Enhancing Flight Delay Predictions Using Network Centrality Measures
Abstract
:1. Introduction
2. Literature Review
3. Preliminaries
3.1. Network Centrality Measures
3.2. Machine Learning Models
4. Data and Methodology
4.1. Data Collection and Preparation
4.2. Methodology
4.2.1. Airport Network Construction and Centrality Integration
4.2.2. Machine Learning Model Training
5. Results
5.1. Permutation Feature Importance
5.2. Comparison with Baseline Models
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Federal Aviation Administration (FAA). Air Traffic by the Numbers. Available online: https://www.faa.gov/airtraffic/air-traffic-numbers (accessed on 22 August 2024).
- Boeing. Boeing Forecasts Demand for Nearly 44,000 New Airplanes Through 2043 as Air Travel Surpasses Pre-Pandemic Levels. Available online: https://investors.boeing.com/investors/news/press-release-details/2024/Boeing-Forecasts-Demand-for-Nearly-44000-New-Airplanes-Through-2043-as-Air-Travel-Surpasses-Pre-Pandemic-Levels/default.aspx (accessed on 22 August 2024).
- Dai, M. A hybrid machine learning-based model for predicting flight delay through aviation big data. Sci. Rep. 2024, 14, 4603. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Choi, S.; Briceno, S.; Mavris, D. A deep learning approach to flight delay prediction. In Proceedings of the 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sacramento, CA, USA, 25–29 September 2016; pp. 1–6. [Google Scholar]
- Yu, B.; Guo, Z.; Asian, S.; Wang, H.; Chen, G. Flight delay prediction for commercial air transport: A deep learning approach. Transp. Res. Part E Logist. Transp. Rev. 2019, 125, 203–221. [Google Scholar] [CrossRef]
- Cai, K.; Li, Y.; Fang, Y.P.; Zhu, Y. A deep learning approach for flight delay prediction through time-evolving graphs. IEEE Trans. Intell. Transp. Syst. 2021, 23, 11397–11407. [Google Scholar] [CrossRef]
- Esmaeilzadeh, E.; Mokhtarimousavi, S. Machine learning approach for flight departure delay prediction and analysis. Transp. Res. Rec. 2020, 2674, 145–159. [Google Scholar] [CrossRef]
- Choi, S.; Kim, Y.J.; Briceno, S.; Mavris, D. Prediction of weather-induced airline delays based on machine learning algorithms. In Proceedings of the 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sacramento, CA, USA, 25–29 September 2016; pp. 1–6. [Google Scholar]
- Khan, R.; Akbar, S.; Zahed, T.A. Flight delay prediction based on gradient boosting ensemble techniques. In Proceedings of the 2022 16th International Conference on Open Source Systems and Technologies (ICOSST), Lahore, Pakistan, 14–15 December 2022; pp. 1–5. [Google Scholar]
- KXAN. Which Airports Had the Most Delays and Cancellations in 2023? Available online: https://www.kxan.com/news/national-news/which-airports-had-the-most-delays-and-cancellations-in-2023/ (accessed on 22 August 2024).
- Hsiao, C.Y.; Hansen, M. Econometric analysis of US airline flight delays with time-of-day effects. Transp. Res. Rec. 2006, 1951, 104–112. [Google Scholar] [CrossRef]
- Zou, B.; Hansen, M. Flight delays, capacity investment and social welfare under air transport supply-demand equilibrium. Transp. Res. Part A Policy Pract. 2012, 46, 965–980. [Google Scholar] [CrossRef]
- Rebollo, J.J.; Balakrishnan, H. Characterization and prediction of air traffic delays. Transp. Res. Part C Emerg. Technol. 2014, 44, 231–241. [Google Scholar] [CrossRef]
- Nigam, R.; Govinda, K. Cloud based flight delay prediction using logistic regression. In Proceedings of the 2017 International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 7–8 December 2017; pp. 662–667. [Google Scholar]
- Yin, J.; Hu, Y.; Ma, Y.; Xu, Y.; Han, K.; Chen, D. Machine learning techniques for taxi-out time prediction with a macroscopic network topology. In Proceedings of the 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), London, UK, 23–27 September 2018; pp. 1–8. [Google Scholar]
- Pamplona, D.A.; Weigang, L.; De Barros, A.G.; Shiguemori, E.H.; Alves, C.J.P. Supervised neural network with multilevel input layers for predicting of air traffic delays. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–6. [Google Scholar]
- Gui, G.; Liu, F.; Sun, J.; Yang, J.; Zhou, Z.; Zhao, D. Flight delay prediction based on aviation big data and machine learning. IEEE Trans. Veh. Technol. 2019, 69, 140–150. [Google Scholar] [CrossRef]
- Liu, F.; Sun, J.; Liu, M.; Yang, J.; Gui, G. Generalized flight delay prediction method using gradient boosting decision tree. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–5. [Google Scholar]
- Wu, Y.; Yang, H.; Lin, Y.; Liu, H. Spatiotemporal propagation learning for network-wide flight delay prediction. IEEE Trans. Knowl. Data Eng. 2023, 36, 386–400. [Google Scholar] [CrossRef]
- Li, Q.; Guan, X.; Liu, J. A CNN-LSTM framework for flight delay prediction. Expert Syst. Appl. 2023, 227, 120287. [Google Scholar] [CrossRef]
- Güvercin, M.; Ferhatosmanoglu, N.; Gedik, B. Forecasting flight delays using clustered models based on airport networks. IEEE Trans. Intell. Transp. Syst. 2020, 22, 3179–3189. [Google Scholar] [CrossRef]
- Paramita, C.; Supriyanto, C.; Syarifuddin, L.A.; Rafrastara, F.A. The Use of Cluster Computing and Random Forest Algoritm for Flight Delay Prediction. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 2022, 20, 19–22. [Google Scholar]
- Wei, X.; Li, Y.; Shang, R.; Ruan, C.; Xing, J. Airport Cluster Delay Prediction Based on TS-BiLSTM-Attention. Aerospace 2023, 10, 580. [Google Scholar] [CrossRef]
- Cheung, D.P.; Gunes, M.H. A complex network analysis of the United States air transportation. In Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Istanbul, Turkey, 26–29 August 2012; pp. 699–701. [Google Scholar]
- Anderson, S.; Revesz, P. Efficient MaxCount and threshold operators of moving objects. Geoinformatica 2009, 13, 355–396. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Wasserman, S. Social Network Analysis: Methods and Applications; The Press Syndicate of the University of Cambridge: Cambridge, UK, 1994. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2–8 December 2018; pp. 6639–6649. [Google Scholar]
- Bureau of Transportation Statistics (BTS). TranStats Database. Available online: https://www.transtats.bts.gov/ (accessed on 22 August 2024).
Attribute Name | Description | Type |
---|---|---|
ORIGIN_AIRPORT_ID | Origin airport | Categorical |
DEST_AIRPORT_ID | Destination airport | Categorical |
DEP_TIME | Scheduled departure time | Numerical |
DEP_DELAY | Flight delay (in minutes) | Numerical |
ARR_DELAY | Arrival delay (in minutes) | Numerical |
Attribute Name | Description | Type |
---|---|---|
ORIGIN_AIRPORT_ID | Origin airport | Categorical |
DEST_AIRPORT_ID | Destination airport | Categorical |
DEP_TIME | Scheduled departure time | Numerical |
DEP_DELAY | Flight delay (in minutes) | Numerical |
ARR_DELAY | Arrival delay (in minutes) | Numerical |
Origin_Degree_Centrality | Degree centrality of origin airport | Numerical |
Dest_Degree_Centrality | Degree centrality of destination airport | Numerical |
Origin_Betweenness_Centrality | Betweenness centrality of origin airport | Numerical |
Dest_Betweenness_Centrality | Betweenness centrality of destination airport | Numerical |
Origin_Closeness_Centrality | Closeness centrality of origin airport | Numerical |
Dest_Closeness_Centrality | Closeness centrality of destination airport | Numerical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajayi, J.; Xu, Y.; Li, L.; Wang, K. Enhancing Flight Delay Predictions Using Network Centrality Measures. Information 2024, 15, 559. https://doi.org/10.3390/info15090559
Ajayi J, Xu Y, Li L, Wang K. Enhancing Flight Delay Predictions Using Network Centrality Measures. Information. 2024; 15(9):559. https://doi.org/10.3390/info15090559
Chicago/Turabian StyleAjayi, Joseph, Yao Xu, Lixin Li, and Kai Wang. 2024. "Enhancing Flight Delay Predictions Using Network Centrality Measures" Information 15, no. 9: 559. https://doi.org/10.3390/info15090559
APA StyleAjayi, J., Xu, Y., Li, L., & Wang, K. (2024). Enhancing Flight Delay Predictions Using Network Centrality Measures. Information, 15(9), 559. https://doi.org/10.3390/info15090559