Exploring Federated Learning Tendencies Using a Semantic Keyword Clustering Approach
Abstract
:1. Introduction
- RQ1: What are the current trends in FL?
- RQ2: What are the tendencies of the current trends in FL?
- RQ3: What are the application domains where FL techniques are applied?
- RQ4: What are the tendencies of the application domains?
- RQ5: What are the emerging sub-areas within FL?
- RQ6: What are the tendencies of the emerging sub-areas?
- RQ7: What are the potential future trends of FL?
The Structure of the Survey
- Research Method (Section 2). This section delves into the approach employed to analyze trends and sub-areas within FL. It details the utilization of keyword extraction and automated clustering techniques to gain insights from the vast FL research landscape.
- Theoretical Categories (Section 3). Here, we present a detailed analysis of the key theoretical areas of FL. This section explores crucial aspects such as security mechanisms, communication protocols, coalition formation, data distribution strategies, and model aggregation techniques.
- Practical Categories (Section 4). Shifting the focus to the practical applications of FL, this section examines its implementation in various domains. We will explore how FL empowers neural networks, facilitates information classification tasks, integrates with blockchain technology, and finds applications in the Internet of Things (IoT) and edge computing environments.
- Emerging Sub-Areas (Section 5). This section explores the sub-areas of FL research that have emerged as a result of previous research directions. Here, we will identify and analyze these emerging trends that hold significant promise for the future development of the field, including biological system modeling, model compression techniques, advancements in speech recognition, the application of FL to real-time systems, and the utilization of game theory for improved performance.
- Conclusion (Section 6). Building upon the foundation in the preceding sections, this section will synthesize the key findings. It will address the research questions and explore potential future research directions of FL.
2. Research Method
3. Main Theoretical Categories
3.1. Data Analysis
3.2. Security
3.2.1. Model Inversion Attacks
3.2.2. Poisoning Attacks
Data Poisoning Attacks
Model Poisoning Attacks
3.2.3. Membership Inference Attacks
3.2.4. Backdoor Attacks
3.3. Communication
3.3.1. Centralized FL (CFL)
3.3.2. Decentralized FL (DFL)
3.4. Coalitions
3.4.1. Semantic-Based Formation
Static Formation
Dynamic Formation
3.4.2. Positional-Based Formation
Static Formation
Dynamic Formation
3.5. Data Distribution
3.5.1. Label Distribution Skew
3.5.2. Feature Distribution Skew
3.5.3. Quantity Skew
3.6. Model Aggregation
3.6.1. Synchronous Aggregation
3.6.2. Asynchronous Aggregation
3.6.3. Hierarchical Aggregation
3.6.4. Robust Aggregation
4. Main Practical Categories
4.1. Data Analysis
4.2. Neural Networks
4.2.1. Traditional DNNs in FL
CNN (Convolutional Neural Network)
RNN (Recurrent Neural Network)
4.2.2. Emerging Applications of NN in FL
GAN (Generative Adversarial Network)
Transformers
4.3. Classification (of Information)
4.4. Blockchain
4.5. Internet of Things
4.6. Edge Computing
5. Emerging Sub-Areas
5.1. Data Analysis
5.2. Biological System Modeling
5.3. Model Compression
5.3.1. Quantization
5.3.2. Knowledge Distillation
5.3.3. Pruning
5.3.4. Sparsification
5.4. Speech Recognition (SR)
5.5. Real-Time Systems
5.6. Game Theory
6. Conclusions and Future Work
6.1. RQ1: What Are the Current Trends in FL?
6.2. RQ2: What Are the Tendencies of the Current Trends in FL?
6.3. RQ3: What Are the Application Domains Where FL Techniques Are Applied?
6.4. RQ4: What Are the Tendencies of the Application Domains?
6.5. RQ5: What Are the Emerging Sub-Areas within FL?
6.6. RQ6: What Are the Tendencies of the Emerging Sub-Areas?
6.7. RQ7: What Are the Potential Future Trends of FL?
6.8. Future Work
Funding
Conflicts of Interest
Appendix A
Rank | Category | Total | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
---|---|---|---|---|---|---|---|---|---|---|
0 | federated learning | 7953 | 2 | 6 | 85 | 393 | 964 | 2027 | 3394 | 1082 |
1 | learning systems | 5028 | 2 | 3 | 42 | 238 | 571 | 1266 | 2184 | 722 |
2 | privacy | 4175 | 2 | 3 | 47 | 245 | 521 | 1035 | 1754 | 568 |
3 | machine learning | 3458 | 1 | 2 | 46 | 183 | 425 | 902 | 1446 | 453 |
4 | neural networks | 2592 | 2 | 3 | 28 | 137 | 327 | 657 | 1097 | 341 |
5 | global models | 1568 | 0 | 2 | 16 | 63 | 211 | 402 | 679 | 195 |
6 | data models | 1551 | 0 | 3 | 29 | 101 | 202 | 382 | 581 | 253 |
7 | computational modeling | 1460 | 0 | 1 | 9 | 74 | 145 | 336 | 645 | 250 |
8 | classification (of information) | 1292 | 0 | 1 | 10 | 65 | 172 | 321 | 536 | 187 |
9 | blockchain | 1281 | 1 | 0 | 21 | 68 | 147 | 340 | 515 | 189 |
10 | modeling accuracy | 1269 | 0 | 1 | 16 | 63 | 154 | 294 | 539 | 202 |
11 | Internet of Things | 1262 | 0 | 1 | 12 | 53 | 116 | 328 | 541 | 211 |
12 | artificial intelligence | 1262 | 1 | 2 | 18 | 80 | 154 | 318 | 509 | 180 |
13 | decentralized | 1233 | 1 | 2 | 19 | 78 | 145 | 308 | 523 | 157 |
14 | performance | 1183 | 0 | 0 | 8 | 57 | 155 | 302 | 495 | 166 |
15 | state of the art | 1177 | 0 | 1 | 19 | 80 | 183 | 296 | 473 | 125 |
16 | learning frameworks | 1163 | 0 | 2 | 24 | 73 | 188 | 302 | 442 | 132 |
17 | edge computing | 1142 | 0 | 0 | 16 | 73 | 158 | 325 | 417 | 153 |
18 | personalizations | 1115 | 0 | 2 | 18 | 59 | 148 | 307 | 461 | 120 |
19 | communication | 1110 | 1 | 1 | 20 | 84 | 182 | 300 | 382 | 140 |
20 | poisoning attacks | 1095 | 0 | 1 | 6 | 41 | 115 | 270 | 485 | 177 |
21 | security | 1076 | 1 | 1 | 7 | 43 | 110 | 255 | 498 | 161 |
22 | job analysis | 1065 | 0 | 2 | 18 | 46 | 126 | 271 | 416 | 186 |
23 | large amounts | 1055 | 0 | 1 | 15 | 55 | 139 | 276 | 417 | 152 |
24 | computational efficiency | 1014 | 1 | 1 | 18 | 68 | 145 | 257 | 395 | 129 |
25 | distributed machine learning | 1013 | 0 | 3 | 13 | 91 | 171 | 264 | 364 | 107 |
26 | over the airs | 967 | 0 | 1 | 7 | 35 | 81 | 255 | 448 | 140 |
27 | coalition | 942 | 1 | 1 | 8 | 77 | 104 | 297 | 355 | 99 |
28 | centralized | 934 | 0 | 1 | 7 | 27 | 108 | 263 | 393 | 135 |
29 | servers | 929 | 0 | 0 | 2 | 39 | 95 | 227 | 390 | 176 |
30 | commerce | 908 | 0 | 2 | 19 | 53 | 133 | 243 | 359 | 99 |
31 | wireless networks | 899 | 0 | 2 | 11 | 48 | 106 | 234 | 378 | 120 |
32 | information management | 894 | 0 | 1 | 12 | 46 | 99 | 217 | 397 | 122 |
33 | optimizations | 735 | 0 | 1 | 7 | 48 | 85 | 190 | 293 | 111 |
34 | network architecture | 704 | 0 | 1 | 10 | 51 | 93 | 182 | 299 | 68 |
35 | numerical methods | 687 | 0 | 1 | 5 | 47 | 88 | 177 | 267 | 102 |
36 | budget control | 673 | 0 | 0 | 10 | 31 | 80 | 185 | 267 | 100 |
37 | data distribution | 671 | 0 | 0 | 6 | 27 | 72 | 170 | 297 | 99 |
38 | iterative methods | 664 | 0 | 1 | 7 | 38 | 67 | 149 | 296 | 106 |
39 | smart city | 656 | 0 | 1 | 11 | 42 | 100 | 168 | 257 | 77 |
40 | benchmarking | 637 | 1 | 1 | 9 | 53 | 99 | 142 | 255 | 77 |
41 | energy utilization | 627 | 0 | 1 | 6 | 26 | 86 | 173 | 252 | 83 |
42 | human | 613 | 0 | 0 | 4 | 20 | 48 | 156 | 293 | 92 |
43 | forecasting | 611 | 0 | 0 | 7 | 26 | 82 | 159 | 239 | 98 |
44 | cloud computing | 605 | 0 | 1 | 10 | 35 | 68 | 165 | 244 | 82 |
45 | transfer learning | 596 | 0 | 1 | 6 | 21 | 56 | 153 | 253 | 106 |
46 | distillation | 596 | 0 | 1 | 5 | 25 | 69 | 135 | 263 | 98 |
47 | health care | 594 | 0 | 0 | 4 | 21 | 77 | 139 | 280 | 73 |
48 | diseases | 588 | 0 | 0 | 0 | 14 | 60 | 123 | 296 | 95 |
49 | model aggregations | 574 | 0 | 0 | 5 | 34 | 92 | 139 | 232 | 72 |
Rank | Category | Total | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
---|---|---|---|---|---|---|---|---|---|---|
50 | computer vision | 572 | 0 | 1 | 6 | 32 | 64 | 140 | 251 | 78 |
51 | task analysis | 567 | 0 | 0 | 3 | 20 | 49 | 143 | 245 | 107 |
52 | 5g mobile communication systems | 545 | 0 | 1 | 7 | 36 | 75 | 141 | 216 | 69 |
53 | bandwidth | 529 | 0 | 1 | 7 | 50 | 71 | 123 | 207 | 70 |
54 | current | 523 | 0 | 0 | 6 | 15 | 62 | 142 | 229 | 69 |
55 | signal processing | 510 | 0 | 0 | 5 | 36 | 78 | 129 | 190 | 72 |
56 | antennas | 499 | 0 | 0 | 3 | 29 | 71 | 130 | 197 | 69 |
57 | quality of service | 495 | 0 | 0 | 13 | 41 | 57 | 134 | 184 | 66 |
58 | diagnosis | 491 | 0 | 0 | 1 | 8 | 59 | 83 | 265 | 75 |
59 | stochastic systems | 487 | 0 | 1 | 5 | 28 | 67 | 118 | 201 | 67 |
60 | image enhancement | 487 | 0 | 0 | 3 | 20 | 51 | 132 | 208 | 73 |
61 | decision making | 486 | 0 | 0 | 7 | 24 | 59 | 134 | 199 | 63 |
62 | resource allocation | 480 | 0 | 2 | 6 | 22 | 63 | 128 | 190 | 69 |
63 | inference attacks | 476 | 0 | 0 | 1 | 28 | 60 | 101 | 209 | 77 |
64 | convergence | 468 | 0 | 0 | 3 | 20 | 54 | 101 | 210 | 80 |
65 | vehicles | 466 | 0 | 1 | 4 | 23 | 55 | 121 | 181 | 81 |
66 | intelligent vehicle highway systems | 458 | 0 | 0 | 2 | 18 | 54 | 110 | 203 | 71 |
67 | digital storage | 446 | 0 | 0 | 6 | 29 | 47 | 127 | 185 | 52 |
68 | cryptography | 438 | 1 | 0 | 9 | 31 | 48 | 92 | 181 | 76 |
69 | matrix algebra | 433 | 1 | 0 | 7 | 24 | 51 | 116 | 166 | 68 |
70 | reinforcement learning | 427 | 0 | 0 | 5 | 20 | 49 | 111 | 178 | 64 |
71 | risk assessment | 424 | 0 | 0 | 6 | 23 | 60 | 94 | 199 | 42 |
72 | intrusion detection | 416 | 0 | 0 | 1 | 13 | 46 | 108 | 189 | 59 |
73 | iid data | 403 | 0 | 0 | 2 | 12 | 44 | 114 | 180 | 51 |
74 | large scales | 397 | 0 | 0 | 3 | 18 | 52 | 112 | 160 | 52 |
75 | medical imaging | 369 | 0 | 0 | 1 | 12 | 34 | 85 | 172 | 65 |
76 | incentive mechanism | 352 | 0 | 0 | 7 | 32 | 47 | 92 | 118 | 56 |
77 | clustering | 350 | 1 | 0 | 2 | 11 | 44 | 92 | 153 | 47 |
78 | channel state information | 342 | 0 | 0 | 4 | 21 | 55 | 104 | 118 | 40 |
79 | gradient methods | 334 | 0 | 0 | 6 | 24 | 49 | 87 | 129 | 39 |
80 | Industrial Internet of Things | 301 | 0 | 0 | 2 | 19 | 51 | 71 | 121 | 37 |
81 | biological system modeling | 288 | 0 | 0 | 0 | 5 | 26 | 59 | 140 | 58 |
82 | speech recognition | 273 | 0 | 0 | 1 | 26 | 30 | 84 | 99 | 33 |
83 | real-time systems | 241 | 0 | 1 | 5 | 18 | 35 | 53 | 94 | 35 |
84 | game theory | 232 | 0 | 0 | 6 | 16 | 23 | 57 | 90 | 40 |
85 | graph neural networks | 195 | 0 | 0 | 1 | 1 | 18 | 41 | 97 | 37 |
86 | machine design | 180 | 0 | 1 | 1 | 27 | 34 | 37 | 55 | 25 |
87 | unmanned aerial vehicles (UAV) | 176 | 0 | 0 | 0 | 7 | 30 | 43 | 70 | 26 |
88 | spatial-temporal | 174 | 0 | 0 | 1 | 10 | 15 | 49 | 73 | 26 |
89 | labeled data | 174 | 0 | 0 | 2 | 9 | 25 | 41 | 75 | 22 |
90 | traffic congestion | 166 | 0 | 0 | 1 | 9 | 24 | 40 | 65 | 27 |
91 | quantization | 164 | 0 | 0 | 0 | 6 | 24 | 40 | 61 | 33 |
92 | sensor nodes | 156 | 0 | 0 | 3 | 10 | 21 | 27 | 70 | 25 |
93 | model compression | 143 | 0 | 0 | 3 | 15 | 23 | 24 | 60 | 18 |
94 | data sample | 138 | 0 | 0 | 2 | 13 | 20 | 28 | 59 | 16 |
95 | tumors | 132 | 0 | 0 | 0 | 5 | 11 | 32 | 67 | 17 |
96 | hyperparameter | 128 | 0 | 0 | 4 | 12 | 20 | 30 | 50 | 12 |
97 | synchronization | 121 | 0 | 0 | 1 | 4 | 20 | 28 | 55 | 13 |
98 | leaf disease | 118 | 0 | 0 | 1 | 0 | 3 | 16 | 85 | 13 |
99 | web services | 90 | 0 | 0 | 3 | 11 | 9 | 36 | 25 | 6 |
References
- Konečný, J.; McMahan, H.B.; Yu, F.X.; Richtárik, P.; Suresh, A.T.; Bacon, D. Federated Learning: Strategies for Improving Communication Efficiency. arXiv 2016, arXiv:1610.05492. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, Red Hook, NY, USA, 4–9 December 2017; pp. 6000–6010. [Google Scholar]
- Lo, K.; Wang, L.L.; Neumann, M.; Kinney, R.; Weld, D. S2ORC: The Semantic Scholar Open Research Corpus. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 4969–4983. [Google Scholar] [CrossRef]
- Hashimoto, T.B.; Alvarez-Melis, D.; Jaakkola, T.S. Word embeddings as metric recovery in semantic spaces. Trans. Assoc. Comput. Linguist. 2016, 4, 273–286. [Google Scholar] [CrossRef]
- Fredrikson, M.; Jha, S.; Ristenpart, T. Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, New York, NY, USA, 12–16 October 2015; pp. 1322–1333. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, J.; Vijayakumar, P.; Sharma, P.K.; Ghosh, U. Homomorphic Encryption-Based Privacy-Preserving Federated Learning in IoT-Enabled Healthcare System. IEEE Trans. Netw. Sci. Eng. 2023, 10, 2864–2880. [Google Scholar] [CrossRef]
- Schlegel, R.; Kumar, S.; Rosnes, E.; Amat, A.G.i. CodedPaddedFL and CodedSecAgg: Straggler Mitigation and Secure Aggregation in Federated Learning. IEEE Trans. Commun. 2023, 71, 2013–2027. [Google Scholar] [CrossRef]
- Asad, M.; Shaukat, S.; Javanmardi, E.; Nakazato, J.; Bao, N.; Tsukada, M. Secure and Efficient Blockchain-Based Federated Learning Approach for VANETs. IEEE Internet Things J. 2024, 11, 9047–9055. [Google Scholar] [CrossRef]
- Qiao, F.; Li, Z.; Kong, Y. A Privacy-Aware and Incremental Defense Method Against GAN-Based Poisoning Attack. IEEE Trans. Comput. Soc. Syst. 2024, 11, 1708–1721. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, N.; Wang, Y.; Gu, S.; Cao, Z.; Dong, X.; Choo, K.K.R. A Differentially Private Federated Learning Model Against Poisoning Attacks in Edge Computing. IEEE Trans. Dependable Secur. Comput. 2023, 20, 1941–1958. [Google Scholar] [CrossRef]
- Dwork, C. Differential privacy. In Proceedings of the International Colloquium on Automata, Languages, and Programming, Venice, Italy, 10–14 July 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–12. [Google Scholar]
- Jiang, W.; Li, H.; Liu, S.; Ren, Y.; He, M. A flexible poisoning attack against machine learning. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Gupta, P.; Yadav, K.; Gupta, B.B.; Alazab, M.; Gadekallu, T.R. A Novel Data Poisoning Attack in Federated Learning based on Inverted Loss Function. Comput. Secur. 2023, 130, 103270. [Google Scholar] [CrossRef]
- Omran, A.H.; Mohammed, S.Y.; Aljanabi, M. Detecting Data Poisoning Attacks in Federated Learning for Healthcare Applications Using Deep Learning. Iraqi J. Comput. Sci. Math. 2023, 4, 225–237. [Google Scholar] [CrossRef]
- Li, S.; Ngai, E.; Voigt, T. Byzantine-Robust Aggregation in Federated Learning Empowered Industrial IoT. IEEE Trans. Ind. Inform. 2023, 19, 1165–1175. [Google Scholar] [CrossRef]
- Yang, M.; Cheng, H.; Chen, F.; Liu, X.; Wang, M.; Li, X. Model poisoning attack in differential privacy-based federated learning. Inf. Sci. 2023, 630, 158–172. [Google Scholar] [CrossRef]
- Kalapaaking, A.P.; Khalil, I.; Yi, X. Blockchain-Based Federated Learning with SMPC Model Verification against Poisoning Attack for Healthcare Systems. IEEE Trans. Emerg. Top. Comput. 2024, 12, 269–280. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Y.; Song, M.; Wu, L.; Xue, F.; Ren, K. Poisoning-Assisted Property Inference Attack against Federated Learning. IEEE Trans. Dependable Secur. Comput. 2023, 20, 3328–3340. [Google Scholar] [CrossRef]
- Zhao, P.; Cao, Z.; Jiang, J.; Gao, F. Practical Private Aggregation in Federated Learning against Inference Attack. IEEE Internet Things J. 2023, 10, 318–329. [Google Scholar] [CrossRef]
- Gong, X.; Chen, Y.; Wang, Q.; Kong, W. Backdoor Attacks and Defenses in Federated Learning: State-of-the-Art, Taxonomy, and Future Directions. IEEE Wirel. Commun. 2023, 30, 114–121. [Google Scholar] [CrossRef]
- Lyu, X.; Han, Y.; Wang, W.; Liu, J.; Wang, B.; Liu, J.; Zhang, X. Poisoning with Cerberus: Stealthy and Colluded Backdoor Attack against Federated Learning. Proc. AAAI Conf. Artif. Intell. 2023, 37, 9020–9028. [Google Scholar] [CrossRef]
- Lai, Y.C.; Lin, J.Y.; Lin, Y.D.; Hwang, R.H.; Lin, P.C.; Wu, H.K.; Chen, C.K. Two-phase Defense against Poisoning Attacks on Federated Learning-based Intrusion Detection. Comput. Secur. 2023, 129, 103205. [Google Scholar] [CrossRef]
- Carrascosa, C.; Rincón, J.; Rebollo, M. Co-Learning: Consensus-based Learning for Multi-Agent Systems. In Proceedings of the Advances in Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation. The PAAMS Collection, L’Aquila, Italy, 13–15 July 2022; Dignum, F., Mathieu, P., Corchado, J.M., De La Prieta, F., Eds.; Springer: Cham, Switzerland, 2022; pp. 63–75. [Google Scholar]
- Thennakoon, R.; Wanigasundara, A.; Weerasinghe, S.; Seneviratne, C.; Siriwardhana, Y.; Liyanage, M. Decentralized Defense: Leveraging Blockchain against Poisoning Attacks in Federated Learning Systems. In Proceedings of the 2024 IEEE 21st Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 6–9 January 2024; pp. 950–955. [Google Scholar] [CrossRef]
- Rebollo, M.; Rincon, J.A.; Hernández, L.; Enguix, F.; Carrascosa, C. Extending the Framework for Developing Intelligent Virtual Environments (FIVE) with Artifacts for Modeling Internet of Things Devices and a New Decentralized Federated Learning Based on Consensus for Dynamic Networks. Sensors 2024, 24, 1342. [Google Scholar] [CrossRef]
- Sheng, T.; Shen, C.; Liu, Y.; Ou, Y.; Qu, Z.; Liang, Y.; Wang, J. Modeling global distribution for federated learning with label distribution skew. Pattern Recognit. 2023, 143, 109724. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, W.; Nie, L. Hypernetworks-Based Hierarchical Federated Learning on Hybrid Non-IID Datasets for Digital Twin in Industrial IoT. IEEE Trans. Netw. Sci. Eng. 2024, 11, 1413–1423. [Google Scholar] [CrossRef]
- Sun, W.; Li, Z.; Wang, Q.; Zhang, Y. FedTAR: Task and Resource-Aware Federated Learning for Wireless Computing Power Networks. IEEE Internet Things J. 2023, 10, 4257–4270. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Mahmoodi, T. Federated Learning in Heterogeneous Wireless Networks with Adaptive Mixing Aggregation and Computation Reduction. IEEE Open J. Commun. Soc. 2024, 5, 2164–2182. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, X.; Ouyang, T.; Zhou, Z.; Zhang, X.; Yang, S.; Zhang, J. HiFlash: Communication-Efficient Hierarchical Federated Learning with Adaptive Staleness Control and Heterogeneity-Aware Client-Edge Association. IEEE Trans. Parallel Distrib. Syst. 2023, 34, 1560–1579. [Google Scholar] [CrossRef]
- Chen, J.; Xue, J.; Wang, Y.; Huang, L.; Baker, T.; Zhou, Z. Privacy-Preserving and Traceable Federated Learning for data sharing in industrial IoT applications. Expert Syst. Appl. 2023, 213, 119036. [Google Scholar] [CrossRef]
- Wu, H.T.; Li, H.; Chi, H.L.; Kou, W.B.; Wu, Y.C.; Wang, S. A hierarchical federated learning framework for collaborative quality defect inspection in construction. Eng. Appl. Artif. Intell. 2024, 133, 108218. [Google Scholar] [CrossRef]
- Uddin, M.P.; Xiang, Y.; Cai, B.; Lu, X.; Yearwood, J.; Gao, L. ARFL: Adaptive and Robust Federated Learning. IEEE Trans. Mob. Comput. 2024, 23, 5401–5417. [Google Scholar] [CrossRef]
- Yang, H.; Gu, D.; He, J. A Robust and Efficient Federated Learning Algorithm against Adaptive Model Poisoning Attacks. IEEE Internet Things J. 2024, 11, 16289–16302. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, J.; Zhao, Y.; Su, P.; Huang, H. SRFL: A Secure & Robust Federated Learning framework for IoT with trusted execution environments. Expert Syst. Appl. 2024, 239, 122410. [Google Scholar] [CrossRef]
- Hossain, M.B.; Shinde, R.K.; Oh, S.; Kwon, K.C.; Kim, N. A Systematic Review and Identification of the Challenges of Deep Learning Techniques for Undersampled Magnetic Resonance Image Reconstruction. Sensors 2024, 24, 753. [Google Scholar] [CrossRef]
- Ghader, M.; Farahani, B.; Rezvani, Z.; Shahsavari, M.; Fazlali, M. Exploiting Federated Learning for EEG-based Brain-Computer Interface System. In Proceedings of the 2023 IEEE International Conference on Omni-Layer Intelligent Systems (COINS), Berlin, Germany, 23–25 July 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Mehta, S.; Kukreja, V.; Gupta, A. Next-Generation Wheat Disease Monitoring: Leveraging Federated Convolutional Neural Networks for Severity Estimation. In Proceedings of the 2023 4th International Conference for Emerging Technology (INCET), Belgaum, India, 26–28 May 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Pandianchery, M.S.; Sowmya, V.; Gopalakrishnan, E.A.; Ravi, V.; Soman, K.P. Centralized CNN–GRU Model by Federated Learning for COVID-19 Prediction in India. IEEE Trans. Comput. Soc. Syst. 2024, 11, 1362–1371. [Google Scholar] [CrossRef]
- Bukhari, S.M.S.; Zafar, M.H.; Houran, M.A.; Moosavi, S.K.R.; Mansoor, M.; Muaaz, M.; Sanfilippo, F. Secure and privacy-preserving intrusion detection in wireless sensor networks: Federated learning with SCNN-Bi-LSTM for enhanced reliability. Ad Hoc Netw. 2024, 155, 103407. [Google Scholar] [CrossRef]
- Kumbhare, S.; Kathole, A.B.; Shinde, S. Federated learning aided breast cancer detection with intelligent Heuristic-based deep learning framework. Biomed. Signal Process. Control 2023, 86, 105080. [Google Scholar] [CrossRef]
- Deng, Z.; Qureshi, T.A.; Javed, S.; Wang, L.; Christodoulou, A.G.; Xie, Y.; Gaddam, S.; Pandol, S.J.; Li, D. FedRNN: Federated Learning with RNN-Based Aggregation on Pancreas Segmentation. In Proceedings of the Medical Imaging and Computer-Aided Diagnosis, San Diego, CA, USA, 19–23 February 2023; Su, R., Zhang, Y., Liu, H., Frangi, A.F., Eds.; Springer: Singapore, 2023; pp. 453–464. [Google Scholar]
- Little, C.; Elliot, M.; Allmendinger, R. Federated learning for generating synthetic data: A scoping review. Int. J. Popul. Data Sci. 2023, 8. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Lan, Y.; Zhang, Z.; Wen, J.; Cui, Z.; Zhang, W. A Many-Objective Optimization Based Federal Deep Generation Model for Enhancing Data Processing Capability in IoT. IEEE Trans. Ind. Inform. 2023, 19, 561–569. [Google Scholar] [CrossRef]
- Yan, R.; Qu, L.; Wei, Q.; Huang, S.C.; Shen, L.; Rubin, D.L.; Xing, L.; Zhou, Y. Label-Efficient Self-Supervised Federated Learning for Tackling Data Heterogeneity in Medical Imaging. IEEE Trans. Med Imaging 2023, 42, 1932–1943. [Google Scholar] [CrossRef] [PubMed]
- Haggenmüller, S.; Schmitt, M.; Krieghoff-Henning, E.; Hekler, A.; Maron, R.C.; Wies, C.; Utikal, J.S.; Meier, F.; Hobelsberger, S.; Gellrich, F.F.; et al. Federated Learning for Decentralized Artificial Intelligence in Melanoma Diagnostics. JAMA Dermatol. 2024, 160, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Guo, L.; Gao, H.; He, Y.; You, Z.; Duan, A. FedCAE: A New Federated Learning Framework for Edge-Cloud Collaboration Based Machine Fault Diagnosis. IEEE Trans. Ind. Electron. 2024, 71, 4108–4119. [Google Scholar] [CrossRef]
- Christidis, K.; Devetsikiotis, M. Blockchains and Smart Contracts for the Internet of Things. IEEE Access 2016, 4, 2292–2303. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Y.; Niu, T.; Li, Z.; Zhang, Z.; Chen, H.; Zhang, L. A Survey on Blockchain-Based Federated Learning: Categorization, Application and Analysis. Comput. Model. Eng. Sci. 2024, 139, 2451–2477. [Google Scholar] [CrossRef]
- Wu, B.; Kang, H. Research on Federated Sharing Methods for Massive Data in Blockchain. In Proceedings of the Smart Grid and Internet of Things; Deng, D.J., Chen, J.C., Eds.; Springer: Cham, Switzerland, 2024; pp. 12–27. [Google Scholar]
- Sumitra; Shenoy, M.V. HFedDI: A novel privacy preserving horizontal federated learning based scheme for IoT device identification. J. Netw. Comput. Appl. 2023, 214, 103616. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, L.; Yu, K.; Min, G.; Al-Dubai, A.Y.; Zomaya, A.Y. A Novel Federated Learning Scheme for Generative Adversarial Networks. IEEE Trans. Mob. Comput. 2024, 23, 3633–3649. [Google Scholar] [CrossRef]
- Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain computer interfaces, a review. Sensors 2012, 12, 1211–1279. [Google Scholar] [CrossRef]
- Liu, R.; Chen, Y.; Li, A.; Ding, Y.; Yu, H.; Guan, C. Aggregating intrinsic information to enhance BCI performance through federated learning. Neural Netw. 2024, 172, 106100. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.; Song, S.; Letaief, K.B. Hierarchical Federated Learning with Quantization: Convergence Analysis and System Design. IEEE Trans. Wirel. Commun. 2023, 22, 2–18. [Google Scholar] [CrossRef]
- Fan, X.; Wang, Y.; Huo, Y.; Tian, Z. 1-Bit Compressive Sensing for Efficient Federated Learning over the Air. IEEE Trans. Wirel. Commun. 2023, 22, 2139–2155. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, Y.; Xue, Z.; Ohtsuki, T.; Adebisi, B.; Gui, G. Semisupervised Federated-Learning-Based Intrusion Detection Method for Internet of Things. IEEE Internet Things J. 2023, 10, 8645–8657. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, S.; Valls, V.; Ko, B.J.; Lee, W.H.; Leung, K.K.; Tassiulas, L. Model Pruning Enables Efficient Federated Learning on Edge Devices. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 10374–10386. [Google Scholar] [CrossRef]
- Tang, Z.; Shi, S.; Li, B.; Chu, X. GossipFL: A Decentralized Federated Learning Framework with Sparsified and Adaptive Communication. IEEE Trans. Parallel Distrib. Syst. 2023, 34, 909–922. [Google Scholar] [CrossRef]
- Vásquez-Correa, J.C.; Álvarez Muniain, A. Novel Speech Recognition Systems Applied to Forensics within Child Exploitation: Wav2vec2.0 vs. Whisper. Sensors 2023, 23, 1843. [Google Scholar] [CrossRef]
- Hagos, D.H.; Tankard, E.; Rawat, D.B. A Scalable Asynchronous Federated Learning for Privacy-Preserving Real-Time Surveillance Systems. In Proceedings of the IEEE INFOCOM 2023—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), New York, NY, USA, 17–20 May 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, T.; Xiong, P.; Zhou, W.; Yu, P.S. A Robust Game-Theoretical Federated Learning Framework with Joint Differential Privacy. IEEE Trans. Knowl. Data Eng. 2023, 35, 3333–3346. [Google Scholar] [CrossRef]
- Shoham, Y.; Leyton-Brown, K. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Luo, X.; Zhang, Z.; He, J.; Hu, S. Strategic Analysis of the Parameter Servers and Participants in Federated Learning: An Evolutionary Game Perspective. IEEE Trans. Comput. Soc. Syst. 2024, 11, 132–143. [Google Scholar] [CrossRef]
Category | Total | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | |
---|---|---|---|---|---|---|---|---|---|---|
communication | 1110 | 1 | 1 | 20 | 84 | 182 | 300 | 382 | 140 | |
security | 1076 | 1 | 1 | 7 | 43 | 110 | 255 | 498 | 161 | |
coalition | 942 | 1 | 1 | 8 | 77 | 104 | 297 | 355 | 99 | |
data distribution | 671 | 0 | 0 | 6 | 27 | 72 | 170 | 297 | 99 | |
model aggregations | 574 | 0 | 0 | 5 | 34 | 92 | 139 | 232 | 72 | |
neural networks | 2592 | 2 | 3 | 28 | 137 | 327 | 657 | 1097 | 341 | |
classification (of information) | 1292 | 0 | 1 | 10 | 65 | 172 | 321 | 536 | 187 | |
blockchain | 1281 | 1 | 0 | 21 | 68 | 147 | 340 | 515 | 189 | |
Internet of Things | 1262 | 0 | 1 | 12 | 53 | 116 | 328 | 541 | 211 | |
edge computing | 1142 | 0 | 0 | 16 | 73 | 158 | 325 | 417 | 153 | |
biological system modeling | 288 | 0 | 0 | 0 | 5 | 26 | 59 | 140 | 58 | |
model compression | 277 | 0 | 0 | 3 | 18 | 43 | 58 | 109 | 46 | |
speech recognition | 273 | 0 | 0 | 1 | 26 | 30 | 84 | 99 | 33 | |
real-time systems | 241 | 0 | 1 | 5 | 18 | 35 | 53 | 94 | 35 | |
game theory | 232 | 0 | 0 | 6 | 16 | 23 | 57 | 90 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enguix, F.; Carrascosa, C.; Rincon, J. Exploring Federated Learning Tendencies Using a Semantic Keyword Clustering Approach. Information 2024, 15, 379. https://doi.org/10.3390/info15070379
Enguix F, Carrascosa C, Rincon J. Exploring Federated Learning Tendencies Using a Semantic Keyword Clustering Approach. Information. 2024; 15(7):379. https://doi.org/10.3390/info15070379
Chicago/Turabian StyleEnguix, Francisco, Carlos Carrascosa, and Jaime Rincon. 2024. "Exploring Federated Learning Tendencies Using a Semantic Keyword Clustering Approach" Information 15, no. 7: 379. https://doi.org/10.3390/info15070379
APA StyleEnguix, F., Carrascosa, C., & Rincon, J. (2024). Exploring Federated Learning Tendencies Using a Semantic Keyword Clustering Approach. Information, 15(7), 379. https://doi.org/10.3390/info15070379