Foundations for a Generic Ontology for Visualization: A Comprehensive Survey
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Questions
- RQ1
- What are the existing ontologies that can be considered general-purpose for visualization?
- RQ2
- What common design patterns and modeling strategies emerge from existing ontologies, and how do they support interoperability and reuse?
- RQ3
- Which parts of the visualization process are well covered in current ontologies, and where are the most significant gaps?
- RQ4
- How widely have existing visualization ontologies been adopted, as measured by the availability of public artefacts and citation counts of their primary publications?
- RQ5
- How do current visualization ontologies align with Semantic Web standards and external domain ontologies, and what benefits does this bring?
- RQ6
- What technical and conceptual limitations hinder the broader adoption and applicability of existing visualization ontologies?
2.2. Search Strategy
2.2.1. Phase 1: Initial Web Search
2.2.2. Phase 2: Structured Literature Search
- Digital Libraries and Indexes: IEEE Xplore, ACM Digital Library (https://dl.acm.org/, accessed on 5 August 2025), Scopus (https://www.elsevier.com/products/scopus, accessed on 5 August 2025), Web of Science (https://www.webofscience.com/wos/author/author-search, accessed on 5 August 2025), DBLP (https://dblp.org/, accessed on 5 August 2025), Google Scholar (https://scholar.google.com/, accessed on 5 August 2025), ScienceDirect (Elsevier) (https://www.sciencedirect.com/, accessed on 5 August 2025), SpringerLink (https://link.springer.com/, accessed on 5 August 2025), and MDPI (https://www.mdpi.com/, accessed on 5 August 2025);
- Open Ontology Repositories: Linked Open Vocabularies (LOV) (https://lov.linkeddata.es/, accessed on 5 August 2025), Ontobee (https://ontobee.org/, accessed on 5 August 2025), and various GitHub/GitLab (https://github.com/, accessed on 5 August 2025; https://about.gitlab.com/, accessed on 5 August 2025) public projects supplied machine-readable artefacts in most popular knowledge organization formats, such as Ontology Web Language (OWL) (https://www.w3.org/TR/owl-features/, accessed on 5 August 2025), Resource Description Framework (RDF) (https://www.w3.org/TR/rdf11-concepts/, accessed on 5 August 2025), and Simple Knowledge Organization System (SKOS) (https://www.w3.org/TR/skos-reference/, accessed on 5 August 2025).
- Gray Literature and Preprints: arXiv (https://arxiv.org/, accessed on 5 August 2025), HAL (https://hal.science/?lang=en, accessed on 5 August 2025), and Zenodo (https://zenodo.org/, accessed on 5 August 2025) were screened to capture early or niche ontology proposals not yet presented in a journal publication.
2.3. Study Selection and Study Quality Assessment
2.4. Data Inclusion and Exclusion Criteria
2.5. Rationale for Surveying a Sparsely Documented Domain
2.6. Evaluation Protocol
3. Results
3.1. Detailed Analysis of Selected Ontologies
3.1.1. VISO: The Visualization Ontology
3.1.2. VisKo: Visualization Knowledge Ontologies
3.1.3. VIS4ML: The Visual Analytics-Assisted Machine Learning Ontology
3.1.4. SemViz: Automatic Visualization of Semantic Data
3.1.5. AAVO: Audiovisual Analytics Vocabulary and Ontology
3.1.6. OntoVis: A Hierarchical Visualization Ontology Stack
3.1.7. VisuOnto: An Industrial-Grade Visualization Ontology
3.2. Evaluation of Ontologies
3.2.1. Ontology Purpose and Domain Coverage
3.2.2. Visualization Process Coverage
3.2.3. Data Types and Visualization Techniques
3.2.4. User-Centric Features in Visualization Ontologies
3.2.5. Level of Abstraction
3.2.6. Validation and Quality Assurance
- Dmax (maximum depth): the longest path from the root class to a leaf class in the subclass hierarchy.
- Davg (average depth): mean depth of all classes.
- Average fan-out: average branching factor of non-leaf classes.
- Width balance (CV): coefficient of variation of the distribution of class counts across hierarchy levels.
3.2.7. Interoperability Features
3.2.8. Adoption and Community Support
4. Discussion
4.1. Limitations of the Study
4.2. Gaps in Evaluated Ontologies
4.3. Emerging Ontology Design Patterns
4.4. Toward a Generic Ontology of Visualization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Acronym | Definition |
| AAVO | Audiovisual Analytics Vocabulary and Ontology |
| ABox | Assertion Box |
| ACM | Association for Computing Machinery |
| AVM | Abstract Visual Model |
| CQ | Competency Questions |
| DBLP | Digital Bibliography and Library Project |
| DL | Description Logic |
| DO | Domain Ontology |
| DOI | Digital Object Identifier |
| FOAF | Friend of a Friend vocabulary |
| HCOME | Human-Centered Collaborative Ontology Engineering |
| HTML | HyperText Markup Language |
| IEEE | Institute of Electrical and Electronics Engineers |
| InfoVis | Information Visualization |
| LOV | Linked Open Vocabularies |
| ML | Machine Learning |
| MQ | Ontology Metrics (Quality) |
| NCL | NCAR Command Language |
| OMEN | Ontology-based Multimedia Environment |
| OntoVis | Ontology for Visualization (UVO + VDO + DDO + VTO stack) |
| OWL | Web Ontology Language |
| PML-P | Proof Markup Language – Provenance |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| QVT | Query/View/Transformation |
| RDF | Resource Description Framework |
| RDFS | RDF Schema |
| RVL | Rule-based Visual Language |
| SBO | Semantic Bridging Ontology |
| SemViz | Automatic Visualization of Semantic Data |
| SHACL | Shapes Constraint Language |
| SKOS | Simple Knowledge Organization System |
| SPARQL | SPARQL Protocol and RDF Query Language |
| SWRL | Semantic Web Rule Language |
| TBox | Terminology Box |
| TD | Tool Demonstrator |
| TLVO | Top-Level Visualization Ontology |
| URI | Uniform Resource Identifier |
| UVO | Upper Visualization Ontology |
| VAO | Visual Annotation Ontology |
| VDO | Visual Description Ontology |
| VIS4ML | Visual Analytics for Machine Learning Ontology |
| VisKo | Visualization Knowledge Ontology |
| VisuOnto | Industrial-Grade Visualization Ontology |
| VISO | Visualization Ontology |
| VRO | Visual Representation Ontology |
| VTO | Visualization Task Ontology |
| VTK | Visualization Toolkit |
| W3C | World Wide Web Consortium |
| WF | Workflow Validation |
Appendix A
| Ontology | Year | Scope/Role (Very Short) | Reference |
|---|---|---|---|
| 2004–2008: Early and foundational efforts | |||
| Building an Ontology of Visualization | 2004 | Foundational attempt to formalize visualization concepts. | [16] |
| VisIOn—Interactive Visualization Ontology | 2004 | Early catalogue of software-visualization systems. | [59] |
| Ontology Construction for Scientific Viz | 2006 | Concept paper on visualization ontology in science. | [60] |
| SemViz | 2007 | “Semantic visualization’’ toolkit with ontologies; 2D/3D viewers. | [21] |
| 2010–2015: Domain ontologies and prototypes | |||
| Enhanced Visualization Ontology | 2010 | Extends earlier ontology with richer process nodes. | [18] |
| VisKo—Visualization Knowledge Ontologies | 2011 | Semantic planning of pipelines for Earth-science data. | [26] |
| Chart Ontology | 2011 | Maps SPARQL result sets to chart types. | [56] |
| Label Ontology | 2011 | Semantic typing variables (used by Chart Ontology). | [56] |
| Unifying Visualization Ontology | 2011 | Upper-level OWL, unifying existing vis models. | [36] |
| Ontology of 3-D Techniques | 2012 | OWL of 3-D visualization techniques for city models. | [61] |
| VISO—Visualization Ontology | 2013 | Generic backbone (marks, channels, tasks, data, inter.). | [19] |
| VUMO—Visualization Use Model Ontology | 2014 | Urban-mobility events → visual forms. | [62] |
| 2016–2022: Modern frameworks and extensions | |||
| AAVO—Audiovisual Analytics Ontology | 2017 | Vocabulary linking data-mining tasks, visual/audio views. | [27] |
| VAO—Visual Analytics Ontology | 2018 | enables ontology-guided visual analytics; supports interactive exploration, filtering, and spatio-temporal visualization. | [63] |
| VIS4ML | 2019 | Formalizes VA-assisted ML workflows. | [20] |
| Chen–Ebert IVAS Ontology | 2019 | Ontological framework for VA design/eval. | [64] |
| SBOL-VO—SBOL Visual Ontology | 2020 | Glyph catalogue for synthetic-biology circuits. | [65] |
| UVO—Upper Visualization Ontology | 2021 | Foundation-level vocabulary of graphic objects. | [24] |
| STMaps | 2021 | Dual ontologies for spatio-temporal analytics. | [66] |
| VisuOnto (Bosch) | 2022 | Industrial chart-workflow ontology. | [29] |
| 2023–Present: Recent additions | |||
| CH Heritage Viz Ontology | 2023 | Cultural-heritage visualization ontology. | [67] |
| Stage | Criteria/Actions | Resulting Artefacts |
|---|---|---|
| Identification | Sources consulted: Libraries: IEEE Xplore, ACM Digital Library, Scopus, Web of Science, DBLP, Google Scholar, ScienceDirect (Elsevier), SpringerLink, Taylor and Francis Online, and MDPI; Open Ontology Repositories: Linked Open Vocabularies (LOV), Ontobee, and GitHub/GitLab public projects; Gray Literature and Preprints: arXiv, and Zenodo;Full text search with any combination of keywords ontology, visualization, generic. | more than 100 manuscripts initially identified |
| Screening | Deduplication and relevance check: removed overlapping or fragmentary versions; retained those with some public artefacts. | 21 ontology candidates |
| Eligibility | Full-text inspection and artefact availability: required peer-reviewed description or repository with ontology files/documentation. | 4 representative ontologies |
| Included | Ontologies analyzed in detail: VISO, VisKo, VIS4ML, AAVO, OntoVis (UVO+), VisuOnto, SemViz. With additional analysis of documentation content and links, three additional cases were considered. | 7 ontologies in final comparisons |
References
- Zeng, M.L. Knowledge organization systems (KOS). KO Knowl. Organ. 2008, 35, 160–182. [Google Scholar] [CrossRef]
- Shneiderman, B. The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In Proceedings of the IEEE Symposium on Visual Languages, Boulder, CO, USA, 3–6 September1996; pp. 336–343. [Google Scholar] [CrossRef]
- Chi, E. A taxonomy of visualization techniques using the data state reference model. In Proceedings of the IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings, Salt Lake City, UT, USA, 9–10 October 2000; pp. 69–75. [Google Scholar] [CrossRef]
- Munzner, T. A Nested Model for Visualization Design and Validation. IEEE Trans. Vis. Comput. Graph. 2009, 15, 921–928. [Google Scholar] [CrossRef]
- Tory, M.; Möller, T. Rethinking Visualization: A High-Level Taxonomy. In Proceedings of the IEEE Symposium on Information Visualization, Austin, TX, USA, 10–12 October 2004; pp. 151–158. [Google Scholar] [CrossRef]
- Brehmer, M.; Munzner, T. A Multi-Level Typology of Abstract Visualization Tasks. IEEE Trans. Vis. Comput. Graph. 2013, 19, 2376–2385. [Google Scholar] [CrossRef]
- Gruber, T. Ontology. In Encyclopedia of Database Systems; Liu, L., Özsu, M.T., Eds.; Springer: New York, NY, USA, 2018; pp. 2574–2576. [Google Scholar] [CrossRef]
- Brodlie, K.W.; Duce, D.A.; Herman, I.; Duke, D.J. Do You See What I Mean? IEEE Comput. Graph. Appl. 2005, 25, 6–9. [Google Scholar] [CrossRef]
- Keim, D.A.; Kohlhammer, J.; Ellis, G.; Mansmann, F. Mastering the Information Age: Solving Problems with Visual Analytics; Eurographics Association: Goslar, Germany, 2010. [Google Scholar] [CrossRef]
- Card, S.K.; Mackinlay, J.D.; Shneiderman, B. (Eds.) Readings in Information Visualization: Using Vision to Think; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1999. [Google Scholar]
- Satyanarayan, A.; Moritz, D.; Wongsuphasawat, K.; Heer, J. Vega-Lite: A Grammar of Interactive Graphics. IEEE Trans. Vis. Comput. Graph. 2017, 23, 341–350. [Google Scholar] [CrossRef]
- Heer, J.; Mackinlay, J.; Stolte, C.; Agrawala, M. Graphical Histories for Visualization: Supporting Analysis, Communication, and Evaluation. IEEE Trans. Vis. Comput. Graph. 2008, 14, 1189–1196. [Google Scholar] [CrossRef]
- Lhuillier, A.; Hurter, C.; Telea, A. State of the Art in Edge and Trail Bundling Techniques. Comput. Graph. Forum 2017, 36, 619–645. [Google Scholar] [CrossRef]
- Mackinlay, J.D. Automating the Design of Graphical Presentations of Relational Information. ACM Trans. Graph. 1986, 5, 110–141. [Google Scholar] [CrossRef]
- Munzner, T. Visualization Analysis and Design, 1st ed.; A K Peters/CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar] [CrossRef]
- Duke, D.J.; Brodlie, K.W.; Duce, D.A. Building an Ontology of Visualization. In Proceedings of the IEEE Visualization 2004 (Poster Session), Austin, TX, USA, 10–15 October 2004. [Google Scholar] [CrossRef]
- Shu, G.; Avis, N.J.; Rana, O.F. Bringing Semantics to Visualization Services. Adv. Eng. Softw. 2008, 39, 514–520. [Google Scholar] [CrossRef]
- Pérez, A.M.; Pérez-Risquet, C.; Gómez, J.M. An Enhanced Visualization Ontology for a Better Representation of the Visualization Process. In ICT Innovations 2010: Third International Conference, Ohrid, Macedonia, 12–15 September 2010. Revised Selected Papers; Communications in Computer and Information, Science; Gusev, M., Mitrevski, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 83, pp. 342–347. [Google Scholar] [CrossRef]
- Polowinski, J.; Voigt, M. VISO: A Shared, Formal Knowledge Base as a Foundation for Semi-Automatic InfoVis Systems. In Proceedings of the CHI ’13 Extended Abstracts on Human Factors in Computing Systems, Paris, France, 27 April–2 May 2013; pp. 1791–1796. [Google Scholar] [CrossRef]
- Sacha, D.; Kraus, M.; Keim, D.A.; Chen, M. VIS4ML: An Ontology for Visual Analytics Assisted Machine Learning. IEEE Trans. Vis. Comput. Graph. 2019, 25, 385–395. [Google Scholar] [CrossRef]
- Gilson, O.; Silva, N.; Grant, P.W.; Chen, M. From Web Data to Visualization via Ontology Mapping. Comput. Graph. Forum 2008, 27, 959–966. [Google Scholar] [CrossRef]
- Asprino, L.; Colonna, C.; Mongiovì, M.; Porena, M.; Presutti, V. Pattern-based Visualization of Knowledge Graphs. arXiv 2021, arXiv:2106.12857. [Google Scholar] [CrossRef]
- Murillo-Morales, T.; Miesenberger, K. Ontology-based Semantic Support to Improve Accessibility of Graphics. In Assistive Technology: Building Bridges; Studies in Health Technology and Informatics; IOS Press: Amsterdam, The Netherlands, 2015; Volume 217, pp. 255–260. [Google Scholar] [CrossRef]
- Murillo-Morales, T.; Miesenberger, K. Formalizing Visualization Semantics for Accessibility. In Proceedings of the 4th International Workshop on Digitization and E-Inclusion in Mathematics and Science (DEIMS 2021), Nihon University, Tokyo, Japan, 18-19 February 2021; pp. 47–54. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Rio, N.D.; da Silva, P.P. VisKo: Semantic Web Support for Information and Scientific Visualization; Technical Report UTEP-CS-11-58; University of Texas at El Paso: El Paso, TX, USA, 2011. [Google Scholar]
- Fabbri, R.; de Oliveira, M.C.F. Audiovisual Analytics Vocabulary and Ontology (AAVO): Initial core and example expansion. arXiv 2017, arXiv:1710.09954. [Google Scholar] [CrossRef]
- Sun, K.; Zhu, Y.; Pan, P.; Hou, Z.; Wang, D.; Li, W.; Song, J. Geospatial data ontology: The semantic foundation of geospatial data integration and sharing. Big Earth Data 2019, 3, 269–296. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhou, B.; Soylu, A.; Kharlamov, E. Towards a Visualisation Ontology for Data Analysis in Industrial Applications. In Proceedings of the 1st International Workshop on Semantic Industrial Information Modelling (SemIIM 2022) Co-Located with the 19th Extended Semantic Web Conference. CEUR-WS.org, Hersonissos, Greece, 30 May 2022; CEUR Workshop Proceedings. Volume 3355, pp. 1–6. [Google Scholar]
- Fernández-López, M.; Gómez-Pérez, A.; Juristo, N. METHONTOLOGY: From Ontological Art Towards Ontological Engineering. In Proceedings of the AAAI Conference on Artificial Intelligence; 1997. Available online: https://aaai.org/papers/0005-ss97-06-005-methontology-from-ontological-art-towards-ontological-engineering/ (accessed on 5 August 2025).
- Raad, J.; Cruz, C. A Survey on Ontology Evaluation Methods. In Proceedings of the International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2015, Lisbon, Portugal, 12–14 November 2015; pp. 179–186. [Google Scholar] [CrossRef]
- Duque-Ramos, A.; Fernandez-Breis, J.; Stevens, R.; Aussenac-Gilles, N. OQuaRE: A SQuaRE-based approach for evaluating the quality of ontologies. J. Res. Pract. Inf. Technol. 2011, 43, 159–176. [Google Scholar]
- Duque-Ramos, A.; Fernández-Breis, J.T.; Iniesta, M.; Dumontier, M.; Egaña Aranguren, M.; Schulz, S.; Aussenac-Gilles, N.; Stevens, R. Evaluation of the OQuaRE Framework for Ontology Quality. Expert Syst. Appl. 2013, 40, 2696–2703. [Google Scholar] [CrossRef]
- Bandeira, J.; Bittencourt, I.I.; Espinheira, P.; Isotani, S. FOCA: A Methodology for Ontology Evaluation. arXiv 2017, arXiv:1612.03353. [Google Scholar] [CrossRef]
- Martin, J.; Axelsson, J.; Carlson, J.; Suryadevara, J. Evaluation of Systems Engineering Ontologies: Experiences from Developing a Capability and Mission Ontology for Systems of Systems. In Proceedings of the 2024 IEEE International Symposium on Systems Engineering (ISSE), Perugia, Italy, 16–19 October 2024; pp. 1–8. [Google Scholar] [CrossRef]
- Voigt, M.; Polowiński, J. Towards a Unifying Visualization Ontology (VISO); Technical Report TUD-FI11-01; Technische Universität Dresden, Institut für Software- und Multimediatechnik: Dresden, Germany, 2011. [Google Scholar]
- Polowinski, J. Ontology-Driven, Guided Visualisation Supporting Explicit and Composable Mappings. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2017. [Google Scholar]
- Polowinski, J. Towards RVL: A declarative language for visualizing RDFS/OWL data. In Proceedings of the 3rd International Conference on Web Intelligence, Mining and Semantics, WIMS ’13, Madrid, Spain, 12–14 June 2013. [Google Scholar] [CrossRef]
- Voigt, M.; Franke, M.; Meißner, K. Using Expert and Empirical Knowledge for Context-aware Recommendation of Visualization Components. Int. J. Adv. Life Sci. 2013, 5, 27–41. [Google Scholar]
- Del Rio, N.; Pinheiro da Silva, P. Capturing and Using Knowledge about the Use of Visualization Toolkits. In Proceedings of the AAAI Fall Symposium Series—Discovery Informatics: The Role of AI Research in Innovating Scientific Processes (FS-12-03), Arlington, TX, USA, 2–4 November 2012; AAAI Press: Menlo Park, CA, USA, 2012. [Google Scholar]
- Sacha, D.; Kraus, M.; Keim, D.A.; Chen, M. VIS4ML Supplement: Glossary and Ontology Notation. 2018. Available online: https://gitlab.dbvis.de/sacha/VIS4ML/-/blob/master/vis4ml-glossary-ontology.pdf (accessed on 5 August 2025).
- Sacha, D.; Kraus, M.; Keim, D.A.; Chen, M. VIS4ML Supplement: Four Example Workflows—Detailed Modeling. 2018. Available online: https://gitlab.dbvis.de/sacha/VIS4ML/-/blob/master/ExampleWorkflows.pdf (accessed on 5 August 2025).
- Sacha, D.; Kraus, M.; Keim, D.A.; Chen, M. VIS4ML Supplement: Martins’ Pathway—VA-Assisted Handwriting Recognition Workflow. 2018. Available online: https://gitlab.dbvis.de/sacha/VIS4ML/-/blob/master/Martins_Pathway.pdf (accessed on 5 August 2025).
- Sacha, D.; Kraus, M.; Keim, D.A.; Chen, M. VIS4ML Supplement: Requirements and Goals for Using Visualizations to Assist Machine Learning. 2018. Available online: https://gitlab.dbvis.de/sacha/VIS4ML/-/blob/master/vis4ml-requirements-analysis.pdf (accessed on 5 August 2025).
- Gilson, O.; Silva, N.; Grant, P.W.; Chen, M.; Rocha, J. Information Realisation: Textual, Graphical and Audial Representations of the Semantic Web. In Proceedings of the I-KNOW ’06—Special Track on Knowledge Visualization and Knowledge Discovery, Graz, Austria, 6–8 September 2006. [Google Scholar]
- Gilson, O.T. An Ontological Approach to Information Visualization. Ph.D. Thesis, Swansea University, Swansea, UK, 2008. [Google Scholar]
- Gilson, O.; Silva, N.; Grant, P.W.; Chen, M.; Rocha, J. VizThis: Rule–based Semantically Assisted Information Visualization. Available online: https://www.researchgate.net/publication/228428180_VizThis_Rule-Based_semantically_assisted_information_visualization (accessed on 5 August 2025).
- Gilson, O.; Grant, P.W.; Chen, M. Reducing the Complexity of Semantic Data Translation. In Proceedings of the International Semantic Web Doctoral Symposium (ISWDS 2005) at ISWC 2005, Galway, Ireland, 6–10 November 2005. [Google Scholar]
- Baudel, T. Browsing through an information visualization design space. In Proceedings of the CHI ’04 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’04, Vienna, Austria, 24–29 April 2004; pp. 765–766. [Google Scholar] [CrossRef]
- Geroimenko, V.; Geroimenko, L. SVG and X3D: New XML Technologies for 2D and 3D Visualization. In Visualizing the Semantic Web; Geroimenko, V., Chen, C., Eds.; Springer: London, UK, 2006; pp. 124–133. [Google Scholar] [CrossRef]
- Munzner, T. Visualization Analysis and Design. In Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques Conference Courses, Vancouver, BC, Canada, 10–14 August 2025. SIGGRAPH Courses ’25. [Google Scholar] [CrossRef]
- Zhou, B.; Tan, Z.; Zheng, Z.; Zhou, D.; Savkovic, O.; Kharlamov, E. Towards a Visualisation Ontology for Reusable Visual Analytics. In Proceedings of the 11th International Joint Conference on Knowledge Graphs (IJCKG 2022), Hangzhou, China, 27–28 October 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 99–103. [Google Scholar] [CrossRef]
- Heer, J.; Shneiderman, B. Interactive dynamics for visual analysis. Commun. ACM 2012, 55, 45–54. [Google Scholar] [CrossRef]
- Gangemi, A.; Catenacci, C.; Ciaramita, M.; Lehmann, J. Modelling Ontology Evaluation and Validation. In The Semantic Web: Research and Applications. ESWC 2006; Sure, Y., Domingue, J., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4011, pp. 140–154. [Google Scholar] [CrossRef]
- Sharma, R. Ontologies, LLMs and Knowledge Graphs: A Discussion. Medium Blog. 2025. Available online: https://nachi-keta.medium.com/ontologies-llms-and-knowledge-graphs-a-discussion-cadeeabe1cc7 (accessed on 16 September 2025).
- Leida, M.; Du, X.; Taylor, P.; Majeed, B. Toward Automatic Generation of SPARQL Result Set Visualizations: A Use Case in Service Monitoring. In Proceedings of the International Conference on e-Business (ICE-B), Seville, Spain, 18–21 July 2011; pp. 181–186. [Google Scholar] [CrossRef]
- Neuhaus, F. Ontologies in the era of large language models—A perspective. Appl. Ontol. 2023, 18, 399–407. [Google Scholar] [CrossRef]
- Lippolis, A.S.; Saeedizade, M.J.; Keskisärkkä, R.; Zuppiroli, S.; Ceriani, M.; Gangemi, A.; Blomqvist, E.; Nuzzolese, A.G. Ontology Generation Using Large Language Models. In Proceedings of the 22nd European Semantic Web Conference (ESWC 2025), Portorož, Slovenia, 1–5 June 2025; Springer: Berlin, Heidelberg, Germany, 2025; pp. 321–341. [Google Scholar] [CrossRef]
- Rhodes, P.; Kraemer, E.; Reed, B. VisIOn: An interactive visualization ontology. In Proceedings of the 44th Annual ACM Southeast Conference, ACMSE ’06, Melbourne, FL, USA, 10–12 March 2006; pp. 405–410. [Google Scholar] [CrossRef]
- Xie, L.; Zheng, Y.; Shen, B. Ontology Construction for Scientific Visualization. In Proceedings of the First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS’06), Hangzhou, China, 20–24 June 2006; Volume 1, pp. 778–784. [Google Scholar] [CrossRef]
- Métral, C.; Ghoula, N.; Falquet, G. An ontology of 3D visualization techniques for enriched 3D city models. In Proceedings of the Usage, Usability, and Utility of 3D City Models (3U3D 2012), Online, 29–31 October 2012; EDP Sciences: Paris, France, 2012. [Google Scholar] [CrossRef]
- Sobral, T.; Galvão, T.; Borges, J. VUMO: Towards an ontology of urban mobility events for supporting semi-automatic visualization tools. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 1700–1705. [Google Scholar] [CrossRef]
- Morshed, A.; Forkan, A.R.M.; Shah, T.; Jayaraman, P.P.; Georgakopoulos, D.; Ranjan, R. Visual Analytics Ontology-Guided I-DE System: A Case Study of Head and Neck Cancer in Australia. In Proceedings of the 4th IEEE International Conference on Collaboration and Internet Computing (CIC 2018), Philadelphia, PA, USA, 18–20 October 2018; pp. 424–429. [Google Scholar] [CrossRef]
- Chen, M.; Ebert, D.S. An ontological framework for supporting the design and evaluation of visual analytics systems. Comput. Graph. Forum 2019, 38, 131–144. [Google Scholar] [CrossRef]
- Quinn, J.Y.; Cox III, R.S.; Adler, A.; Beal, J.; Bhatia, S.; Cai, J.; Chen, J.; Clancy, K.; Galdzicki, M.; Hillson, N.J.; et al. SBOL Visual 2.0 Ontology: Symbolic Visual Notation for Genetic Designs. ACS Synth. Biol. 2020, 9, 1441–1452. [Google Scholar] [CrossRef]
- Sevilla, J.; Casanova-Salas, P.; Casas-Yrurzum, S.; Portalés, C. Multi-Purpose Ontology-Based Visualization of Spatio-Temporal Data: A Case Study on Silk Heritage. Appl. Sci. 2021, 11, 1682. [Google Scholar] [CrossRef]
- Sevilla, J.; Samper, J.J.; Fernández, M.; León, A. Ontology and Software Tools for the Formalization of the Visualisation of Cultural Heritage Knowledge Graphs. Heritage 2023, 6, 4722–4736. [Google Scholar] [CrossRef]

| Ontology | Why It Satisfies the Prerogatives |
|---|---|
| VISO | Generic backbone for marks, encodings, data, tasks, and interaction; OWL on GitHub; reused by VizBoard and several recommendation prototypes; introduced at [19]. |
| VisKo | Three public OWL/RDF ontologies (View, Operator, Service) capture generic pipelines and rendering services; reused in SciVis workflow research; UTEP tech-report [26]. |
| VIS4ML | Although centered on ML, its classes (Data, Task, View, Interaction, Workflow-Stage) are generic; OWL on GitLab; widely cited in VA-for-ML literature [20]. |
| SemViz | Early (2007) generic vocabulary and 2D/3D viewers; RDF + demo code still online; referenced in linked-data visualization surveys [21]. |
| AAVO | Formal OWL + SKOS linking data-mining tasks, visual encodings and sonification; artefacts on arXiv/GitHub; cited in audiovisual analytics research [27]. |
| OntoVis | Upper-level OWL-2 vocabulary of graphic objects, layers, and spaces aimed at accessible diagrams; artefacts in CEUR-WS vol. 2859; referenced in accessibility and SVG-semantics research [23]. |
| VisuOnto | Industrial yet domain-agnostic ontology of charts, workflow steps, and constraints; OWL published (SemIIM and IJCKG 2022); reused in Bosch manufacturing knowledge graphs [29]. |
| Ontology | Purpose (Concise) | Primary Application Area |
|---|---|---|
| VISO | Semantic backbone for graphics, data, and effectiveness knowledge | Information visualization design; RVL/AVM integration |
| VisKo | Encodes operators, services, and views for pipeline composition | Geoscience, astronomy, image/volume processing |
| VIS4ML | Models VA-supported ML processes and artefacts | ML pipelines with human—AI interaction |
| SemViz | Semantic mapping from domain ontologies to visualization grammars | Linked-Data/Web visualization; automatic chart selection |
| AAVO | Links data, processing, and visual/audio outputs (OWL + SKOS) | Audiovisual analytics; multimodal dashboards |
| OntoVis (full) | Layered lexicon of visual entities, grammar, data, and tasks | Accessible graphics; assistive/NLI interfaces; queryable diagrams |
| VisuOnto | Models industrial visualization tasks, methods, and pipelines | Manufacturing dashboards; ML results (Bosch use cases) |
| Visualization Subfield | VISO | VisKo | VIS4ML | SemViz | AAVO | OntoVis | VisuOnto |
|---|---|---|---|---|---|---|---|
| Information Visualization (InfoVis) | ✓ | - | - | ✓ | ✓ | ✓ | ✓ |
| Scientific Visualization (SciVis) | - | ✓ | - | - | - | - | - |
| Visual Analytics (VA) | ✓ | - | ✓ | - | ✓ | - | ✓ |
| Graph/Linked-Data Visualization | - | - | - | ✓ | - | - | - |
| Multimedia/Accessibility | - | - | - | - | ✓ | ✓ | - |
| Domain-specific (ML, Industry) | - | - | ✓ | - | - | - | ✓ |
| Category | VISO | VisKo | VIS4ML | SemViz | AAVO | OntoVis | VisuOnto |
|---|---|---|---|---|---|---|---|
| General-purpose core | ✓ | ✓ | - | ✓ | - | - | - |
| Domain-specific | - | - | ✓ | - | - | - | ✓ |
| Accessibility/Media | - | - | - | - | ✓ | ✓ | - |
| Ontology | Task Coverage Description |
|---|---|
| VISO | Describe and annotate graphics; overview, filter, zoom, compare; link views; provide suitability/effectiveness guidance (via facts). |
| VisKo | Compose pipelines: convert, subset/filter, resample/interpolate, map (operator→view), render, view. |
| VIS4ML | Cover full ML pipeline: prepare data; feature/parameter/split setup; model training with monitoring/steering; evaluation and interpretation. |
| SemViz | Label result schema, select chart type, bind template (rules/bridges), render automatically. |
| AAVO | Preprocess and transform data; visualize/sonify; monitor and report outcomes in audiovisual analytics. |
| OntoVis | Provide curated VTO tasks: compare, characterize distribution, find anomalies, compute aggregates, sort/rank; grounded in UVO/VDO/DDO primitives. |
| VAO | Support annotation tasks: segment regions, extract MPEG-7 descriptors, link prototypes, tag concepts; retrieve and explain multimedia content. |
| Task | VISO | VisKo | VIS4ML | SemViz | AAVO | OntoVis | VisuOnto |
|---|---|---|---|---|---|---|---|
| Data acquisition | - | △ | △ | △ | △ | - | ✓ |
| Data cleaning/preprocessing | - | - | △ | - | ✓ | - | ✓ |
| Data transformation/wrangling | △ | ✓ | ✓ | △ | ✓ | △ | ✓ |
| Data mapping/abstraction | ✓ | ✓ | ✓ | ✓ | △ | ✓ | ✓ |
| Visual encoding design | ✓ | △ | ✓ | ✓ | ✓ | ✓ | ✓ |
| Layout and composition | ✓ | △ | △ | △ | △ | ✓ | △ |
| Rendering | △ | ✓ | △ | ✓ | △ | ✓ | △ |
| User interpretation/analysis | - | △ | ✓ | △ | △ | △ | ✓ |
| Task | VISO | VisKo | VIS4ML | SemViz | AAVO | OntoVis | VisuOnto |
|---|---|---|---|---|---|---|---|
| Interaction design | ✓ | △ | ✓ | △ | △ | ✓ | ✓ |
| Evaluation and refinement | △ | △ | △ | △ | - | △ | ✓ |
| Annotation/storytelling | - | - | △ | - | - | - | △ |
| Reuse/modularization | △ | ✓ | △ | - | △ | ✓ | △ |
| Data Category (Shneiderman) | VISO | VisKo | VIS4ML | SemViz | AAVO | OntoVis | VisuOnto |
|---|---|---|---|---|---|---|---|
| 1D/Linear sequences | △ | △ | ✓ | △ | △ | - | ✓ |
| 2D/Planar (maps, layouts) | ✓ | ✓ | △ | △ | △ | ✓ | △ |
| 3D/Volumetric/surfaces | △ | ✓ | - | - | - | - | - |
| Temporal/time-series | △ | △ | ✓ | △ | ✓ | - | ✓ |
| Multidimensional/tabular | ✓ | ✓ | ✓ | ✓ | ✓ | △ | ✓ |
| Hierarchical/tree | ✓ | - | - | △ | - | ✓ | △ |
| Network/graph | ✓ | △ | △ | ✓ | - | ✓ | - |
| Text/documents | - | - | - | △ | - | △ | - |
| Multimedia (image, video, audio) | - | - | - | - | ✓ | △ | - |
| Extended Data Category | VISO | VisKo | VIS4ML | SemViz | AAVO | OntoVis | VisuOnto |
|---|---|---|---|---|---|---|---|
| Uncertainty | - | - | ✓ | - | - | - | - |
| Streaming | - | - | - | - | - | - | - |
| Geospatial | ✓ | ✓ | - | △ | - | - | △ |
| Interaction semantics | ✓ | △ | ✓ | - | △ | ✓ | ✓ |
| Analytical models | - | - | ✓ | - | - | - | ✓ |
| Multimodal | - | - | - | - | ✓ | ✓ | - |
| Narrative/Provenance | △ | ✓ | △ | △ | - | ✓ | - |
| Ontology | Technique Family | Concrete Techniques |
|---|---|---|
| VISO | Statistical | BarChart, PieChart, LineChart, ScatterPlot, Histogram |
| Network/Relational | NodeLinkDiagram, ForceDirectedLayout | |
| Hierarchical | TreeDiagram, Treemap | |
| Scientific/Spatial | Map, ChoroplethMap | |
| Dimensionality Reduction/ML | — | |
| Audio/Sonification | — | |
| VisuOnto | Statistical | LinePlotMethod, ScatterPlotMethod, HistogramMethod, PieChartMethod, HeatmapMethod |
| Network/Relational | — | |
| Scientific/Spatial | — | |
| Dimensionality Reduction/ML | — | |
| Audio/Sonification | — | |
| VIS4ML | Statistical | Scatterplot, HeatMap, ROC curve, ConfusionMatrix |
| Network/Relational | — | |
| Scientific/Spatial | — | |
| Dimensionality Reduction/ML | Projection/DimensionalityReduction (e.g., PCA, t-SNE) | |
| Audio/Sonification | — | |
| VisKo | Statistical | ScatterPlot, ContourPlot |
| Network/Relational | — | |
| Scientific/Spatial | IsoSurface, VolumeRendering, 2D/3D SurfacePlot | |
| Dimensionality Reduction/ML | — | |
| Audio/Sonification | — | |
| AAVO | Statistical | Histogram, Scatter Plot, Heat Map, Timeline |
| Network/Relational | — | |
| Scientific/Spatial | — | |
| Dimensionality Reduction/ML | — | |
| Audio/Sonification | — | |
| OntoVis (UVO+) | Statistical | Abstract Marks only (no concrete chart classes) |
| Network/Relational | — | |
| Scientific/Spatial | — | |
| Dimensionality Reduction/ML | — | |
| Audio/Sonification | — | |
| SemViz | Statistical | Bar, Line, Pie, Treemap, Node–Link (chart templates for SPARQL results) |
| Network/Relational | — | |
| Scientific/Spatial | — | |
| Dimensionality Reduction/ML | — | |
| Audio/Sonification | — |
| Category/Feature | VISO | VisKo | VIS4ML | SemViz | AAVO | OntoVis (UVO+) | VisuOnto |
|---|---|---|---|---|---|---|---|
| Interaction types | |||||||
| Filtering | ✓ | — | ✓ | — | — | — | ✓ |
| Zooming | ✓ | — | — | — | — | — | ✓ |
| Brushing | — | — | — | — | — | — | ✓ |
| Linking | △ | — | — | — | — | — | ✓ |
| Annotation | — | — | — | — | — | — | ✓ |
| Editing | — | — | — | — | — | — | ✓ |
| User roles | |||||||
| Creators (designer, developer, researcher) | ✓ | — | ✓ | — | — | — | ✓ |
| Analysts (domain analyst, decision-maker) | ✓ | — | ✓ | — | — | — | ✓ |
| Consumers (end-user, learner, system) | ✓ | — | ✓ | — | — | — | ✓ |
| Tasks and goals | |||||||
| Analysis | ✓ | △ | ✓ | — | — | ✓ | ✓ |
| Exploration | ✓ | — | ✓ | — | — | ✓ | ✓ |
| Envisionment | — | — | ✓ | — | — | ✓ | ✓ |
| Interpretation | ✓ | △ | ✓ | — | — | ✓ | ✓ |
| Ontology | Low-Level | Mid-Level | High-Level | Reference |
|---|---|---|---|---|
| VISO | ✓ | ✓ | ✓ | [19] |
| VisKo | — | ✓ | ✓ | [26] |
| VIS4ML | — | ✓ | ✓ | [20] |
| SemViz | ✓ | ✓ | — | [21] |
| AAVO | — | ✓ | △ | [27] |
| OntoVis | ✓ | ✓ | ✓ | [24] |
| VisuOnto | — | ✓ | ✓ | [52] |
| Ontology | Competency Questions | Workflow Validation | User Studies | Tool Demonstrators | Ontology Metrics |
|---|---|---|---|---|---|
| VISO | - | - | - | ✓ | - |
| VisKo | - | ✓ | - | ✓ | - |
| VIS4ML | ✓ | ✓ | - | ✓ | - |
| SemViz | - | ✓ | ✓ | ✓ | - |
| AAVO | - | - | - | ✓ | - |
| OntoVis (UVO+) | - | ✓ | - | ✓ | ✓ |
| VisuOnto | ✓ | ✓ | - | ✓ | ✓ |
| Ontology | OWL Repository/URL | Key Notes |
|---|---|---|
| VISO | https://github.com/viso-ontology, accessed on 5 August 2025 | OWL file available; structural counts not yet reported. |
| VisKo | https://github.com/orgs/openvisko/repositories/, accessed on 5 August 2025 | Multiple OWL modules (Operator, View, Alternate); supports service pipelines; counts vary by package. |
| VIS4ML | https://gitlab.dbvis.de/sacha/VIS4ML/, accessed on 5 August 2025 | OWL file and interactive browser; models VA–ML workflow integration. |
| AAVO | https://github.com/ttm/aavo/, accessed on 5 August 2025 | Full and minimal OWL/SKOS versions; includes build scripts and TTL examples. |
| OntoVis | https://ontovis.integriert-studieren.jku.at/ontovis-full/, accessed on 5 August 2025 | Integrated multi-layer ontology stack. |
| VisuOnto | Not publicly available. Results as reported in [52] | Structural metrics reported in paper only (30 classes, 11 object properties, 142 data properties). |
| Metric | VisuOnto | OntoVis | VIS4ML | AAVO (Full) | VisKo (Packages) | VISO |
|---|---|---|---|---|---|---|
| # Classes | 30 | 94 | 68 | 27 | ∼55 | 93 |
| # Object properties | 11 | 34 | 11 | 8 | 12 | 15 |
| # Data properties | 142 | 18 | 0 | 1 | 6 | 27 |
| Total axioms/triples | 504 | — | 433 | 106 | ∼4562 triples | 1003 |
| Logical axioms | — | — | 269 | 0 | — | — |
| Individuals | — | 151 | 0 | 0 | ∼119 (61 operators, 39 services, 10 views, 9 toolkits) | 50 |
| DL expressivity | EL (OWL 2 EL) | — | — | — | — | — |
| Max depth (Dmax) | ∼3 | — | 5 | 0 | 3 | 5 |
| Avg depth (Davg) | ∼1.8 | — | 3.51 | 0.0 | 1.4 | 1.12 |
| Avg fan-out | ∼2.1 | — | 0.99 | 0.0 | 0.9 | 0.63 |
| Width balance (CV) | ∼0.6 | — | 2.45 | 0.00 | 0.6 | 2.24 |
| Label coverage % | ∼100% | — | 0% | 100% | 0% | — |
| Definition coverage % | Low (0–10%) | — | 95.6% | 0% | 10–20% | — |
| Synonym coverage % | 0% | — | 0% | 0% | 0% | 0% |
| Naming hygiene | Good | — | Moderate–High | High | Moderate | Low–moderate |
| Reuse/external IRIs | Low | — | Low | Low | High (OWL-S, GMT, VTK, NCL) | Moderate–High |
| Modularity/cohesion | Low–moderate (3 core areas) | Layered (UVO + VDO + DDO + VTO) | — | — | View/Operator/ Service | Modular (multi-module) |
| Ontology/Case | Within Value | Data Transformation | Analytical Abstraction | Visualization Transformation | Visualization Abstraction | Visual Mapping | Within View |
|---|---|---|---|---|---|---|---|
| VisuOnto— ML predictions | — | ✓ | ✓ | ✓ | ✓ | ✓ | — |
| VisuOnto— Dataset overview | — | ✓ | — | ✓ | ✓ | ✓ | — |
| VIS4ML | — | ✓ | ✓ | ✓ | △ | △ | — |
| VISO | — | — | — | ✓ | ✓ | △ | — |
| VisKo | — | ✓ | △ | ✓ | ✓ | △ | — |
| SemViz | ✓ | ✓ | — | ✓ | ✓ | ✓ | — |
| AAVO | — | ✓ | — | △ | △ | — | — |
| OntoVis | — | — | — | ✓ | ✓ | ✓ | — |
| Ontology | Standards Compliance | Modular Design (No. of Modules) | Interdisciplinary Links/Reused Vocabularies | Extensibility Mechanism |
|---|---|---|---|---|
| VISO | OWL 2 DL, RDF | 5 | FOAF (graphic modules) | Modular imports; declarative mapping composition (RVL) |
| VisKo | RDF, OWL-S | 3 | PML-P, OWL-S | Operator/service extension |
| VIS4ML | OWL 2 | 1 | Self-contained with no external vocabularies reused | Extensible via Process/IO-Entity hierarchies (pillars) |
| SemViz | RDF, OWL | 3 | OMEN framework | Extendable schema |
| AAVO | OWL, SKOS | 2 variants of same | Dublin Core, SKOS | SKOS expansion; OWL subclassing |
| OntoVis (UVO+) | RDF, OWL 2 | 4 | Dublin Core | Layered hierarchy |
| VisuOnto | OWL 2 EL | reported as Modular | — | Workflow templates |
| Row↓/Col→ | VISO | VisKo | VIS4ML | SemViz | AAVO | OntoVis | VisuOnto |
|---|---|---|---|---|---|---|---|
| VISO | △D | △B | ✓A,B | △F | △E | △B | |
| VisKo | △D | △D | △D | -F | △E | △A,B | |
| VIS4ML | △B | △D | △B | △F | △E | ✓A,B | |
| SemViz | ✓A,B | △D | △B | △F | △E | △A,B | |
| AAVO | △F | -F | △F | △F | △E,F | △F | |
| OntoVis | △E | △E | △E | △E | △E,F | △E | |
| VisuOnto | △B | △A,B | ✓A,B | △A,B | △F | △E |
| Ontology | Example Application/Deployment | Reference |
|---|---|---|
| VISO | Declarative mapping to Abstract Visual Model (AVM) via RVL prototypes | [19] |
| VisKo | OpenVisKo toolkit with operator/view ontologies and example pipelines | [26] |
| VIS4ML | Ontology browser/demonstrator; applied in teaching and VA-assisted ML research | [20] |
| AAVO | OWL/SKOS artefacts with proof-of-concept for audiovisual analytics | [27] |
| OntoVis | Accessible/NLI pipelines (e.g., AUDiaL); public OWLDoc vocabulary for annotation | [24] |
| VisuOnto | Industrial analytics at Bosch (welding dashboards; ontology-driven pipelines) | [52] |
| Ontology | Primary Reference(s) | Citations |
|---|---|---|
| VISO | [19] | 32 |
| VIS4ML | [20] | 159 |
| SemViz | [21] | 100 |
| VisKo | [26,40] | 0 |
| AAVO | [27] | 0 |
| OntoVis (UVO+) | [23] | 9 |
| VisuOnto | [52] | 4 |
| Concept | Ontology | Definition/Representation |
|---|---|---|
| Chart | SemViz | Encoded as chart family (e.g., bar, treemap) under Visual Representation Ontology |
| VisuOnto | Dashboard-level chart types (LinePlot, ScatterPlot, Heatmap) | |
| OntoVis | No concrete chart classes; instead represented through Graphic_Relation individuals such as Statistical_Chart_GR. | |
| Visual Representation | VISO | Graphical marks, encodings, and layout properties |
| VIS4ML | Views of ML model stages (e.g., ROC, confusion matrix) used for interpretability | |
| AAVO | Visual Representation = Image or Animation; expansion mentions auditory outputs (sonification) but not implemented in OWL | |
| OntoVis | UVO layer defines Graphic_Object, Visual_Attribute, Visual_Layer, and related classes. | |
| Mapping | VISO | Channel mappings between data and visual encodings |
| VisKo | Transformation operators between services | |
| OntoVis | Bridging properties between DDO variables and UVO/VDO entities (e.g., has_information_type, has_visual_attribute). | |
| Interaction | VISO, VIS4ML, VisuOnto | Filtering, steering, and other partial interaction support |
| SemViz, OntoVis | Not modeled explicitly (OntoVis provides syntactic roles but no interaction semantics). | |
| User Roles/Tasks | VISO | Generic user role (Analyst) and limited activity classes (Filtering, Zoom) |
| VIS4ML | Roles in ML workflows (Analyst, Developer/Creator) | |
| VisuOnto | Analysts and system users in dashboard contexts | |
| OntoVis | Defines Visualization_Task and task individuals (e.g., Compare, Distribution, Sort), but does not model user roles. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loshkovska, S.; Panov, P. Foundations for a Generic Ontology for Visualization: A Comprehensive Survey. Information 2025, 16, 915. https://doi.org/10.3390/info16100915
Loshkovska S, Panov P. Foundations for a Generic Ontology for Visualization: A Comprehensive Survey. Information. 2025; 16(10):915. https://doi.org/10.3390/info16100915
Chicago/Turabian StyleLoshkovska, Suzana, and Panče Panov. 2025. "Foundations for a Generic Ontology for Visualization: A Comprehensive Survey" Information 16, no. 10: 915. https://doi.org/10.3390/info16100915
APA StyleLoshkovska, S., & Panov, P. (2025). Foundations for a Generic Ontology for Visualization: A Comprehensive Survey. Information, 16(10), 915. https://doi.org/10.3390/info16100915

