 2023, 92, 24–31. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Gevorgyan, Z. SIoU Loss: More Powerful Learning for Bounding Box Regression. arXiv 2022, arXiv:2205.12740. [Google Scholar]
- Wang, X.; Li, W.; Wu, Z. CarDD: A New Dataset for Vision-Based Car Damage Detection. IEEE Trans. Intell. Transp. Syst. 2023, 24, 7202–7214. [Google Scholar] [CrossRef]
- Holilah, D.; Bustamam, A.; Sarwinda, D. Detection of Alzheimer’s Disease with Segmentation Approach Using K-Means Clustering and Watershed Method of MRI Image. J. Phys.Conf. Ser. 2021, 1725, 012009. [Google Scholar] [CrossRef]
- Nanni, L.; Paci, M.; Brahnam, S.; Lumini, A. Comparison of Different Image Data Augmentation Approaches. J. Imaging 2021, 7, 254. [Google Scholar] [CrossRef] [PubMed]
- Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Chernov, V.; Alander, J.; Bochko, V. Integer-Based Accurate Conversion between RGB and HSV Color Spaces. Comput. Electr. Eng. 2015, 46, 328–337. [Google Scholar] [CrossRef]
- Kang, L.-W.; Wang, I.-S.; Chou, K.-L.; Chen, S.-Y.; Chang, C.-Y. Image-Based Real-Time Fire Detection Using Deep Learning with Data Augmentation for Vision-Based Surveillance Applications. In Proceedings of the 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Taipei, Taiwan, 18–21 September 2019; pp. 1–4. [Google Scholar]
- Yoshimura, M.; Otsuka, J.; Irie, A.; Ohashi, T. Rawgment: Noise-Accounted RAW Augmentation Enables Recognition in a Wide Variety of Environments. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 14007–14017. [Google Scholar]
- Cirillo, M.D.; Abramian, D.; Eklund, A. What Is The Best Data Augmentation For 3D Brain Tumor Segmentation? In Proceedings of the International Conference on Image Processing, ICIP, Anchorage, AK, USA, 19–22 September 2021; pp. 36–40. [Google Scholar]
- Volk, G.; Muller, S.; von Bernuth, A.; Bringmann, O. Towards Robust CNN-Based Object Detection through Augmentation with Synthetic Rain Variations. In Proceedings of the ITSS Institute of Electrical and Electronics Engineers, Auckland, New Zealand, 27–30 October 2022; pp. 1–7. [Google Scholar]
- Kalia, R. COCO Annotated Dataset Car Damage Detection. Available online: https://www.kaggle.com/datasets/ramsikalia/coco-annotated-dataset-car-damage-detection (accessed on 29 March 2023).
- Lenka, L.P. Coco Car Damage Detection Dataset. Available online: https://www.kaggle.com/datasets/lplenka/coco-car-damage-detection-dataset (accessed on 19 May 2023).
- Kang, Z.; Liao, Y.; Du, S.; Li, H.; Li, Z. SE-CBAM-YOLOv7: An Improved Lightweight Attention Mechanism-Based YOLOv7 for Real-Time Detection of Small Aircraft Targets in Microsatellite Remote Sensing Imaging. Aerospace 2024, 11, 605. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramazhan, M.R.S.; Bustamam, A.; Buyung, R.A. Smart Car Damage Assessment Using Enhanced YOLO Algorithm and Image Processing Techniques. Information 2025, 16, 211. https://doi.org/10.3390/info16030211
Ramazhan MRS, Bustamam A, Buyung RA. Smart Car Damage Assessment Using Enhanced YOLO Algorithm and Image Processing Techniques. Information. 2025; 16(3):211. https://doi.org/10.3390/info16030211
Chicago/Turabian StyleRamazhan, Muhammad Remzy Syah, Alhadi Bustamam, and Rinaldi Anwar Buyung. 2025. "Smart Car Damage Assessment Using Enhanced YOLO Algorithm and Image Processing Techniques" Information 16, no. 3: 211. https://doi.org/10.3390/info16030211
APA StyleRamazhan, M. R. S., Bustamam, A., & Buyung, R. A. (2025). Smart Car Damage Assessment Using Enhanced YOLO Algorithm and Image Processing Techniques. Information, 16(3), 211. https://doi.org/10.3390/info16030211