Brain Network Analysis and Recognition Algorithm for MDD Based on Class-Specific Correlation Feature Selection
Abstract
1. Introduction
- This study employs tensor decomposition for efficient dimensionality reduction of functional connectivity features, followed by a novel topologically aware class-specific feature selection method (TA-CSMDCCMR) that identifies discriminative biomarkers for MDD and HC groups, revealing cross-subject neural patterns with clinical potential.
- We propose a specialized deep learning classifier that innovatively combines convolutional blocks for spatial feature extraction, a spatial-channel attention module for adaptive feature refinement, and a BiLSTM layer with temporal attention for capturing dynamic temporal dependencies.
- Analysis of both intersection and union feature sets reveals that MDD patients exhibit both shared network abnormalities and individual-specific connectivity patterns, providing valuable biomarkers for personalized treatment.
2. Related Work
2.1. EEG-Based Brain Network Analysis in Major Depressive Disorder
2.2. Feature Selection and Dimensionality Reduction in Brain Network Analysis
2.3. Deep Learning for EEG-Based MDD Classification
2.4. Research Gap
3. Methods
3.1. Connectivity Feature Extraction
3.2. Topologically Aware Class-Specific Feature Selection Algorithm
3.2.1. Feature Relevance and Dynamic Correlation
3.2.2. Defining Topologically Aware Redundancy
3.2.3. The TA-CSMDCCMR Criterion
Algorithm 1 Topologically Aware Class-Specific Maximal Dynamic Correlation Change and Minimal Redundancy (TA-CSMDCCMR) Algorithm. |
Require: A training set characterized by a full set of features and the class variable C with m classes ; A family of the desired number of selected features for each class ; A hyperparameter for the topological penalty. |
Ensure: A family of class-specific selected feature subsets |
|
3.3. Classifier
4. Results
4.1. Dataset
4.1.1. MODMA
4.1.2. PRED + CT
4.2. Data Processing
4.3. Experimental Settings
4.4. Classifier and Evaluation Index
4.5. Experimental Results
4.6. Comparison Experiments
4.7. Ablation Experiments
4.8. Feature Selection Results
4.9. MDD Classification Results
5. Discussion
5.1. Feature Selection Analysis
5.2. Analysis of Classification Results
5.3. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDD | Major Depressive Disorder |
EEG | Electroencephalogram |
PLV | Phase-Locking Value |
CNN | Convolutional Neural Network |
BiLSTM | Bidirectional Long Short-Term Memory |
LSTM | Long Short-Term Memory |
CSMDCCMR | Class-Specific Maximal Dynamic Correlation Change and Minimal Redundancy |
TA-CSMDCCMR | Topologically Aware CSMDCCMR |
References
- Hasin, D.S.; Goodwin, R.D.; Stinson, F.S.; Grant, B.F. Epidemiology of Major Depressive Disorder: Results From the National Epidemiologic Survey on Alcoholism and Related Conditions. Arch. Gen. Psychiatry 2005, 62, 1097–1106. [Google Scholar] [CrossRef] [PubMed]
- Mahato, S.; Paul, S. Detection of major depressive disorder using linear and non-linear features from EEG signals. Microsyst. Technol. 2019, 25, 1065–1076. [Google Scholar] [CrossRef]
- Xu, D.D.; Rao, W.W.; Cao, X.L.; Wen, S.Y.; Che, W.I.; Ng, C.H.; Ungvari, G.S.; Du, Y.; Zhang, L.; Xiang, Y.T. Prevalence of major depressive disorder in children and adolescents in China: A systematic review and meta-analysis. J. Affect. Disord. 2018, 241, 592–598. [Google Scholar] [CrossRef]
- Miller, A.H.; Raison, C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016, 16, 22–34. [Google Scholar] [CrossRef]
- Goldstein, B.I.; Shamseddeen, W.; Spirito, A.; Emslie, G.; Clarke, G.; Wagner, K.D.; Asarnow, J.R.; Vitiello, B.; Ryan, N.; Birmaher, B.; et al. Substance Use and the Treatment of Resistant Depression in Adolescents. J. Am. Acad. Child Adolesc. Psychiatry 2009, 48, 1182–1192. [Google Scholar] [CrossRef]
- Seal, A.; Bajpai, R.; Agnihotri, J.; Yazidi, A.; Herrera-Viedma, E.; Krejcar, O. DeprNet: A deep convolution neural network framework for detecting depression using EEG. IEEE Trans. Instrum. Meas. 2021, 70, 1–13. [Google Scholar] [CrossRef]
- Goldschmied, J.R.; Cheng, P.; Armitage, R.; Deldin, P.J. A preliminary investigation of the role of slow-wave activity in modulating waking EEG theta as a marker of sleep propensity in major depressive disorder. J. Affect. Disord. 2019, 257, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Murphy, O.W.; Hoy, K.; Wong, D.; Bailey, N.W.; Fitzgerald, P.B.; Segrave, R. Individuals with depression display abnormal modulation of neural oscillatory activity during working memory encoding and maintenance. Biol. Psychol. 2019, 148, 107766. [Google Scholar] [CrossRef]
- Dang, W.; Gao, Z.; Lv, D.; Sun, X.; Cheng, C. Rhythm-dependent multilayer brain network for the detection of driving fatigue. IEEE J. Biomed. Health Inform. 2020, 25, 693–700. [Google Scholar] [CrossRef]
- Croce, P.; Zappasodi, F.; Marzetti, L.; Merla, A.; Pizzella, V.; Chiarelli, A.M. Deep convolutional neural networks for feature-less automatic classification of independent components in multi-channel electrophysiological brain recordings. IEEE Trans. Biomed. Eng. 2018, 66, 2372–2380. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, D.; Ghosh, S.K.; Tripathy, R.; Sharma, M.; Acharya, U.R. Automated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signals. Comput. Biol. Med. 2021, 134, 104428. [Google Scholar] [CrossRef]
- Sporns, O. Networks of the Brain; The MIT Press: Cambridge, MA, USA, 2010. [Google Scholar] [CrossRef]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, M.P.; Sporns, O.; Collin, G.; Scheewe, T.; Mandl, R.C.W.; Cahn, W.; Goñi, J.; Hulshoff Pol, H.E.; Kahn, R.S. Abnormal Rich Club Organization and Functional Brain Dynamics in Schizophrenia. JAMA Psychiatry 2013, 70, 783–792. [Google Scholar] [CrossRef]
- Li, X.; Jing, Z.; Hu, B.; Zhu, J.; Zhong, N.; Li, M.; Ding, Z.; Yang, J.; Zhang, L.; Feng, L.; et al. A Resting-State Brain Functional Network Study in MDD Based on Minimum Spanning Tree Analysis and the Hierarchical Clustering. Complexity 2017, 2017, 11. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, C.; Wang, X.; Xu, J.; Chang, Y.; Ristaniemi, T.; Cong, F. Functional connectivity of major depression disorder using ongoing EEG during music perception. Clin. Neurophysiol. 2020, 131, 2413–2422. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, B.; Lu, X.; Zheng, M.; Fan, C.; Bi, X.; Li, Y. Anxiety and depression diagnosis method based on brain networks and convolutional neural networks. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1503–1506. [Google Scholar]
- Li, Y.; Cao, D.; Wei, L.; Tang, Y.; Wang, J. Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing. Clin. Neurophysiol. 2015, 126, 2078–2089. [Google Scholar] [CrossRef]
- Li, X.; La, R.; Wang, Y.; Hu, B.; Zhang, X. A Deep Learning Approach for Mild Depression Recognition Based on Functional Connectivity Using Electroencephalography. Front. Neurosci. 2020, 14, 192. [Google Scholar] [CrossRef]
- Sun, S.; Li, X.; Zhu, J.; Wang, Y.; La, R.; Zhang, X.; Wei, L.; Hu, B. Graph theory analysis of functional connectivity in major depression disorder with high-density resting state EEG data. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadeh, F.; Mohebbi, M.; Rostami, R. Graph theory analysis of directed functional brain networks in major depressive disorder based on EEG signal. J. Neural Eng. 2020, 17, 026010. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhou, H.; Liu, L.; Feng, L.; Yang, J.; Wang, G.; Zhong, N. Randomized EEG functional brain networks in major depressive disorders with greater resilience and lower rich-club coefficient. Clin. Neurophysiol. 2018, 129, 743–758. [Google Scholar] [CrossRef]
- Chen, W.; Cai, Y.; Li, A.; Jiang, K.; Su, Y. MDD brain network analysis based on EEG functional connectivity and graph theory. Heliyon 2024, 10, e36991. [Google Scholar] [CrossRef]
- Huang, S.S.; Yu, Y.H.; Chen, H.H.; Hung, C.C.; Wang, Y.T.; Chang, C.H.; Peng, S.J.; Kuo, P.H. Functional connectivity analysis on electroencephalography signals reveals potential biomarkers for treatment response in major depression. BMC Psychiatry 2023, 23, 554. [Google Scholar] [CrossRef] [PubMed]
- Baghernezhad, S.; Raouf, P.; Shalchyan, V.; Rostami, R.; Daliri, M.R. Graph theory analysis based on cross frequency coupling methods in major depressive disorder: A resting state EEG study. Comput. Biol. Med. 2025, 198, 111168. [Google Scholar] [CrossRef]
- Earl, E.H.; Goyal, M.; Mishra, S.; Kannan, B.; Mishra, A.; Chowdhury, N.; Mishra, P. EEG based functional connectivity in resting and emotional states may identify major depressive disorder using machine learning. Clin. Neurophysiol. 2024, 164, 130–137. [Google Scholar] [CrossRef]
- Teng, C.L.; Cong, L.; Wang, W.; Cheng, S.; Wu, M.; Dang, W.T.; Jia, M.; Ma, J.; Xu, J.; Hu, W.D. Disrupted properties of functional brain networks in major depressive disorder during emotional face recognition: An EEG study via graph theory analysis. Front. Hum. Neurosci. 2024, 18, 1338765. [Google Scholar] [CrossRef] [PubMed]
- Shim, M.; Hwang, H.J.; Lee, S.H. Toward practical machine-learning-based diagnosis for drug-naïve women with major depressive disorder using EEG channel reduction approach. J. Affect. Disord. 2023, 338, 199–206. [Google Scholar] [CrossRef]
- Hassan, M.; Kaabouch, N. Impact of feature selection techniques on the performance of machine learning models for depression detection using EEG data. Appl. Sci. 2024, 14, 10532. [Google Scholar] [CrossRef]
- Hag, A.; Handayani, D.; Altalhi, M.; Pillai, T.; Mantoro, T.; Kit, M.H.; Al-Shargie, F. Enhancing EEG-based mental stress state recognition using an improved hybrid feature selection algorithm. Sensors 2021, 21, 8370. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Chen, H.; Luo, G.; Yan, C.; Dong, Q.; Shao, X.; Li, X.; Hu, B. Clustering-fusion feature selection method in identifying major depressive disorder based on resting state EEG signals. IEEE J. Biomed. Health Inform. 2023, 27, 3152–3163. [Google Scholar] [CrossRef]
- Ma, X.A.; Xu, H.; Ju, C. Class-specific feature selection via maximal dynamic correlation change and minimal redundancy. Expert Syst. Appl. 2023, 229, 120455. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Li, J.; Zhao, Y. An EEG-based marker of functional connectivity: Detection of major depressive disorder. Cogn. Neurodynamics 2024, 18, 1671–1687. [Google Scholar] [CrossRef]
- Saeedi, A.; Saeedi, M.; Maghsoudi, A.; Shalbaf, A. Major depressive disorder diagnosis based on effective connectivity in EEG signals: A convolutional neural network and long short-term memory approach. Cogn. Neurodynamics 2021, 15, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Anik, I.A.; Kamal, A.; Kabir, M.A.; Uddin, S.; Moni, M.A. A robust deep-learning model to detect major depressive disorder utilizing EEG signals. IEEE Trans. Artif. Intell. 2024, 5, 4938–4947. [Google Scholar] [CrossRef]
- Xia, M.; Zhang, Y.; Wu, Y.; Wang, X. An end-to-end deep learning model for EEG-based major depressive disorder classification. IEEE Access 2023, 11, 41337–41347. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, S.; Jiang, H.; Li, S.; Li, T.; Pan, G. M-MDD: A multi-task deep learning framework for major depressive disorder diagnosis using EEG. Neurocomputing 2025, 636, 130008. [Google Scholar] [CrossRef]
- Aydore, S.; Pantazis, D.; Leahy, R.M. A note on the phase locking value and its properties. NeuroImage 2013, 74, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Cai, H.; Yuan, Z.; Gao, Y.; Sun, S.; Li, N.; Tian, F.; Xiao, H.; Li, J.; Yang, Z.; Li, X.; et al. A multi-modal open dataset for mental-disorder analysis. Sci. Data 2022, 9, 178. [Google Scholar] [CrossRef]
- Zhai, Y.; Yao, D. A study on the reference electrode standardization technique for a realistic head model. Comput. Methods Programs Biomed. 2004, 76, 229–238. [Google Scholar] [CrossRef]
- Cavanagh, J.F.; Napolitano, A.; Wu, C.; Mueen, A. The Patient Repository for EEG Data plus Computational Tools (PRED plus CT). Front. Neuroinfor. 2017, 11, 67. [Google Scholar] [CrossRef]
- Luu, P.; Tucker, D.M.; Makeig, S. Frontal midline theta and the error-related negativity: Neurophysiological mechanisms of action regulation. Clin. Neurophysiol. 2004, 115, 1821–1835. [Google Scholar] [CrossRef]
- Chen, X.; Kong, Y.; Chang, H.; Gao, Y.; Liu, Z.; Coatrieux, J.L.; Shu, H. MGSN: Depression EEG lightweight detection based on multiscale DGCN and SNN for multichannel topology. Biomed. Signal Process. Control 2024, 92, 106051. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, F.; Yang, L. EEG-Based Depression Recognition Using Intrinsic Time-scale Decomposition and Temporal Convolution Network. In Proceedings of the BIBE2021: The Fifth International Conference on Biological Information and Biomedical Engineering, Hangzhou, China, 20–22 July 2021. [Google Scholar] [CrossRef]
- Wang, H.G.; Meng, Q.H.; Jin, L.C.; Wang, J.B.; Hou, H.R. Amg: A depression detection model with autoencoder and multi-head graph convolutional network. In Proceedings of the 2023 42nd Chinese Control Conference (CCC), Tianjin, China, 24–26 July 2023; pp. 8551–8556. [Google Scholar]
- Sun, Y.; Hu, S.; Chambers, J.; Zhu, Y.; Tong, S. Graphic patterns of cortical functional connectivity of depressed patients on the basis of EEG measurements. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 1419–1422. [Google Scholar]
- Zhang, T.; Hu, T.; Wu, M.; Xu, Z.; Chen, C.P. ACM-GNN: Adaptive Cluster-Oriented Modularity Graph Neural Network for EEG Depression Detection. IEEE Trans. Comput. Soc. Syst. 2025, 1–13. [Google Scholar] [CrossRef]
- Yang, C.Y.; Chen, Y.Z. Support vector machine classification of patients with depression based on resting-state electroencephalography. Asian Biomed. Res. Rev. News 2024, 18, 212–223. [Google Scholar] [CrossRef]
- Liu, W.; Jia, K.; Wang, Z. Graph-based EEG approach for depression prediction: Integrating time-frequency complexity and spatial topology. Front. Neurosci. 2024, 18, 1367212. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Meng, Q.; Jin, L.; Wang, H.; Hou, H. A novel EEG-based graph convolution network for depression detection: Incorporating secondary subject partitioning and attention mechanism. Expert Syst. Appl. 2024, 239, 122356. [Google Scholar] [CrossRef]
- Fang, F.; Gao, Y.; Schulz, P.E.; Selvaraj, S.; Zhang, Y. Brain controllability distinctiveness between depression and cognitive impairment. J. Affect. Disord. 2021, 294, 847–856. [Google Scholar] [CrossRef]
- Raichle, M.E.; MacLeod, A.M.; Snyder, A.Z.; Powers, W.J.; Gusnard, D.A.; Shulman, G.L. A default mode of brain function. Proc. Natl. Acad. Sci. USA 2001, 98, 676–682. [Google Scholar] [CrossRef]
- Chen, T.; Guo, Y.; Hao, S.; Hong, R. Exploring self-attention graph pooling with EEG-based topological structure and soft label for depression detection. IEEE Trans. Affect. Comput. 2022, 13, 2106–2118. [Google Scholar] [CrossRef]
Category | Parameter | Value |
---|---|---|
Signal Processing and Feature Engineering | FIR Filter Order | 50 |
Frequency Band (Alpha) | 8–13 Hz | |
Sampling Rate | 250 Hz | |
ICA Components to Remove | 5 (out of 128) | |
HOSVD Tolerance | ||
Features Selected per Class | 50 | |
CNN Architecture | Conv. Layer 1 | Kernels: 32; Size: 3 × 3; Dropout: 0.2 |
Conv. Layer 2 | Kernels: 64; Size: 3 × 3; Dropout: 0.3 | |
Conv. Layer 3 | Kernels: 128; Size: 3 × 3; Dropout: 0.4 | |
Common CNN Parameters | Activation: ReLU; Pooling: 2 × 2 Max | |
Bi-LSTM Architecture | Hidden Layers | 2 |
Hidden Units | 128 | |
Dropout | 0.5 | |
Attention Mechanism | Self-Attention | |
Training and Optimization | Optimizer | AdamW |
Learning Rate (Initial) | 0.001 | |
Learning Rate (Minimum) | ||
LR Scheduler | Cosine Annealing (T_max: 50) | |
Weight Decay | ||
Epochs | 150 | |
Batch Size | 16 | |
Loss Function | Weighted Cross-Entropy | |
Early Stopping Patience | 20 Epochs | |
Cross-Validation | 10-fold |
Dataset | Accuracy | Sensitivity | Specificity | AUC | MSE | MAE |
---|---|---|---|---|---|---|
MODMA | 95.96 ± 1.25% | 93.40 ± 2.10% | 97.85 ± 0.95% | 95.70 ± 1.50% | 0.043 ± 0.0480 | 0.098 ± 0.1020 |
Pred + CT | 94.90 ± 1.40% | 90.95 ± 2.55% | 97.10 ± 1.10% | 96.95 ± 1.15% | 0.048 ± 0.0165 | 0.085 ± 0.0260 |
Method | Feature and Classifier | Accuracy (%) |
---|---|---|
Chen et al. [44] | Graph theory indicators | |
SGP-SL | 84.91 | |
Wang et al. [45] | Time-frequency feature | |
1TD + L-TCN | 86.67 | |
Wang et al. [46] | Spatial feature | |
AMG | 88.68 | |
Sun et al. [47] | Time-frequency feature | |
MGSN | 89.56 | |
Zhang et al. [48] | ACM-GNN | 95.46 |
Ours | PLV features CNN-BiLSTM | 95.96 |
Method | Feature and Classifier | Accuracy (%) |
---|---|---|
Zhang et al. [48] | ACM-GNN | 89.55 |
Yang & Chen [49] | t-test feature selection + SVM | 91.33 |
Liu et al. [50] | DE + SVM | 82.79 |
Liu et al. [50] | EEGNet | 90.05 |
Zhang et al. [51] | SSPA-GCN | 83.17 |
Ours | PLV features + CNN-BiLSTM | 94.90 |
Model Variant | Accuracy (%) |
---|---|
w/o Tucker Decomposition | 74.55 |
w/o Tucker Decomposition + PCA | 61.73 |
w/o TA-CSMDCCMR + ReliefF | 87.06 |
w/o CNN | 89.45 |
w/o BiLSTM | 87.09 |
w/o TA | 95.78 |
w/o classifier + SVM | 91.11 |
Full Proposed Model | 95.96 |
Region of Interest (ROI) | Hypothesized Role | Group | Mean Connectivity ± SD | Statistics (MDD vs. HC) |
---|---|---|---|---|
1. Prefrontal Lobe | Impaired emotional regulation and cognitive control | HC | 0.62 ± 0.11 | , , Cohen’s d |
MDD | 0.52 ± 0.13 | |||
2. Temporal Lobe | Dysfunction in emotional memory (hippocampus/amygdala) | HC | 0.58 ± 0.14 | , , Cohen’s d |
MDD | 0.51 ± 0.12 | |||
3. Parietal Lobe | Impaired somatic perception and information processing | HC | 0.38 ± 0.09 | , , Cohen’s d |
MDD | 0.47 ± 0.10 | |||
4. Temporoparietal Junction (TPJ) | Dysregulated self-referential processing | HC | 0.41 ± 0.10 | , , Cohen’s d |
MDD | 0.47 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Hu, Y.; Lu, J.; Gao, Y. Brain Network Analysis and Recognition Algorithm for MDD Based on Class-Specific Correlation Feature Selection. Information 2025, 16, 912. https://doi.org/10.3390/info16100912
Zhang Z, Hu Y, Lu J, Gao Y. Brain Network Analysis and Recognition Algorithm for MDD Based on Class-Specific Correlation Feature Selection. Information. 2025; 16(10):912. https://doi.org/10.3390/info16100912
Chicago/Turabian StyleZhang, Zhengnan, Yating Hu, Jiangwen Lu, and Yunyuan Gao. 2025. "Brain Network Analysis and Recognition Algorithm for MDD Based on Class-Specific Correlation Feature Selection" Information 16, no. 10: 912. https://doi.org/10.3390/info16100912
APA StyleZhang, Z., Hu, Y., Lu, J., & Gao, Y. (2025). Brain Network Analysis and Recognition Algorithm for MDD Based on Class-Specific Correlation Feature Selection. Information, 16(10), 912. https://doi.org/10.3390/info16100912