Multi-Antenna Array-Based Massive MIMO for B5G/6G: State of the Art, Challenges, and Future Research Directions
Abstract
:1. Introduction
1.1. Related Literature
1.2. Motivation and Contribution
2. Massive MIMO
2.1. Multiplexing Gain and Index Modulation
2.2. RF Chain Reduction
2.3. Unsourced Random Access
2.4. Pilot Contamination
2.5. Cell-Free M-MIMO
2.6. Hybrid Precoding
Area | Ref. | Technologies | Impact | Limitations |
---|---|---|---|---|
Multiplexing Gain and Index Modulation | [19,20,21] | Emerging index modulation | Variants in the received signal signature for improved quality | Requires reconfigurable antennas and Tx additional information bits |
[22] | Media-based modulation | Boosts signal quality at the point of interest | Intensity in the transmission of power needs to be minimal | |
[23] | The large array of antenna elements | Enhances power utilization efficiency | Persistent optimization issues in M-MIMO processing system | |
[26] | M-MIMO antennas | Performance optimization in various scenarios | Sharp and concrete approaches needed for persistent optimization issues | |
RF Chain Reduction | [27] | Phase shifting in the near field | Increase in BF gain, spatial multiplexing gain, SINR level | Cost, computational time, complexity, energy consumption |
[28] | Parasitic layer with enhanced metal strips | Achieved superior beam performance with a low number of RF chains | Integration challenges in B5G due to unknown compatibility and scalability issues | |
Unsourced Random Access | [29] | Grant-based random access | Proposes a grant-free random-access scheme for delay-critical applications | Limited channel connectivity support due to confined pilot sequence resources |
[31,32] | ALOHA, CDMA | Introduces a new grant-free unsourced random-access scheme | Unsatisfactory results with existing approaches such as ALOHA and CDMA | |
[33] | Modified coupled coding, | Revised coding techniques for unsourced random access under block-fading M-MIMO channels | Relies on the impractical assumption of I.I.D M-MIMO channels, which is not suitable for many outdoor environments | |
Pilot Contamination | [36] | Pilot training sequences | Reuse of pilot sequences in neighboring cells leads to interference issues | Potential interference issues due to frequent reuse of pilot sequences |
[37] | Pilot assignment, channel estimation | Classification of existing studies into four categories for pilot training error mitigation | Increased computing time and complexities in implementing the joint pilot assignment | |
Cell-Free M-MIMO | [39] | Cell-free M-MIMO | Advocacy in channel propagation and channel hardening | Requires significant infrastructure deployment |
[41] | Cellular, IoT, D2D services in B5G networks | Provides ubiquitous connectivity and flexibility in AP deployment | Potential scalability issues with an increasing number of devices | |
[42] | Higher-frequency spectrums | Sustains higher-frequency spectrums | May face challenges in compatibility with legacy systems | |
Hybrid Precoding | [44] | CEO-based hybrid precoding | Achieved acceptable sum-rate value and relatively higher EE | Dependence on one-bit PSs may limit performance in complex environments |
[45] | Energy reliable SI | Proposed algorithms achieved satisfactory sum-rate value | Energy-efficient designs may require complex hardware implementations |
3. M-MIMO in B5G/6G Technologies
3.1. M-MIMO with AI/ML Approaches
3.2. Reconfigurable Intelligent Surfaces
3.3. Visible Light Communication
3.4. Hybrid Beamforming
3.5. Tera Hertz Spectrum and M-MIMO
3.6. Wireless Backhaul with THz and M-MIMO Systems
3.7. MIMO System in Non-Terrestrial Networks (NTNs)
4. Challenges for M-MIMO in B5G/6G
4.1. Propagation Loss Issue
4.2. Hardware Cost and Algorithmic Complexities
4.3. High Power Consumption
4.4. Channel Estimation and Feedback Overhead
4.5. Physical Space and Aesthetics
4.6. Security
5. Open Issues and Future Research Directions
5.1. Narrow Aperture Antenna Nodes
5.2. Plasmonic Antenna Arrays
5.3. Integrated Communication and Sensing with M-MIMO
5.4. Federated Learning in M-MIMO
5.5. Infrared-Based Industry 5.0 in MIMO
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kazmi, S.H.A.; Qamar, F.; Hassan, R.; Nisar, K.; Chowdhry, B.S. Survey on joint paradigm of 5G and SDN emerging mobile technologies: Architecture, security, challenges and research directions. Wirel. Pers. Commun. 2023, 130, 2753–2800. [Google Scholar] [CrossRef]
- Siddiqui, M.U.A.; Qamar, F.; Kazmi, S.H.A.; Hassan, R.; Arfeen, A.; Nguyen, Q.N. A study on multi-antenna and pertinent technologies with AI/ML approaches for B5G/6G networks. Electronics 2022, 12, 189. [Google Scholar] [CrossRef]
- Kazmi, S.H.A.; Masood, A.; Nisar, K. Design and analysis of multi efficiency motors based high endurance multi rotor with central thrust. In Proceedings of the 2021 IEEE 15th International Conference on Application of Information and Communication Technologies (AICT), Baku, Azerbaijan, 13–15 October 2021; pp. 1–4. [Google Scholar]
- Kazmi, S.H.A.; Hassan, R.; Qamar, F.; Nisar, K.; Ibrahim, A.A.A. Security Concepts in Emerging 6G Communication: Threats, Countermeasures, Authentication Techniques and Research Directions. Symmetry 2023, 15, 1147. [Google Scholar] [CrossRef]
- Yang, B.; Yu, Z.; Lan, J.; Zhang, R.; Zhou, J.; Hong, W. Digital beamforming-based massive MIMO transceiver for 5G millimeter-wave communications. IEEE Trans. Microw. Theory Tech. 2018, 66, 3403–3418. [Google Scholar] [CrossRef]
- Björnson, E.; Larsson, E.G.; Marzetta, T.L. Massive MIMO: Ten myths and one critical question. IEEE Commun. Mag. 2016, 54, 114–123. [Google Scholar] [CrossRef]
- Qamar, F.; Gachhadar, A.; Kazmi, S.H.A.; Hassan, R. Success Probability and Spectral Efficiency Estimation Using Successive Interference Cancellation for B5G Network. In Proceedings of the 2023 IEEE International Conference on Computing (ICOCO), Langkawi, Malaysia, 9–12 October 2023; pp. 213–218. [Google Scholar]
- Kazmi, S.H.A.; Qamar, F.; Hassan, R.; Nisar, K. Routing-based Interference Mitigation in SDN enabled Beyond 5G Communication Networks: A Comprehensive Survey. IEEE Access 2023, 11, 4023–4041. [Google Scholar] [CrossRef]
- Albreem, M.A.; Juntti, M.; Shahabuddin, S. Massive MIMO Detection Techniques: A Survey. IEEE Commun. Surv. Tutor. 2019, 21, 3109–3132. [Google Scholar] [CrossRef]
- Albreem, M.A.; Alhabbash, A.H.; Shahabuddin, S.; Juntti, M. Deep Learning for Massive MIMO Uplink Detectors. IEEE Commun. Surv. Tutor. 2022, 24, 741–766. [Google Scholar] [CrossRef]
- Busari, S.A.; Huq, K.M.S.; Mumtaz, S.; Dai, L.; Rodriguez, J. Millimeter-wave massive MIMO communication for future wireless systems: A survey. IEEE Commun. Surv. Tutor. 2017, 20, 836–869. [Google Scholar] [CrossRef]
- Ly, A.; Yao, Y.-D. A Review of Deep Learning in 5G Research: Channel Coding, Massive MIMO, Multiple Access, Resource Allocation, and Network Security. IEEE Open J. Commun. Soc. 2021, 2, 396–408. [Google Scholar] [CrossRef]
- Bartsiokas, I.A.; Gkonis, P.K.; Kaklamani, D.I.; Venieris, I.S. ML-Based Radio Resource Management in 5G and Beyond Networks: A Survey. IEEE Access 2022, 10, 83507–83528. [Google Scholar] [CrossRef]
- Acheampong, A.; Martey, N.; Kumah, D.A. A comprehensive study of optimal linear pre-coding schemes for a massive MU-MIMO downlink system: A survey. Int. J. Comput. (IJC) 2019, 32, 21–33. [Google Scholar]
- Shlezinger, N.; Alexandropoulos, G.C.; Imani, M.F.; Eldar, Y.C.; Smith, D.R. Dynamic metasurface antennas for 6G extreme massive MIMO communications. IEEE Wirel. Commun. 2021, 28, 106–113. [Google Scholar] [CrossRef]
- Qamar, F.; Siddiqui, M.U.A.; Hindia, M.N.; Hassan, R.; Nguyen, Q.N. Issues, challenges, and research trends in spectrum management: A comprehensive overview and new vision for designing 6G networks. Electronics 2020, 9, 1416. [Google Scholar] [CrossRef]
- Guan, M.; Wu, Z.; Cui, Y.; Cao, X.; Wang, L.; Ye, J.; Peng, B. Efficiency evaluations based on artificial intelligence for 5G massive MIMO communication systems on high-altitude platform stations. IEEE Trans. Ind. Inform. 2019, 16, 6632–6640. [Google Scholar] [CrossRef]
- Lota, J.; Sun, S.; Rappaport, T.S.; Demosthenous, A. 5G uniform linear arrays with beamforming and spatial multiplexing at 28, 37, 64, and 71 GHz for outdoor urban communication: A two-level approach. IEEE Trans. Veh. Technol. 2017, 66, 9972–9985. [Google Scholar] [CrossRef]
- Ding, Y.; Fusco, V.; Shitvov, A.; Xiao, Y.; Li, H. Beam index modulation wireless communication with analog beamforming. IEEE Trans. Veh. Technol. 2018, 67, 6340–6354. [Google Scholar] [CrossRef]
- Basar, E. Media-based modulation for future wireless systems: A tutorial. IEEE Wirel. Commun. 2019, 26, 160–166. [Google Scholar] [CrossRef]
- Hodge, J.A.; Mishra, K.V.; Zaghloul, A.I. Intelligent time-varying metasurface transceiver for index modulation in 6G wireless networks. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1891–1895. [Google Scholar] [CrossRef]
- Basar, E.; Wen, M.; Mesleh, R.; Di Renzo, M.; Xiao, Y.; Haas, H. Index modulation techniques for next-generation wireless networks. IEEE Access 2017, 5, 16693–16746. [Google Scholar] [CrossRef]
- Rommel, S.; Perez-Galacho, D.; Fabrega, J.M.; Muñoz, R.; Sales, S.; Monroy, I.T. High-capacity 5G fronthaul networks based on optical space division multiplexing. IEEE Trans. Broadcast. 2019, 65, 434–443. [Google Scholar] [CrossRef]
- Siddiqui, M.U.A.; Qamar, F.; Ahmed, F.; Nguyen, Q.N.; Hassan, R. Interference management in 5G and beyond network: Requirements, challenges and future directions. IEEE Access 2021, 9, 68932–68965. [Google Scholar] [CrossRef]
- Qamar, F.; Kazmi, S.H.A.; Hassan, R.; Hindia, M.N. Successive Interference Cancellation for Ultra-Dense 5G Heterogeneous Network. In Proceedings of the 2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Penang, Malaysia, 22–25 November 2022. [Google Scholar]
- Zheng, K.; Ou, S.; Yin, X. Massive MIMO channel models: A survey. Int. J. Antennas Propag. 2014, 2014, 848071. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, P.; Shen, Y.; Peng, L.; Jiang, X. Online machine learning-based physical layer authentication for MmWave MIMO systems. Ad Hoc Netw. 2022, 131, 102864. [Google Scholar] [CrossRef]
- Towfiq, A.; King, G.D.; Ermutlu, M.; Cetiner, B.A. Antenna Array Beam Steering Based on a Parasitic Layer. In Proceedings of the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 10–15 July 2022; pp. 810–811. [Google Scholar]
- Ni, J.; Zheng, J.; Liang, Z. Massive MIMO un-sourced random access with dynamic user activity. In Proceedings of the 2021 IEEE International Symposium on Information Theory (ISIT), Melbourne, Australia, 12–20 July 2021; pp. 3008–3013. [Google Scholar]
- Kazmi, S.H.A.; Qamar, F.; Hassan, R.; Nisar, K. Improved QoS in Internet of Things (IoTs) through Short Messages Encryption Scheme for Wireless Sensor Communication. In Proceedings of the 2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Penang, Malaysia, 22–25 November 2022. [Google Scholar]
- Polyanskiy, Y. A perspective on massive random-access. In Proceedings of the 2017 IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June 2017; pp. 2523–2527. [Google Scholar]
- Wu, Y.; Gao, X.; Zhou, S.; Yang, W.; Polyanskiy, Y.; Caire, G. Massive access for future wireless communication systems. IEEE Wirel. Commun. 2020, 27, 148–156. [Google Scholar] [CrossRef]
- Amalladinne, V.K.; Vem, A.; Soma, D.K.; Narayanan, K.R.; Chamberland, J.-F. A coupled compressive sensing scheme for unsourced multiple access. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 6628–6632. [Google Scholar]
- Fengler, A.; Jung, P.; Caire, G. SPARCs and AMP for unsourced random access. In Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 2843–2847. [Google Scholar]
- Fengler, A.; Haghighatshoar, S.; Jung, P.; Caire, G. Grant-free massive random access with a massive MIMO receiver. In Proceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019; pp. 23–30. [Google Scholar]
- Pereira de Figueiredo, F.A.; Mendes Lemes, D.; Ferreira Dias, C.; Fraidenraich, G. Massive MIMO channel estimation considering pilot contamination and spatially correlated channels. Electron. Lett. 2020, 56, 410–413. [Google Scholar] [CrossRef]
- Zhao, J.; Ni, S.; Gong, Y.; Zhang, Q. Pilot contamination reduction in TDD-based massive MIMO systems. IET Commun. 2019, 13, 1425–1432. [Google Scholar] [CrossRef]
- Gachhadar, A.; Maharjan, R.K.; Shrestha, S.; Adhikari, N.B.; Qamar, F.; Kazmi, S.H.A.; Nguyen, Q.N. Power Optimization in Multi-Tier Heterogeneous Networks Using Genetic Algorithm. Electronics 2023, 12, 1795. [Google Scholar] [CrossRef]
- Ngo, H.Q.; Ashikhmin, A.; Yang, H.; Larsson, E.G.; Marzetta, T.L. Cell-Free Massive MIMO Versus Small Cells. IEEE Trans. Wirel. Commun. 2017, 16, 1834–1850. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, S.; Lin, Y.; Zheng, J.; Ai, B.; Hanzo, L. Cell-Free Massive MIMO: A New Next-Generation Paradigm. IEEE Access 2019, 7, 99878–99888. [Google Scholar] [CrossRef]
- Bjornson, E.; Sanguinetti, L. Scalable Cell-Free Massive MIMO Systems. IEEE Trans. Commun. 2020, 68, 4247–4261. [Google Scholar] [CrossRef]
- Buzzi, S.; D’Andrea, C. Cell-Free Massive MIMO: User-Centric Approach. IEEE Wirel. Commun. Lett. 2017, 6, 706–709. [Google Scholar] [CrossRef]
- Interdonato, G.; Björnson, E.; Quoc Ngo, H.; Frenger, P.; Larsson, E.G. Ubiquitous cell-free Massive MIMO communications. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 197. [Google Scholar] [CrossRef]
- Mir, T.; Zain Siddiqi, M.; Mir, U.; Mackenzie, R.; Hao, M. Machine Learning Inspired Hybrid Precoding for Wideband Millimeter-Wave Massive MIMO Systems. IEEE Access 2019, 7, 62852–62864. [Google Scholar] [CrossRef]
- Alimo, D.; Saito, M. Beam selection for mm-wave massive MIMO systems using ACO & combined digital precoding under hybrid transceiver architecture. IEICE Commun. Express 2020, 9, 170–175. [Google Scholar] [CrossRef]
- Li, R.; Zhao, Z.; Zhou, X.; Ding, G.; Chen, Y.; Wang, Z.; Zhang, H. Intelligent 5G: When Cellular Networks Meet Artificial Intelligence. IEEE Wirel. Commun. 2017, 24, 175–183. [Google Scholar] [CrossRef]
- Maksymyuk, T.; Gazda, J.; Yaremko, O.; Nevinskiy, D. Deep Learning Based Massive MIMO Beamforming for 5G Mobile Network. In Proceedings of the 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS), Lviv, Ukraine, 20–21 September 2018. [Google Scholar] [CrossRef]
- Wijaya, M.A.; Fukawa, K.; Suzuki, H. Intercell-Interference Cancellation and Neural Network Transmit Power Optimization for MIMO Channels. In Proceedings of the 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, USA, 6–9 September 2015. [Google Scholar] [CrossRef]
- Ma, W.; Qi, C.; Li, G.Y. Machine Learning for Beam Alignment in Millimeter Wave Massive MIMO. IEEE Wirel. Commun. Lett. 2020, 9, 875–878. [Google Scholar] [CrossRef]
- Wang, Y.; Narasimha, M.; Heath, R.W. MmWave Beam Prediction with Situational Awareness: A Machine Learning Approach. In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June 2018. [Google Scholar] [CrossRef]
- Anton-Haro, C.; Mestre, X. Learning and Data-Driven Beam Selection for mmWave Communications: An Angle of Arrival-Based Approach. IEEE Access 2019, 7, 20404–20415. [Google Scholar] [CrossRef]
- Ma, W.; Qi, C.; Zhang, Z.; Cheng, J. Deep learning for compressed sensing based channel estimation in millimeter wave massive mimo. In Proceedings of the 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an, China, 23–25 October 2019; pp. 1–6. [Google Scholar]
- Nazzal, M.; Aygül, M.A.; Görçin, A.; Arslan, H. Dictionary learning-based beamspace channel estimation in millimeter-wave massive MIMO systems with a lens antenna array. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 20–25. [Google Scholar]
- Song, N.; Ye, C.; Hu, X.; Yang, T. Deep learning based low-rank channel recovery for hybrid beamforming in millimeter-wave massive MIMO. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Republic of Korea, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Chen, J.; Feng, W.; Xing, J.; Yang, P.; Sobelman, G.E.; Lin, D.; Li, S. Hybrid beamforming/combining for millimeter wave MIMO: A machine learning approach. IEEE Trans. Veh. Technol. 2020, 69, 11353–11368. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, Y.-J.A.; Shi, Y.; Yan, W.; Liu, H. Reconfigurable-intelligent-surface empowered wireless communications: Challenges and opportunities. IEEE Wirel. Commun. 2021, 28, 136–143. [Google Scholar] [CrossRef]
- Tang, W.; Chen, M.Z.; Chen, X.; Dai, J.Y.; Han, Y.; Di Renzo, M.; Zeng, Y.; Jin, S.; Cheng, Q.; Cui, T.J. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement. IEEE Trans. Wirel. Commun. 2020, 20, 421–439. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Mu, X.; Hou, T.; Xu, J.; Di Renzo, M.; Al-Dhahir, N. Reconfigurable intelligent surfaces: Principles and opportunities. IEEE Commun. Surv. Tutor. 2021, 23, 1546–1577. [Google Scholar] [CrossRef]
- Basar, E. Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G. IEEE Trans. Commun. 2020, 68, 3187–3196. [Google Scholar] [CrossRef]
- Almekhlafi, M.; Arfaoui, M.A.; Assi, C.; Ghrayeb, A. Enabling URLLC applications through reconfigurable intelligent surfaces: Challenges and potential. IEEE Internet Things Mag. 2022, 5, 130–135. [Google Scholar] [CrossRef]
- Jiang, H.; Niu, Y.; Ai, B.; Zhong, Z.; Mao, S. QoS-Aware Bandwidth Allocation and Concurrent Scheduling for Terahertz Wireless Backhaul Networks. IEEE Access 2020, 8, 125814–125825. [Google Scholar] [CrossRef]
- Zhi, K.; Pan, C.; Ren, H.; Wang, K. Statistical CSI-based design for reconfigurable intelligent surface-aided massive MIMO systems with direct links. IEEE Wirel. Commun. Lett. 2021, 10, 1128–1132. [Google Scholar] [CrossRef]
- Zhi, K.; Pan, C.; Ren, H.; Wang, K. Power scaling law analysis and phase shift optimization of RIS-aided massive MIMO systems with statistical CSI. IEEE Trans. Commun. 2022, 70, 3558–3574. [Google Scholar] [CrossRef]
- Zhi, K.; Pan, C.; Zhou, G.; Ren, H.; Elkashlan, M.; Schober, R. Is RIS-aided massive MIMO promising with ZF detectors and imperfect CSI? IEEE J. Sel. Areas Commun. 2022, 40, 3010–3026. [Google Scholar] [CrossRef]
- Narmanlioglu, O.; Uysal, M. Multi-User Massive MIMO Visible Light Communications with Limited Pilot Transmission. IEEE Trans. Wirel. Commun. 2022, 21, 4197–4211. [Google Scholar] [CrossRef]
- Xu, K.; Yu, H.; Zhu, Y.-J. Channel-Adapted Spatial Modulation for Massive MIMO Visible Light Communications. IEEE Photonics Technol. Lett. 2016, 28, 2693–2696. [Google Scholar] [CrossRef]
- Almehdhar, A.; Obeed, M.; Chaaban, A.; Zummo, S. A Hybrid VLC/RF Cell-Free Massive MIMO System. In Proceedings of the ICC 2022—IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022. [Google Scholar] [CrossRef]
- Wang, Z.; Han, S.; Chi, N. Performance enhancement based on machine learning scheme for space multiplexing 2 × 2 MIMO VLC system employing joint IQ independent component analysis. Opt. Commun. 2020, 458, 124733. [Google Scholar] [CrossRef]
- Rajbhandari, S.; Chun, H.; Faulkner, G.; Haas, H.; Xie, E.; McKendry, J.J.; Herrnsdorf, J.; Gu, E.; Dawson, M.D.; O’Brien, D. Neural network-based joint spatial and temporal equalization for MIMO-VLC system. IEEE Photonics Technol. Lett. 2019, 31, 821–824. [Google Scholar] [CrossRef]
- Ahmed, I.; Khammari, H.; Shahid, A.; Musa, A.; Kim, K.S.; De Poorter, E.; Moerman, I. A Survey on Hybrid Beamforming Techniques in 5G: Architecture and System Model Perspectives. IEEE Commun. Surv. Tutor. 2018, 20, 3060–3097. [Google Scholar] [CrossRef]
- Maeng, S.J.; Park, S.H.; Cho, Y.S. Hybrid Beamforming for Reduction of Inter-Beam Interference in Millimeter-Wave Cellular Systems. Sensors 2018, 18, 528. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, K.; Kishiyama, Y. Non-Orthogonal Access with Random Beamforming and Intra-Beam SIC for Cellular MIMO Downlink. In Proceedings of the 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), Las Vegas, NV, USA, 2–5 September 2013. [Google Scholar] [CrossRef]
- Wan, Y.; Li, Q.; Zhang, Q.; Qin, J. Optimal and Suboptimal Full-Duplex Secure Beamforming Designs for MISO Two-Way Communications. IEEE Wirel. Commun. Lett. 2015, 4, 493–496. [Google Scholar] [CrossRef]
- Koppenborg, J.; Halbauer, H.; Saur, S.; Hoek, C. 3D beamforming trials with an active antenna array. In Proceedings of the 2012 International ITG Workshop on Smart Antennas (WSA), Dresden, Germany, 7–8 March 2012. [Google Scholar] [CrossRef]
- Cheng, X.; Yu, B.; Yang, L.; Zhang, J.; Liu, G.; Wu, Y.; Wan, L. Communicating in the real world: 3D MIMO. IEEE Wirel. Commun. 2014, 21, 136–144. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, X.; Zhang, B.; Zhang, Y.; Niu, Z.; Kuang, N.; Chen, W.; Li, L.; Li, S. A survey on terahertz communications. China Commun. 2019, 16, 1–35. [Google Scholar] [CrossRef]
- Ghafoor, S.; Boujnah, N.; Rehmani, M.H.; Davy, A. MAC protocols for terahertz communication: A comprehensive survey. IEEE Commun. Surv. Tutor. 2020, 22, 2236–2282. [Google Scholar] [CrossRef]
- Sarieddeen, H.; Saeed, N.; Al-Naffouri, T.Y.; Alouini, M.-S. Next generation terahertz communications: A rendezvous of sensing, imaging, and localization. IEEE Commun. Mag. 2020, 58, 69–75. [Google Scholar] [CrossRef]
- Kazmi, S.H.A.; Qamar, F.; Hassan, R.; Nisar, K. Interference Resistant Position Awareness for Collision Avoidance in Dense Drones Swarming. In Proceedings of the 2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT), Washington DC, USA, 12–14 October 2022; pp. 1–5. [Google Scholar]
- Huq, K.M.S.; Busari, S.A.; Rodriguez, J.; Frascolla, V.; Bazzi, W.; Sicker, D.C. Terahertz-enabled wireless system for beyond-5G ultra-fast networks: A brief survey. IEEE Netw. 2019, 33, 89–95. [Google Scholar] [CrossRef]
- Gao, X.; Dai, L.; Zhang, Y.; Xie, T.; Dai, X.; Wang, Z. Fast Channel Tracking for Terahertz Beamspace Massive MIMO Systems. IEEE Trans. Veh. Technol. 2017, 66, 5689–5696. [Google Scholar] [CrossRef]
- Ellrich, F.; Bauer, M.; Schreiner, N.; Keil, A.; Pfeiffer, T.; Klier, J.; Weber, S.; Jonuscheit, J.; Friederich, F.; Molter, D. Terahertz Quality Inspection for Automotive and Aviation Industries. J. Infrared Millim. Terahertz Waves 2019, 41, 470–489. [Google Scholar] [CrossRef]
- Polese, M.; Jornet, J.M.; Melodia, T.; Zorzi, M. Toward End-to-End, Full-Stack 6G Terahertz Networks. IEEE Commun. Mag. 2020, 58, 48–54. [Google Scholar] [CrossRef]
- Calvanese Strinati, E.; Barbarossa, S.; Gonzalez-Jimenez, J.L.; Ktenas, D.; Cassiau, N.; Maret, L.; Dehos, C. 6G: The Next Frontier: From Holographic Messaging to Artificial Intelligence Using Subterahertz and Visible Light Communication. IEEE Veh. Technol. Mag. 2019, 14, 42–50. [Google Scholar] [CrossRef]
- Yang, J.; Zuo, Y.-X.; Lou, Z.; Cheng, J.-Q.; Zhang, Q.-Z.; Shi, S.-C.; Huang, J.-S.; Yao, Q.-J.; Wang, Z. Conceptual design studies of the 5 m terahertz antenna for Dome A, Antarctica. Res. Astron. Astrophys. 2013, 13, 1493–1508. [Google Scholar] [CrossRef]
- van Exter, M.; Fattinger, C.; Grischkowsky, D. High-brightness terahertz beams characterized with an ultrafast detector. Appl. Phys. Lett. 1989, 55, 337–339. [Google Scholar] [CrossRef]
- Sarieddeen, H.; Abdallah, A.; Mansour, M.M.; Alouini, M.-S.; Al-Naffouri, T.Y. Terahertz-Band MIMO-NOMA: Adaptive Superposition Coding and Subspace Detection. IEEE Open J. Commun. Soc. 2021, 2, 2628–2644. [Google Scholar] [CrossRef]
- Sarieddeen, H.; Alouini, M.-S.; Al-Naffouri, T.Y. Terahertz-Band Ultra-Massive Spatial Modulation MIMO. IEEE J. Sel. Areas Commun. 2019, 37, 2040–2052. [Google Scholar] [CrossRef]
- Abu Al Haija, A.; Liang, B.; Dong, M.; Boudreau, G. Efficient Multi-User Quantize-Forward Relaying in Massive MIMO HetNets. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018. [Google Scholar] [CrossRef]
- Baldemair, R.; Irnich, T.; Balachandran, K.; Dahlman, E.; Mildh, G.; Selén, Y.; Parkvall, S.; Meyer, M.; Osseiran, A. Ultra-dense networks in millimeter-wave frequencies. IEEE Commun. Mag. 2015, 53, 202–208. [Google Scholar] [CrossRef]
- Qamar, F.; Gachhadar, A.; Kazmi, S.H.A.; Hassan, R. Successive Interference Cancellation Approach to Estimated Outage and Coverage Probability for UDN B5G Network. In Proceedings of the 2023 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), Kota Kinabalu, Malaysia, 12–14 September 2023; pp. 182–187. [Google Scholar]
- Hur, S.; Kim, T.; Love, D.J.; Krogmeier, J.V.; Thomas, T.A.; Ghosh, A. Millimeter Wave Beamforming for Wireless Backhaul and Access in Small Cell Networks. IEEE Trans. Commun. 2013, 61, 4391–4403. [Google Scholar] [CrossRef]
- Li, B.; Zhu, D.; Liang, P. Small Cell In-Band Wireless Backhaul in Massive MIMO Systems: A Cooperation of Next-Generation Techniques. IEEE Trans. Wirel. Commun. 2015, 14, 7057–7069. [Google Scholar] [CrossRef]
- Lili, W.; Hu, R.; Yi, Q.; Geng, W. Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wirel. Commun. 2014, 21, 136–143. [Google Scholar] [CrossRef]
- Kurner, T.; Braun, R.-P.; Ducournau, G.; Hellrung, U.; Hirata, A.; Hisatake, S.; John, L.; Jung, B.K.; Kallfass, I.; Kawanishi, T. THz Communications and the Demonstration in the ThoR-Backhaul Link. IEEE Trans. Terahertz Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Modami, Y.; Beiranvand, H.; Dabiri, M.T. Cell-Free Infrastructure-to-Vehicle Communication: Empowering with Hybrid FSO/THz Backhaul. IEEE Wirel. Commun. Lett. 2024. [Google Scholar] [CrossRef]
- Tuninato, R.; Garello, R. 5G NTN Primary Synchronization Signal: An Improved Detector for Handheld Devices. IEEE Open J. Commun. Soc. 2024, 5, 3792–3803. [Google Scholar] [CrossRef]
- Qi, F.; Xie, W. Enhancing IoT Services in 6G Non-Terrestrial Networks with Multicast Massive MIMO. IEEE Netw. 2024, 38, 88–95. [Google Scholar] [CrossRef]
- Nemati, M.; Al Homssi, B.; Krishnan, S.; Park, J.; Loke, S.W.; Choi, J. Non-terrestrial networks with UAVs: A projection on flying ad-hoc networks. Drones 2022, 6, 334. [Google Scholar] [CrossRef]
- Cui, Z.; Colpaert, A.; Pollin, S. Csi measurements and initial results for massive mimo to uav communications. In Proceedings of the 2023 57th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 29 October–1 November 2023; pp. 1679–1683. [Google Scholar]
- Elechi, P.; Onu, K.E. Unmanned Aerial Vehicle Cellular Communication Operating in Non-terrestrial Networks. In Unmanned Aerial Vehicle Cellular Communications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 225–251. [Google Scholar]
- Nguyen, M.-H.T.; Garcia-Palacios, E.; Do-Duy, T.; Dobre, O.A.; Duong, T.Q. UAV-aided aerial reconfigurable intelligent surface communications with massive MIMO system. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 1828–1838. [Google Scholar] [CrossRef]
- Ning, B.; Chen, Z.; Chen, W.; Du, Y.; Fang, J. Terahertz Multi-User Massive MIMO With Intelligent Reflecting Surface: Beam Training and Hybrid Beamforming. IEEE Trans. Veh. Technol. 2021, 70, 1376–1393. [Google Scholar] [CrossRef]
- Peng, B.; Wesemann, S.; Guan, K.; Templ, W.; Kurner, T. Precoding and Detection for Broadband Single Carrier Terahertz Massive MIMO Systems Using LSQR Algorithm. IEEE Trans. Wirel. Commun. 2019, 18, 1026–1040. [Google Scholar] [CrossRef]
- Nie, S.; Akyildiz, I.F. Beamforming in Intelligent Environments based on Ultra-Massive MIMO Platforms in Millimeter Wave and Terahertz Bands. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Jornet, J.M. Realizing Ultra-Massive MIMOcommunication in the (0.06–10) Terahertz band. Nano Commun. Netw. 2016, 8, 46–54. [Google Scholar] [CrossRef]
- Mir, T.; Waqas, M.; Mir, U.; Hussain, S.M.; Elbir, A.M.; Tu, S. Hybrid Precoding Design for Two-Way Relay-Assisted Terahertz Massive MIMO Systems. IEEE Access 2020, 8, 222660–222671. [Google Scholar] [CrossRef]
- Dovelos, K.; Matthaiou, M.; Ngo, H.Q.; Bellalta, B. Channel Estimation and Hybrid Combining for Wideband Terahertz Massive MIMO Systems. IEEE J. Sel. Areas Commun. 2021, 39, 1604–1620. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, L.; Han, C.; Tao, M. Millidegree-Level Direction-of-Arrival Estimation and Tracking for Terahertz Ultra-Massive MIMO Systems. IEEE Trans. Wirel. Commun. 2022, 21, 869–883. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Duong, T.Q.; Ngo, H.Q.; Tourki, K. Energy Efficiency in Cell-Free Massive MIMO with Zero-Forcing Precoding Design. IEEE Commun. Lett. 2017, 21, 1871–1874. [Google Scholar] [CrossRef]
- Papazafeiropoulos, A.; Kourtessis, P.; Renzo, M.D.; Chatzinotas, S.; Senior, J.M. Performance Analysis of Cell-Free Massive MIMO Systems: A Stochastic Geometry Approach. IEEE Trans. Veh. Technol. 2020, 69, 3523–3537. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, Y.; Bjornson, E.; Han, Y.; Jin, S. Performance Analysis and Power Control of Cell-Free Massive MIMO Systems With Hardware Impairments. IEEE Access 2018, 6, 55302–55314. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, D.; An, K.; Zhang, B. Secure Communications Over Cell-Free Massive MIMO Networks with Hardware Impairments. IEEE Syst. J. 2020, 14, 1909–1920. [Google Scholar] [CrossRef]
- Haidine, A.; Zahra Salmam, F.; Aqqal, A.; Dahbi, A. Artificial Intelligence and Machine Learning in 5G and beyond: A Survey and Perspectives. In Moving Broadband Mobile Communications Forward: Intelligent Technologies for 5G and Beyond; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar] [CrossRef]
- Guo, J.; Chen, T.; Jin, S.; Li, G.Y.; Wang, X.; Hou, X. Deep learning for joint channel estimation and feedback in massive MIMO systems. Digit. Commun. Netw. 2024, 10, 83–93. [Google Scholar] [CrossRef]
- Barahimi, B.; Singh, H.; Tabassum, H.; Waqar, O.; Omer, M. RSCNet: Dynamic CSI Compression for Cloud-based WiFi Sensing. arXiv 2024, arXiv:2402.04888. [Google Scholar]
- Ma, X. Enhancing Landscape Sketching Practice and Teaching in Figurative Oil Painting through Virtual Reality and Intelligent Equipment with 5G Technology. Comput.-Aided Des. Appl. 2023, 20, 168–178. [Google Scholar] [CrossRef]
- Burtsev, V.D.; Vosheva, T.S.; Bulatov, N.O.; Khudykin, A.A.; Ginzburg, P.; Filonov, D.S. Compact High-Gain Volumetric Phased Array Antenna with Genetically Designed Interelement Resonances for 5G Applications. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2023, 17, 2200497. [Google Scholar] [CrossRef]
- Zakaria, M.S.; Ghani, A.T.A.; Yahya, M.S.; Jamali, S.N. Information Technology Risk Management for Water Quality Monitoring IoT Infrastructure: A Case Study at Tasik Chini Unesco Biosphere Reserve. Asia-Pac. J. Inf. Technol. Multimed 2020, 9, 94–102. [Google Scholar] [CrossRef]
- Li, W.; Wang, N.; Jiao, L.; Zeng, K. Physical layer spoofing attack detection in MmWave massive MIMO 5G networks. IEEE Access 2021, 9, 60419–60432. [Google Scholar] [CrossRef]
- Zhang, P.; Shen, Y.; Jiang, X.; Wu, B. Physical layer authentication jointly utilizing channel and phase noise in MIMO systems. IEEE Trans. Commun. 2020, 68, 2446–2458. [Google Scholar] [CrossRef]
- Perazzone, J.B.; Paul, L.Y.; Sadler, B.M.; Blum, R.S. Artificial noise-aided MIMO physical layer authentication with imperfect CSI. IEEE Trans. Inf. Forensics Secur. 2021, 16, 2173–2185. [Google Scholar] [CrossRef]
- Liao, R.; Wen, H.; Pan, F.; Song, H.; Xu, A.; Jiang, Y. A novel physical layer authentication method with convolutional neural network. In Proceedings of the 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 29–31 March 2019; pp. 231–235. [Google Scholar]
- Zhang, P.; Taleb, T.; Jiang, X.; Wu, B. Physical layer authentication for massive MIMO systems with hardware impairments. IEEE Trans. Wirel. Commun. 2019, 19, 1563–1576. [Google Scholar] [CrossRef]
- Ismayil Siyad, C.; Tamilselvan, S. Chaotic deep neural network based physical layer key generation for massive MIMO. Int. J. Inf. Technol. 2021, 13, 1901–1912. [Google Scholar] [CrossRef]
- Huang, H.; Guo, S.; Gui, G.; Yang, Z.; Zhang, J.; Sari, H.; Adachi, F. Deep learning for physical-layer 5G wireless techniques: Opportunities, challenges and solutions. IEEE Wirel. Commun. 2019, 27, 214–222. [Google Scholar] [CrossRef]
- Alali, A.; Rawat, D.B. Combating distance limitation in sub-terahertz frequency band for physical layer security in UAV communications. In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Vancouver, BC, Canada, 10–13 May 2021; pp. 1–6. [Google Scholar]
- Yadav, J.D.; Dwivedi, V.K.; Chaturvedi, S. Enhancing 6G network security: GANs for pilot contamination attack detection in massive MIMO systems. AEU-Int. J. Electron. Commun. 2024, 175, 155075. [Google Scholar] [CrossRef]
- de Sena, A.S.; Lima, F.R.M.; da Costa, D.B.; Ding, Z.; Nardelli, P.H.J.; Dias, U.S.; Papadias, C.B. Massive MIMO-NOMA Networks With Imperfect SIC: Design and Fairness Enhancement. IEEE Trans. Wirel. Commun. 2020, 19, 6100–6115. [Google Scholar] [CrossRef]
- Hassan, M.B.; Ali, E.S.; Saeed, R.A. Ultra-Massive MIMO in THz Communications. In Next Generation Wireless Terahertz Communication Networks; CRC Press: Boca Raton, FL, USA, 2021; pp. 267–297. [Google Scholar] [CrossRef]
- Hassan, A.A.; Elsharkawy, R.R.; Saleeb, D.A.; El-Rabie, E.-S.M.; Elkorany, A.S. Single-beam graphene reflectarray for terahertz band communication. Analog Integr. Circuits Signal Process. 2022, 112, 517–525. [Google Scholar] [CrossRef]
- Dovelos, K.; Assimonis, S.D.; Ngo, H.Q.; Matthaiou, M. Superdirective Antenna Pairs for Energy-Efficient Terahertz Massive MIMO. IEEE Trans. Commun. 2023, 71, 7316–7332. [Google Scholar] [CrossRef]
- Alloulah, M.; Huang, H. Future Millimeter-Wave Indoor Systems: A Blueprint for Joint Communication and Sensing. Computer 2019, 52, 16–24. [Google Scholar] [CrossRef]
- Wild, T.; Braun, V.; Viswanathan, H. Joint Design of Communication and Sensing for Beyond 5G and 6G Systems. IEEE Access 2021, 9, 30845–30857. [Google Scholar] [CrossRef]
- Lieberei, M.; Zolzer, U. MIMO channel measurements with different antennas in different environments. In Proceedings of the 2010 International ITG Workshop on Smart Antennas (WSA), Bremen, Germany, 23–24 February 2010. [Google Scholar] [CrossRef]
- Kazmi, S.H.A.; Qamar, F.; Hassan, R.; Nisar, K.; Al-Betar, M.A. Security of federated learning in 6G era: A review on conceptual techniques and software platforms used for research and analysis. Comput. Netw. 2024, 245, 110358. [Google Scholar] [CrossRef]
- Jeon, Y.-S.; Amiri, M.M.; Li, J.; Poor, H.V. A Compressive Sensing Approach for Federated Learning Over Massive MIMO Communication Systems. IEEE Trans. Wirel. Commun. 2021, 20, 1990–2004. [Google Scholar] [CrossRef]
- Gkonis, P.K. A survey on machine learning techniques for massive MIMO configurations: Application areas, performance limitations and future challenges. IEEE Access 2022, 11, 67–88. [Google Scholar] [CrossRef]
- Kazmi, S.H.A.; Qamar, F.; Hassan, R.; Nisar, K. SLFL: A Server-Less Federated Learning Framework in Software Defined UAV Networks. In Proceedings of the 2023 IEEE International Conference on Computing (ICOCO), Langkawi, Malaysia, 9–12 October 2023; pp. 339–344. [Google Scholar]
- Hasan, M.K.; Habib, A.A.; Islam, S.; Safie, N.; Ghazal, T.M.; Khan, M.A.; Alzahrani, A.I.; Alalwan, N.; Kadry, S.; Masood, A. Federated learning enables 6G communication technology: Requirements, applications, and integrated with intelligence framework. Alex. Eng. J. 2024, 91, 658–668. [Google Scholar] [CrossRef]
- Xia, W.; Wen, W.; Wong, K.-K.; Quek, T.Q.S.; Zhang, J.; Zhu, H. Federated-Learning-Based Client Scheduling for Low-Latency Wireless Communications. IEEE Wirel. Commun. 2021, 28, 32–38. [Google Scholar] [CrossRef]
- Narmanlioglu, O.; Turan, B.; Kizilirmak, R.C.; Ergen, S.C.; Uysal, M. SC-FDE based MIMO uplink transmission over infrared communication channels. In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; pp. 1–5. [Google Scholar]
Ref. | Technologies | Contribution | Limitations |
---|---|---|---|
[9] | M-MIMO, ML methodologies | Analysis and presentation of detection algorithms for M-MIMO systems | Lacks coverage of integration aspects into future network paradigms in B5G/6G |
[10] | M-MIMO detectors, DL techniques | Examination of M-MIMO detectors employing deep learning techniques | Partial coverage of the emerging B5G/6G paradigm and integration aspects of MIMO |
[11] | mmWave massive MIMO systems | Survey on challenges and advantages of mmWave massive MIMO systems | Addresses enhancements in user throughput, spectral efficiency, and energy efficiency but lacks integration into B5G/6G |
[12] | DL approaches in 5G domains | Categorization of different DL approaches based on their application in 5G domains | Provides insights into individual components but lacks a holistic view of M-MIMO design |
[13] | RRM procedures utilizing ML algorithms | Presentation of various aspects of radio resource management procedures utilizing ML algorithms | Focuses on RRM procedures and ML algorithms, lacking integration aspects into future network paradigms in B5G/6G |
[14] | Linear precoding techniques for massive MIMO | Examination of linear precoding techniques for massive MIMO systems in a single-cell scenario | Evaluates performance of linear precoding methods but does not cover integration aspects into future network paradigms |
Tech. | Ref. | Area | Impact | Limitations |
---|---|---|---|---|
M-MIMO with AI/ML Approaches | [49] | ML (AMPBML) | Minimized training slots, concurrent beam alignment for multiple users | Potential loss of performance |
[50] | ML | Improved mmWave beam prediction in highly mobile vehicular environments | Minor loss of performance | |
[51] | ML (k-NN, SVM, multilayer perception) | Improved angle of arrival (AoA) estimation | Computational inefficiency | |
[52] | Deep learning (DLCS) | Better channel estimation performance in MU-mmWave M-MIMO systems | Potential power consumption and hardware cost challenges | |
[53] | Dictionary-trained beam selection matrices | Enhanced channel estimation performance | Experimental validation required | |
[55] | Neural hybrid BF/combining strategy | Higher BER compared to other linear matrix decomposition methods | Potential limitations in practical implementation |
Tech. | Ref. | Area | Impact | Limitations |
---|---|---|---|---|
Reconfigurable Intelligent Surfaces | [56] | Algorithmic difficulties, computing time | High-precision delay-sensitive arenas with programmable metasurface capabilities and low power consumption | Increasing the size and geographical distribution of the RIS array escalates algorithmic complications. |
[57] | RIS, passive BF | Each element of RIS can independently fine-tune signals, leading to high data success and reliability. | Complicates algorithms and adds latency in packet delivery | |
[58] | RIS, passive components | RIS can positively converge reflected signals to desired locations | Requires stringent delay management and ultra-high reliability | |
[59] | RIS, algorithmic complications, latency | The size of the RIS array significantly impacts the data success probability ratio and latency. | Increasing the size of the RIS array adds to algorithmic complications. | |
[60] | RIS, delay management, ultra-high reliability | Achieves stringent delay management and ultra-high reliability | It is difficult to ensure ultra-high reliability and manage delays in communication systems | |
[64] | RIS-aided M-MIMO, imperfect CSI, ZF detectors | Investigation of RIS-aided M-MIMO performance under imperfect CSI with ZF detectors | Latency evaluation and energy management require further exploration. |
Tech. | Ref. | Area | Impact | Limitations |
---|---|---|---|---|
VLC | [65] | LiFi, RF spectrum congestion, indoor environments | Release congestion of RF spectrum—enables low-cost, reliable data access | -Performance affected by amplification noise at the receiver ZF or MMSE |
[66] | M-MIMO VLC system | Future data rate demand can be met through M-MIMO VLC systems | -Affected by amplification noise at the receiver and non-linear LED | |
[68] | VLC MIMO systems, joint IQ independent component analysis (ICA), ML techniques | Addressing spatial multiplexing challenges, enhancing spectral efficiency (SE) | -ML processing and computational requirements in resource constraint devices | |
[69] | MIMO-VLC system, (ANN), joint spatial and temporal equalization | Surpassing traditional decision feedback equalization (DFE), addressing non-linear transfer functions and cross-talk | -Increased complexity and interoperability issues -Vulnerable to data privacy issues |
Tech. | Ref. | Area | Impact | Limitations |
---|---|---|---|---|
Hybrid Beamforming | [65] | LiFi, RF spectrum congestion, indoor environments | Release congestion of RF spectrum—Enable low-cost, reliable data access | Performance affected by amplification noise at the receiver ZF or MMSE |
[66] | M-MIMO VLC system | Future data rate demand can be met through M-MIMO VLC systems | Affected by amplification noise at the receiver and non-linear LED | |
[70] | Beamforming (BF), hybrid BF | Explored the combination of digital precoding and analog BF schemes, balancing cost and performance | Legacy digital BF requires one RF chain per antenna element. | |
[71] | Digital BF, analog BF, phase shifters | Reducing sidelobe energy, directing RF energy, improving network performance, minimizing fading effects | Complex algorithmic requirements, high costs in legacy digital BF, especially in mmWave M-MIMO communication | |
[72] | Hybrid BF | Combining analog and digital BF, utilizing fewer RF chains, reducing complexity and cost | Difficulty in balancing the tradeoff between spectral efficiency (SE), energy efficiency (EE), and hardware difficulties | |
[73] | 2D beamforming | Achieving spatial diversity gains, avoiding in-air transmission losses | Severe restriction to design issues due to propagation limited to two planes (vertical or horizontal) | |
[74] | 3D beamforming | Major modification in beam management and antenna lobe patterns | Performance extensively relies on properties of antenna RF beam patterns |
Tech. | Ref. | Area | Impact | Limitations |
---|---|---|---|---|
Tera Hertz Spectrum and M-MIMO | [65] | THz frequency bands (0.1 THz to 10 THz) | Potential candidates for 6G networks | Need for further analysis and bench tests, particularly for extreme URLLC cases. |
[77] | THz spectrum | Enhance wireless carriers’ parameters (secrecy, privacy, energy efficiency, etc.) | Deployment challenges, environmental impacts | |
[78] | mmWave, untapped spectrum | Attractive propagation qualities | Challenges in achieving very high directive antennas | |
[80] | THz spectrum (above 300 GHz) | Advantages in spectroscopy, holographic, industry 4.0, remote surgery | Need for extensive exploration of antenna design | |
[81] | M-MIMO in 5G and future networks | Utilization of mmWave and THz spectrum, attractive propagation qualities | Susceptibility to various types of blockages | |
[82] | Very high directive antennas | Achieving high directive antennas for B5G | Challenges in deployment, environmental impacts | |
[83] | RF spectrum in mmWave and THz | Impactful propagation properties of THz spectrum | Deployment challenges, susceptibility to blockages | |
[84,85] | THz M-MIMO transmission systems | Energetic and ultra-reliable seamless transmission of data symbols | Issues related to SER performance, receiver model and structure, channel modeling, spectrum sensing | |
[87] | Spatial multiplexing | Achieving the potential of THz M-MIMO transmission systems | Susceptibility to inter-cluster interference, control channel interference | |
[88] | Different bands’ channel parameters and characteristics | Comparison between bands’ characteristics | Need for addressing issues related to SER performance, receiver model and structure, channel modeling, and spectrum sensing. |
Tech. | Ref. | Area | Impact | Limitations |
---|---|---|---|---|
Wireless Backhaul with THz and M-MIMO Systems | [89,90] | Higher-spectrum backhaul | Enables ultra-dense network (UDN) with high consistency and cost-effectiveness | Potential challenges in hardware deployment and maintenance |
[92,93] | Large-scale spatial stream M-MIMO | Reduces reliance on fiber optic and copper cables and lowers hardware deployment costs | Interference and coordination issues due to densely packed nodes | |
[94] | Extreme frequency channel BW | Enhances wireless backhaul reliability and efficiency | Compatibility issues with existing infrastructure and devices | |
[61] | RIS for backhaul transmission | Improves signal directivity and link quality | Challenges in beamforming and susceptibility to atmospheric conditions | |
[95] | 300 GHz backhaul and fronthaul links | Advanced RF and photonic technologies in the Horizon 2020 EU-Japan project ThoR | Constraints for performance, advancements, and scalability related to modems | |
[96] | Hybrid free-space optics (FSO) and THz | Increased efficiency through innovative switch combining | Hybrid FSO/THz system can be significantly affected by environmental factors, such as rain and fog |
Tech. | Ref. | Area | Impact | Limitations |
---|---|---|---|---|
MIMO System in NTN | [97] | Low Earth Orbit (LEO) satellite NTN communications | Frequency domain analysis to handle low SNR and residual Doppler-induced frequency offsets | Complexity in real-time implementation and processing |
[98] | NTNs multicast in the 3GPP Release 17 massive MIMO technology | Multicast beamforming and user grouping to improve spectral efficiency | The complexity of implementing precise multicast MIMO precoding across diverse IoT | |
[100] | Integration of NTN into 6G mobile communications | Evaluates the effects of channel communication performance by measuring CSI for UAVs | The specific design for rotary-wing drones potentially limits adaptability to other types of UAVs | |
[101] | NTN effects on UAVs by considering the channel model | Improved prediction of UAV signal path loss in NTNs | The proposed models do not account for real-world environmental factors like urban structures or weather conditions | |
[102] | UAV integration with RISs | The approach maximizes network throughput by optimizing power control and phase shifts, utilizing an iterative algorithm. | The proposed technique requires substantial computational resources for large-scale networks. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qamar, F.; Kazmi, S.H.A.; Ariffin, K.A.Z.; Tayyab, M.; Nguyen, Q.N. Multi-Antenna Array-Based Massive MIMO for B5G/6G: State of the Art, Challenges, and Future Research Directions. Information 2024, 15, 442. https://doi.org/10.3390/info15080442
Qamar F, Kazmi SHA, Ariffin KAZ, Tayyab M, Nguyen QN. Multi-Antenna Array-Based Massive MIMO for B5G/6G: State of the Art, Challenges, and Future Research Directions. Information. 2024; 15(8):442. https://doi.org/10.3390/info15080442
Chicago/Turabian StyleQamar, Faizan, Syed Hussain Ali Kazmi, Khairul Akram Zainol Ariffin, Muhammad Tayyab, and Quang Ngoc Nguyen. 2024. "Multi-Antenna Array-Based Massive MIMO for B5G/6G: State of the Art, Challenges, and Future Research Directions" Information 15, no. 8: 442. https://doi.org/10.3390/info15080442
APA StyleQamar, F., Kazmi, S. H. A., Ariffin, K. A. Z., Tayyab, M., & Nguyen, Q. N. (2024). Multi-Antenna Array-Based Massive MIMO for B5G/6G: State of the Art, Challenges, and Future Research Directions. Information, 15(8), 442. https://doi.org/10.3390/info15080442