When Generative AI Goes to the Museum: Visual Stereotyping of Curators and Museum Spaces
Abstract
1. Introduction
- (1)
- The ethnicity, gender, appearance, and attire of curators when gender is not specified and in a variety of museum settings (art, fashion, maritime, natural history, science, social history, technology);
- (2)
- The key exhibits in the setting of each museum type;
- (3)
- The architecture of the museum interiors.
2. Methodology
2.1. Data Collection Process
2.2. Image Scoring
2.3. Luminosity and Colorfulness Determinations
Examine each image. For the following tasks disregard the person in front.
Task (1) calculate the average luminosity and the colorfulness of the remainder of the image.
Task (2) state the predominant color of the image in scientific color terminology
Output the values as table giving the file name, luminosity value, colorfulness value and predominant color (use a three-part response of lightness, temperature and hue such as “medium-light cold cyan hues”)
2.4. Statistics
Multivariate Analyses
2.5. Limitations
3. Results
3.1. Representation of Curators
3.1.1. Gender
3.1.2. Age
3.1.3. Curator Attributes
3.1.4. Attire
3.1.5. Activity
3.1.6. Inter-Museum Comparison
3.2. Museum Setting
3.2.1. Museum Architecture
3.2.2. Light Conditions and Color of the Museum Spaces
3.2.3. Museum Exhibits
3.2.4. Inter-Museum Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sandell, R. Museums, Prejudice and the Reframing of Difference; Routledge: London, UK, 2007. [Google Scholar]
- Coffee, K. Cultural inclusion, exclusion and the formative roles of museums. Mus. Manag. Curatorship 2008, 23, 261–279. [Google Scholar] [CrossRef]
- Bargna, I. The Anthropologist as Curator; Routledge: London, UK, 2020. [Google Scholar]
- Mayer, C.E. The contemporary curator: Endangered species or brave new profession? Muse 1991, 9, 34–43. [Google Scholar]
- Lawther, K. Who Are Museum Curators According to Pop Culture? 15 November 2020. Available online: http://acidfreeblog.com/curation/who-are-museum-curators-according-to-pop-culture/ (accessed on 12 March 2025).
- Aldred, T.; Burr, G.; Park, E. Crossing a librarian with a historian: The image of reel archivists. Archivaria 2008, 66, 57–93. [Google Scholar]
- Vilar, P.; Šauperl, A. Archives, quo vadis et cum quibus? Archivists’ self-perceptions and perceptions of users of contemporary archives. Int. J. Inf. Manag. 2015, 35, 551–560. [Google Scholar] [CrossRef]
- Spennemann, D.H.R.; Oddone, K. What do librarians look like? Stereotyping of a profession by generative AI. J. Librariansh. Inf. Sci. 2025, 16, 09610006251357286. [Google Scholar] [CrossRef]
- Seale, M. Old maids, policeman, and social rejects: Mass media representations and public perceptions of librarians. Electron. J. Acad. Spec. Librariansh. 2008, 9, 107. [Google Scholar]
- White, A. Not Your Ordinary Librarian: Debunking the Popular Perceptions of Librarians; Chandos Publishing: Oxford, UK, 2012. [Google Scholar]
- Carter, S. Review of: Rosalind, M. Pepall, Talking to a Portrait: Tales of an Art Curator. 5 October 2020. Available online: https://quillandquire.com/review/talking-to-a-portrait-tales-of-an-art-curator/#:~:text=But%20because%20most%20people%20aren,toiling%20away%20in%20dusty%20tombs (accessed on 12 March 2025).
- Moniz, M. Source of nostalgia and archival recreation: The South African hellenic archive. De Arte 2021, 56, 82–106. [Google Scholar] [CrossRef]
- Voris, H.K.; Resetar, A. Hymen Marx. Iguana 2007, 14, 135–136. [Google Scholar]
- Rogers, S.L.; Giles, S.; Dowey, N.; Greene, S.E.; Bhatia, R.; Van Landeghem, K.; King, C. “you just look at rocks, and have beards” Perceptions of Geology From the United Kingdom: A Qualitative Analysis From an Online Survey. Earth Sci. Syst. Soc. 2024, 4, 10078. [Google Scholar] [CrossRef]
- Cabrera, R.M. Beyond Dust, Memories and Preservation: Roles of Ethnic Museums in Shaping Community Ethnic Identities; University of Illinois at Chicago: Chicago, IL, USA, 2008. [Google Scholar]
- Greenwald, A.G.; Banaji, M.R.; Rudman, L.A.; Farnham, S.D.; Nosek, B.A.; Mellott, D.S. A unified theory of implicit attitudes, stereotypes, self-esteem, and self-concept. Psychol. Rev. 2002, 109, 3. [Google Scholar] [CrossRef] [PubMed]
- Dixon, T.L. Understanding how the internet and social media accelerate racial stereotyping and social division: The socially mediated stereotyping model. In Race and Gender in Electronic Media; Lind, R.A., Ed.; Routledge: Abingdon, UK, 2016; pp. 161–178. [Google Scholar]
- Lafky, S.; Duffy, M.; Steinmaus, M.; Berkowitz, D. Looking through gendered lenses: Female stereotyping in advertisements and gender role expectations. J. Mass Commun. Q. 1996, 73, 379–388. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. Who is to blame for the bias in visualizations, ChatGPT or Dall-E? AI 2025, 6, 92. [Google Scholar] [CrossRef]
- Choudhary, T. Political Bias in AI-Language Models: A Comparative Analysis of ChatGPT-4,Perplexity, Google Gemini, and Claude. IEEE Access 2025, 13, 11341–11365. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. The origins and veracity of references ‘cited’ by generative artificial intelligence applications. Publications 2025, 13, 12. [Google Scholar] [CrossRef]
- Tao, Y.; Viberg, O.; Baker, R.S.; Kizilcec, R.F. Cultural bias and cultural alignment of large language models. PNAS Nexus 2024, 3, pgae346. [Google Scholar] [CrossRef]
- Chua, A.Y.; Chen, M.; Kan, M.; Seoh, W. Digital prejudices: An analysis of gender, racial and religious biases in generative AI chatbots. Internet Res. 2025, 1–27. [Google Scholar] [CrossRef]
- Ye, S. Generative AI May Prefer to Present National-level Characteristics of Cities Based on Stereotypical Geographic Impressions at the Continental Level. arXiv 2023, arXiv:2310.04897. [Google Scholar] [CrossRef]
- Hörmeyer, M. Verzerrte Datensätze-ein Dilemma für den wirksamen KI-Einsatz in Verwaltungen? Innov. Verwalt. 2024, 46, 9. [Google Scholar] [CrossRef]
- Strasser, K.; Niedermayer, B. Unvoreingenommenheit von Künstliche-Intelligenz-Systemen. Die Rolle von Datenqualität und Bias für den verantwortungsvollen Einsatz von künstlicher Intelligenz. In CSR und Künstliche Intelligenz; Altenburger, R., Schmidpeter, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 121–135. [Google Scholar]
- Spennemann, D.H.R. Non-Responsiveness of DALL-E to Exclusion Prompts Suggests Underlying Bias Towards Bitcoin. 2025. Available online: https://ssrn.com/abstract=5199640 (accessed on 12 March 2025).
- Saleh, M.; Tabatabaei, A. Building Trustworthy Multimodal AI: A Review of Fairness, Transparency, and Ethics in Vision-Language Tasks. Int. J. Web Res. 2025, 8, 11–24. [Google Scholar] [CrossRef]
- Narnaware, V.; Vayani, A.; Gupta, R.; Swetha, S.; Shah, M. Sb-bench: Stereotype bias benchmark for large multimodal models. arXiv 2025, arXiv:2502.08779. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. The Layered Injection Model of Algorithmic Bias as a Conceptual Framework to Understand Biases Impacting the Output of Text-to-Image Models. 2025. Available online: https://ssrn.com/abstract=5393987 (accessed on 12 March 2025).
- Melero Lázaro, M.; García Ull, F.J. Gender stereotypes in AI-generated images. El Prof. Inf. 2023, 32, e320505. [Google Scholar] [CrossRef]
- Hacker, P.; Mittelstadt, B.; Borgesius, F.Z.; Wachter, S. Generative discrimination: What happens when generative AI exhibits bias, and what can be done about it. In The Oxford Handbook of the Foundations and Regulation of Generative AI Hacker; Hacker, P., Mittelstadt, B., Hammer, S., Engel, A., Eds.; Oxford University Press: Oxford, UK, 2025. [Google Scholar]
- Hosseini, D.D. Generative AI: A problematic illustration of the intersections of racialized gender, race, ethnicity. OSF Prepr. 2024. [Google Scholar] [CrossRef]
- Currie, G.; John, G.; Hewis, J. Gender and ethnicity bias in generative artificial intelligence text-to-image depiction of pharmacists. Int. J. Pharm. Pract. 2024, 32, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Currie, G.; Hewis, J.; Hawk, E.; Rohren, E. Gender and ethnicity bias of text-to-image generative artificial intelligence in medical imaging, part 2: Analysis of DALL-E 3. J. Nucl. Med. Technol. 2024, 52, 356–359. [Google Scholar] [CrossRef]
- Currie, G.; Hewis, J.; Wheat, J. Gender and ethnicity representation of university academics by generative artificial intelligence using DALL-E 3. J. Furth. High. Educ. 2025, 49, 1064–1078. [Google Scholar] [CrossRef]
- Currie, G.; Chandra, C.; Kiat, H. Gender Bias in Text-to-Image Generative Artificial Intelligence When Representing Cardiologists. Information 2024, 15, 594. [Google Scholar] [CrossRef]
- Currie, G.; Currie, J.; Anderson, S.; Hewis, J. Gender bias in generative artificial intelligence text-to-image depiction of medical students. Health Educ. J. 2024, 83, 732–746. [Google Scholar] [CrossRef]
- Morcos, M.; Duggan, J.; Young, J.; Lipa, S.A. Artificial Intelligence Portrayals in Orthopaedic Surgery: An Analysis of Gender and Racial Diversity Using Text-to-Image Generators. J. Bone Jt. Surg. 2024, 106, 2278–2285. [Google Scholar] [CrossRef]
- Cevik, J.; Lim, B.; Seth, I.; Sofiadellis, F.; Ross, R.J.; Cuomo, R.; Rozen, W.M. Assessment of the bias of artificial intelligence generated images and large language models on their depiction of a surgeon. ANZ J. Surg. 2024, 94, 287–294. [Google Scholar] [CrossRef]
- Abdulwadood, I.; Mehta, M.; Carrion, K.; Miao, X.; Rai, P.; Kumar, S.; Lazar, S.; Patel, H.; Gangopadhyay, N.; Chen, W. AI Text-to-Image Generators and the Lack of Diversity in Hand Surgeon Demographic Representation. Plast. Reconstr. Surg. Glob. Open 2024, 12, 4–5. [Google Scholar] [CrossRef]
- Thomson, E.; Chapman, R.; Cooper, G.; Cooper, Z. Exploring bias in artificial intelligence: Stereotypes and gendered narratives in digital imagery of early childhood educators. Gend. Educ. 2025, 1–20. [Google Scholar] [CrossRef]
- Kaufenberg-Lashua, M.M.; West, J.K.; Kelly, J.J.; Stepanova, V.A. What does AI think a chemist looks like? An analysis of diversity in generative AI. J. Chem. Educ. 2024, 101, 4704–4713. [Google Scholar] [CrossRef]
- Arriola-Mendoza, J.; Aleman de la Garza, L.Y.; Valerio-Urena, G. Biases in Generative AI in STEM Fields: An Analysis of ChatGPT-4, Bing, and Image Creator. In Proceedings of the 6th International Conference on Modern Educational Technology, Tokyo, Japan, 13–15 December 2024; pp. 71–77. [Google Scholar]
- d’Aloisio, G.; Fadahunsi, T.; Di Marco, A.; Sarro, F. How Do Generative Models Draw a Software Engineer? An Empirical Study on Implicit Bias of Open-Source Image Generation Models. Available online: https://ssrn.com/abstract=5247729 (accessed on 12 March 2025).
- Fadahunsi, T.; d’Aloisio, G.; Di Marco, A.; Sarro, F. How Do Generative Models Draw a Software Engineer? A Case Study on Stable Diffusion Bias. arXiv 2025, arXiv:2501.09014. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. Two Hundred Women Working in Cultural and Creative Industries: A Structured Data Set of Generative Ai-Created Images; Charles Sturt University: Albury, Australia, 2025. [Google Scholar] [CrossRef]
- Chatterji, A.; Cunningham, T.; Deming, D.J.; Hitzig, Z.; Ong, C.; Shan, C.Y.; Wadman, K. How People Use Chatgpt; National Bureau of Economic Research: Cambridge, MA, USA, 2025. [Google Scholar]
- VanVoorhis, C.W.; Morgan, B.L. Understanding power and rules of thumb for determining sample sizes. Tutor. Quant. Methods Psychol. 2007, 3, 43–50. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. Children of AI: A protocol for managing the born-digital ephemera spawned by Generative AI Language Models. Publications 2023, 11, 45. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. What do curators look like? Stereotyping of a profession by generative AI—Supplementary Data. 2025. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. What do curators look like? Stereotyping of a profession by generative AI—Additional Images. 2025. [Google Scholar] [CrossRef]
- ITU. Parameter Values for the HDTV Standards for Production and International Programme Exchange. Recommendation ITU-R BT.709-6; Radiocommunication Sector, International Telecommunications Union: Geneva, Switzerland, 2015. [Google Scholar]
- Hasler, D.; Suesstrunk, S.E. Measuring colorfulness in natural images. In Proceedings of the Human Vision and Electronic Imaging VIII, Santa Clara, CA, USA, 20–24 January 2003; pp. 87–95. [Google Scholar]
- Clarke, K.R.; Gorley, R.N. PRIMER v7: User Manual/Tutorial; PRIMER-E Ltd.: Plymouth, UK, 2015. [Google Scholar]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; PRIMER-E: Plymouth, UK, 2008. [Google Scholar]
- Faith, D.; Norris, R. Correlation of environmental variables with patterns of distribution and abundance of common and rare freshwater macroinvertebrates. Biol. Conserv. 1989, 50, 77–98. [Google Scholar] [CrossRef]
- Rosser, E.; Spennemann, D.H.R. Indigenous erasure in the age of generative Artificial Intelligence. AI Soc. under review.
- Spennemann, D.H.R.; Oddone, K. Creating ‘Margaret’ How does ChatGPT construct the image of a typical librarian? Aust. J. Teach. Educ. under review.
- Mitchell, M.; McKinnon, M. ‘Human’ or ‘objective’faces of science? Gender stereotypes and the representation of scientists in the media. Public Underst. Sci. 2019, 28, 177–190. [Google Scholar] [CrossRef]
- Newton, D.P.; Newton, L.D. Young children’s perceptions of science and the scientist. Int. J. Sci. Educ. 1992, 14, 331–348. [Google Scholar] [CrossRef]
- Razina, T.; Volodarskaya, E. Opportunities and specificity of applying the draw-a-scientist test technique on Russian schoolchildren. In Early Childhood Care and Education, European Proceedings of Social and Behavioural Sciences; Sheridan, S., Veraksa, N., Eds.; Future Academy: Singapore, 2018; Volume 43, pp. 109–117. [Google Scholar] [CrossRef]
- Yang, D.; Zhou, M. Exploring Lower-Secondary School Students’ Images and Opinions of the Biologist. J. Balt. Sci. Educ. 2017, 16, 855–872. [Google Scholar] [CrossRef]
- Thomson, M.M.; Zakaria, Z.; Radut-Taciu, R. Perceptions of scientists and stereotypes through the eyes of young school children. Educ. Res. Int. 2019, 2019, 6324704. [Google Scholar] [CrossRef]
- Boylan, P.J. The museum profession. In A Companion to Museum Studies; Macdonald, S., Ed.; Wiley: New York, NY, USA, 2006; pp. 415–430. [Google Scholar]
- Statistics Canada. Table 98-10-0449-01 Occupation Unit Group by Labour Force Status, Highest Level of Education, Age and Gender: Canada, Provinces and Territories, Census Metropolitan Areas and Census Agglomerations with Parts. 2022, 10 March 2025. Available online: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=9810044901 (accessed on 30 September 2025).
- England, A.C. Equality, Diversity and the Creative Case. A Data Report 2018–19; Arts Council England: London, UK, 2015. [Google Scholar]
- Data USA. Archivists, Curators, & Museum Technicians. 2025. Available online: https://datausa.io/profile/soc/archivists-curators-museum-technicians (accessed on 12 March 2025).
- Australian Bureau of Statistics. ABS Labour Force Survey. Occupation Data (November 2024); Australian Bureau of Statistics: Canberra, Australia, 2024.
- Australian Bureau of Statistics. 6273.0 Employment in Culture, Australia, 2011; Australian Bureau of Statistics: Canberra, Australia, 2012.
- Australian Bureau of Statistics. 62730DO001 Employment in Culture, Australia, 2006; Australian Bureau of Statistics: Canberra, Australia, 2008.
- Australian Bureau of Statistics. 6273.0 Employment in Culture, Australia, 2001; Australian Bureau of Statistics: Canberra, Australia, 2003.
- Western Australia. 6273.0 Employment in Culture, 2016; Western Australia: San Francisco, CA, USA, 2021. [Google Scholar]
- Whiteford, A.; van Seventer, D.; Patterson, B. A Profile of the Museums Sector in New Zealand; ServiceIQ: Wellington, New Zealand, 2014. [Google Scholar]
- Hagin, L. Museum Statistics: How Many People Work in the Museum. 2024. Available online: https://en.audio-cult.com/museumsstatistik-struktur-und-arbeitsbedingungen-im-museum (accessed on 22 September 2025).
- Benhamou, f.; Moureau, N. Les « Nouveaux Conservateurs » Enquête Auprès des Conservateurs Formés Par l’Institut National du Patrimoine (Promotions 1991 à 2003); Ministère de la Culture et de la Communication: Paris, France, 2006.
- Gordan, R. Sveriges Curatorer: “Vi Har Hamnat Mellan Stolarna”. 13 June 2022. Available online: https://svenskcuratorforening.se/en/magasin-k-swedens-curators-we-have-been-left-in-the-lurch/#:~:text=Only%20in%202014%20did%20Statistics,same%20since%20the%20measurements%20began (accessed on 20 September 2025).
- Schulz, G.; Ries, C.; Zimmermann, O. Frauen in Kultur und Medien. Ein Überblick über Aktuelle Tendenzen, Entwicklungen und Lösungsvorschläge; Deutscher Kulturrat e.V.: Berlin, Germany, 2016. [Google Scholar]
- Australian Bureau of Statistics. 6273.0 Employment in Selected Culture/Leisure Occupations, Australia; Australian Bureau of Statistics: Canberra, Australia, 1998.
- Garcia, N.; Hirota, Y.; Wu, Y.; Nakashima, Y. Uncurated image-text datasets: Shedding light on demographic bias. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 6957–6966. [Google Scholar]
- OpenAI. GPT-4 System Card; OpenAi: San Francisco, CA, USA, 2024. [Google Scholar]
- OpenAI. GPT-4o System Card; OpenAi: San Francisco, CA, USA, 8 August 2024. [Google Scholar]
- Bullen, J.B. Alfred Waterhouse’s Romanesque ‘Temple of Nature’: The Natural History Museum, London. Archit. Hist. 2006, 49, 257–285. [Google Scholar] [CrossRef]
- Connelly, J.L. The Grand Gallery of the Louvre and the Museum Project: Architectural Problems. J. Soc. Archit. Hist. 1972, 31, 120–132. [Google Scholar] [CrossRef]
- Oddone, K.; Spennemann, D.H.R. Libraries in 2075. How does a generative artificial intelligence model envision a library in 50 years’ time? Int. Inf. Libr. Rev. under review.
- Spennemann, D.H.R. Wither Heritage? How Does a Generative Artificial Intelligence Model Envision Humanity’s Cultural Heritage in 30 Years’ Time?—Supplementary Data; Charles Sturt University: Albury, Australia, 2025. [Google Scholar] [CrossRef]



| Visual Cue | Score Values as Extracted from Images | Attribute Used in Analyses | Attribute Values |
|---|---|---|---|
| Gender | Male, Female | Gender Female | Female = 1, Male = 0 |
| Age | Young, Middle, Old | Age young | Young = 1, all others = 0 |
| Age middle | Middle = 1, all others = 0 | ||
| Age old | Old = 1, all others = 0 | ||
| Activity | Arranging, Engaging, Looking, Taking, Unclear | Activity arranging | Arranging = 1, all others = 0 |
| Activity engaging | Engaging = 1, all others = 0 | ||
| Activity looking | Looking = 1, all others = 0 | ||
| Activity taking | Taking = 1, all others = 0 | ||
| Clothing | Formal, Informal, Laboratory | Attire formal | Formal = 1, all others = 0 |
| Attire informal | Informal = 1, all others = 0 | ||
| Attire laboratory | Laboratory = 1, all others = 0 | ||
| Glasses | Yes, No | Eyewear | Yes = 1, No = 0 |
| Beard | Yes, No | Has beard | Yes = 1, No = 0 |
| Object | Book, Clipboard, None, Notebook, Tablet, Object | Object clipboard | Clipboard = 1, all others = 0 |
| Object tablet | Tablet = 1, all others = 0 | ||
| Object other | [Book, Notebook, Object] = 1, all others = 0 | ||
| Name tag | Yes, No | Has name tag | Yes = 1, No = 0 |
| Visual Cue | Score Values as Extracted from Images | Attribute Used in Analyses | Attribute Values |
|---|---|---|---|
| Lightness | Dark, Medium-dark, Medium-light | Dark | Dark = 1, others = 0 |
| Medium-Dark | Medium-Dark = 1, others = 0 | ||
| Medium-Light | Medium-Light = 1, others = 0 | ||
| Temperature | Cold, Neutral, Warm | Cold | Cold = 1, others = 0 |
| Neutral | Neutral = 1, others = 0 | ||
| Warm | Warm = 1, others = 0 | ||
| Hue | Cyan, Cyan-blue, Green, Green-cyan, Orange, Red, Red-yellow, Yellow, Yellow-green | Cyan-Blue | [Cyan, Cyan-Blue] = 1, others = 0 |
| Green | Green = 1, others = 0 | ||
| Green-cyan | Green-Cyan = 1, others = 0 | ||
| Orange | Orange = 1, others = 0 | ||
| Red | Red = 1, others = 0 | ||
| Red-yellow | Red-Yellow = 1, others = 0 | ||
| Yellow-green | [Yellow, Yellow-Green] = 1, others = 0 |
| AM | FA | MA | NH | SC | SH | TE | |
|---|---|---|---|---|---|---|---|
| Ethnicity | |||||||
| Caucasian (White) | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| n | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
| Gender | |||||||
| Women | 2.0 | 14.0 | — | — | — | — | — |
| Men | 98.0 | 86.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| n | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
| Age class | |||||||
| young | 75.5 | 100.0 | 22.0 | 92.0 | 64.0 | 74.0 | 18.0 |
| middle age | 24.5 | — | 76.0 | 8.0 | 36.0 | 26.0 | 80.0 |
| old | — | — | 2.0 | — | — | — | 2.0 |
| n | 49 | 43 | 50 | 50 | 50 | 50 | 50 |
| Attributes | |||||||
| glasses | 71.4 | 34.9 | 44.0 | 42.0 | 44.0 | 40.0 | 68.0 |
| beard | 75.5 | 20.9 | 80.0 | 76.0 | 68.0 | 68.0 | 56.0 |
| name tag | — | — | 44.0 | 66.0 | 80.0 | 24.0 | 40.0 |
| n | 47 | 43 | 50 | 50 | 50 | 50 | 50 |
| Objects | |||||||
| book | — | 4.0 | — | — | — | — | — |
| clipboard | 96.0 | 88.0 | 92.0 | 62.0 | 30.0 | 68.0 | — |
| clipboard and camera | — | — | — | — | — | 2.0 | — |
| notebook | — | 8.0 | — | 4.0 | — | — | — |
| object | — | — | 4.0 | 2.0 | — | 2.0 | — |
| tablet | 2.0 | — | 2.0 | 6.0 | 60.0 | 8.0 | 98.0 |
| none | 2.0 | — | — | 26.0 | 10.0 | 20.0 | 2.0 |
| n | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
| AM | FA | MA | NH | SC | SH | TE | ||
|---|---|---|---|---|---|---|---|---|
| Formal | ||||||||
| ensemble, open shirt | — | 10.0 | — | — | — | — | — | |
| suit, vest, shirt and tie | 20.0 | 10.0 | 38.0 | 32.0 | — | 18.0 | 4.0 | |
| suit, vest and shirt | — | — | 4.0 | — | — | — | — | |
| suit, shirt and tie | 10.0 | 20.0 | 2.0 | 2.0 | 28.0 | 8.0 | 12.0 | |
| vest, shirt and tie | — | 2.0 | — | 30.0 | 4.0 | 10.0 | 8.0 | |
| shirt and tie | 2.0 | — | 4.0 | — | 8.0 | 2.0 | 10.0 | |
| total | 32.0 | 42.0 | 48.0 | 64.0 | 40.0 | 38.0 | 34.0 | |
| Informal | ||||||||
| jacket, buttoned-up shirt | — | — | — | — | — | — | 4.0 | |
| jacket, open shirt | 42.0 | 42.0 | 42.0 | 10.0 | 56.0 | 42.0 | 60.0 | |
| jacket, vest/sweater, buttoned-up shirt | — | — | — | — | — | — | 2.0 | |
| jacket, vest/sweater, open shirt | 26.0 | 14.0 | 6.0 | — | 2.0 | 16.0 | 4.0 | |
| jacket, vest and shirt | — | 2.0 | — | 2.0 | ||||
| open shirt | — | — | 4.0 | 4.0 | 2.0 | 2.0 | 2.0 | |
| total | 68.0 | 58.0 | 52.0 | 14.0 | 60.0 | 62.0 | 72.0 | |
| Laboratory | ||||||||
| laboratory coat, open shirt | — | — | — | 4.0 | — | — | — | |
| laboratory coat, shirt and tie | — | — | — | 18.0 | — | — | — | |
| total | — | — | — | 22 | — | — | — | |
| n | 50 | 50 | 50 | 50 | 50 | 50 | 50 | |
| Activity | AM | FA | MA | NH | SC | SH | TE |
|---|---|---|---|---|---|---|---|
| arranging showcase | — | 2.0 | — | — | — | — | — |
| engaging viewer while working | 4.0 | 10.0 | 22.0 | 2.0 | 22.0 | 24.0 | 16.0 |
| engaging viewer while working, casual | — | 18.0 | 10.0 | 2.0 | 40.0 | 10.0 | 18.0 |
| looking at exhibit space | 4.0 | 14.0 | 24.0 | 6.0 | 16.0 | 24.0 | 66.0 |
| taking notes | 92.0 | 56.0 | 44.0 | 90.0 | 20.0 | 42.0 | 0.0 |
| unclear | — | — | — | — | 2.0 | — | — |
| n | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
| AM | FA | MA | NH | SC | SH | TE | |
|---|---|---|---|---|---|---|---|
| Building design | |||||||
| 19th century | 98.0 | 84.0 | 100.0 | 100.0 | — | 46.0 | — |
| 20th century | 2.0 | 16.0 | — | — | 100.0 | 54.0 | 100.0 |
| n | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
| Lighting | |||||||
| artificial | — | 24.0 | 20.0 | — | 30.0 | 60.0 | 80.0 |
| natural, top windows | 96.0 | 70.0 | 42.0 | 100.0 | 60.0 | 18.0 | 20.0 |
| natural, side windows | 4.0 | 6.0 | 38.0 | — | 10.0 | 22.0 | — |
| n | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
| Visitors | |||||||
| in background | 42.0 | — | 12.0 | 50.0 | 96.0 | 42.0 | 98.0 |
| n | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
| Brightness | Colorfulness | ||||
|---|---|---|---|---|---|
| Avge ± StdDev | Range | Avge ± StdDev | Range | n | |
| Art Museum | 46.91 ± 6.43 | (35.62–64.65) | 68.86 ± 38.91 | (15.03–155.48) | 50 |
| Fashion Museum | 105.62 ± 9.58 | (87.90–132.19) | 116.96 ± 23.58 | (73.89–168.51) | 50 |
| Maritime Museum | 103.98 ± 11.11 | (82.54–129.41) | 44.58 ± 6.75 | (33.37–65.38) | 50 |
| Natural History Museum | 92.65 ± 16.77 | (69.56–124.67) | 41.35 ± 9.08 | (20.92–58.63) | 50 |
| Science Museum | 74.59 ± 34.78 | (39.87–144.91) | 85.97 ± 64.51 | (21.89–177.56) | 50 |
| Social History Museum | 86.08 ± 15.63 | (69.57–161.64) | 53.94 ± 6.80 | (34.63–66.88) | 50 |
| Technology Museum | 113.99 ± 11.28 | (91.85–141.97) | 160.64 ± 22.48 | (89.50–184.31) | 50 |
| AM | FA | MA | NH | SC | SH | TE | |
|---|---|---|---|---|---|---|---|
| Lightness | |||||||
| Medium-light | 100.0 | 100.0 | 100.0 | 94.0 | 100.0 | 80.0 | 44.0 |
| Medium-dark | — | — | — | — | — | — | 56.0 |
| Dark | — | — | — | 6.0 | — | 20.0 | — |
| n | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
| Temperature | |||||||
| Cold | — | 2.0 | — | — | 14.0 | — | 56.0 |
| Neutral | 62.0 | — | — | — | 60.0 | — | — |
| Warm | 38.0 | 98.0 | 100.0 | 100.0 | 26.0 | 100.0 | 44.0 |
| n | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
| Hues | |||||||
| cyan | — | 2.0 | — | — | — | — | — |
| cyan-blue | — | — | — | — | — | — | 34.0 |
| green | 2.0 | — | — | — | 30.0 | — | — |
| green-cyan | — | — | — | — | — | — | 22.0 |
| orange | 68.0 | 56.0 | — | 20.0 | 58.0 | 40.0 | — |
| red | 30.0 | 42.0 | — | 40.0 | 8.0 | 60.0 | 8.0 |
| red-yellow | — | — | 100.0 | 40.0 | — | — | — |
| yellow | — | — | — | — | 4.0 | — | — |
| yellow-green | — | — | — | — | — | — | 36.0 |
| n | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
| Museum Type | Dominant Exhibition Content |
|---|---|
| Art | classical paintings and statues (96); classical paintings (2); modern art (2) |
| Fashion | mannequins (100) |
| Maritime | boats and maritime paraphernalia (64), boat models and paintings (48) |
| Natural history | dinosaur skeletons (100) |
| Science | dinosaur skeleton, space (34); dinosaur skeleton and screens (24); dinosaur skeleton, space and DNA (24); space and physics (2); space and screens (8); dinosaur skeleton, physics (4); robot, space (2); |
| Social History | costumes, paintings, objets d’art (62); paintings, objets d’art (32); costumes, text panels (4); objets d’art (2) |
| Technology | robot, CRT monitors, screens (60); robot, technopunk, screens (12); technopunk, CRT monitors, screens (12); technopunk, screens (10); typewriters and screen (8); CRT monitors and screen (4); CRT, cell phones, screens (2); technopunk and screen (2) robot, CRT monitors, typewriters, screens (2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spennemann, D.H.R.; Robinson, W. When Generative AI Goes to the Museum: Visual Stereotyping of Curators and Museum Spaces. Information 2025, 16, 936. https://doi.org/10.3390/info16110936
Spennemann DHR, Robinson W. When Generative AI Goes to the Museum: Visual Stereotyping of Curators and Museum Spaces. Information. 2025; 16(11):936. https://doi.org/10.3390/info16110936
Chicago/Turabian StyleSpennemann, Dirk H. R., and Wayne Robinson. 2025. "When Generative AI Goes to the Museum: Visual Stereotyping of Curators and Museum Spaces" Information 16, no. 11: 936. https://doi.org/10.3390/info16110936
APA StyleSpennemann, D. H. R., & Robinson, W. (2025). When Generative AI Goes to the Museum: Visual Stereotyping of Curators and Museum Spaces. Information, 16(11), 936. https://doi.org/10.3390/info16110936

