Modeling the Biocatalytic Method of Lipid Extraction Using Artificial Neural Networks
Abstract
:1. Introduction
- -
- designing the ANN for predicting the output values of the process;
- -
- evaluating the ANN accuracy;
- -
- process optimization.
2. Material and Methods
2.1. Experiment
2.2. Parameter Measurement Procedure
2.3. Experimental Data Preparation
2.4. Research Tools
3. Results
3.1. Experiment Results
3.2. ANN Design
- -
- the number of hidden layers;
- -
- the number of neurons in the hidden layers;
- -
- the activation function;
- -
- the loss function;
- -
- the step;
- -
- the optimizer;
- -
- regularization;
- -
- the size and number of batches;
- -
- the number of epochs.
4. Discussion
4.1. Evaluating the ANN Accuracy
4.2. Process Optimization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kurzova, A.A.; Knyazeva, A.S.; Vostrikova, N.L. New standards for test methods of meat products. Vsyo Myase 2018, 3, 28–31. (In Russian) [Google Scholar] [CrossRef]
- Zhdankin, G.V.; Novikova, G.V. Development of microwave installer for heat treatment of inedible slaughter waste. Perm Agrar. J. 2017, 20, 23–29. [Google Scholar]
- Gorbacheva, M.V.; Tarasov, V.E.; Kalmanovich, S.A.; Sapozhnikova, A.I. Electrochemical activation as a fat rendering technology. Foods Raw Mater. 2021, 9, 32–42. [Google Scholar] [CrossRef]
- Gorbacheva, M.V.; Tarasov, V.E.; Kalmanovich, S.A.; Sapozhnikova, A.I. Ostrich fat production using electrolyzed fluid. Food Process. Tech. Technol. 2020, 50, 21–31. [Google Scholar] [CrossRef]
- Gorbacheva, M.V.; Tarasov, V.E.; Sapozhnikova, A.I.; Gordienko, I.M.; Strepetova, O.A. Method of Obtaining Ostrich Melted Fat. Russia Patent RU 2683559C1, 28 March 2019. [Google Scholar]
- Gorbacheva, M.V.; Tarasov, V.E.; Sapozhnikova, A.I. New technical solutions for the intensification of the process of fat extraction. In Innovations in the Food Industry: Education, Science, Production: Materials of the 4th All-Russian Scientific and Practical Conference; Far Eastern State Agrarian University: Blagoveshchensk, Russia, 2020; pp. 34–38. [Google Scholar]
- Zhdankin, G.V.; Samodelkin, A.G.; Novikova, G.V.; Belova, M.V.; Mikhajlova, E.D. Multi-Module Centrifugal Ultrahighfrequency Plant for Heat Treatment of Raw Material of Animal Origin and Separation of Liquid Fraction. Russia Patent RU 2694179C2, 9 July 2019. [Google Scholar]
- Zimina, M.I.; Sukhih, S.A.; Babich, O.O.; Noskova, S.Y.; Abrashina, A.A.; Prosekov, A.Y. Investigating antibiotic activity of the genus bacillus strains and properties of their bacteriocins in order to develop next-generation pharmaceuticals. Foods Raw Mater. 2016, 4, 92–100. [Google Scholar] [CrossRef]
- Smirnov, S.O.; Fazullina, O.F. Formula and technology development for obtaining biologically active natural food additives. Food Process. Tech. Technol. 2018, 48, 105–114. (In Russian) [Google Scholar] [CrossRef]
- Cunha, A.F.; Caetano, N.S.; Ramalho, E.; Crispim, A. Fat extraction from fleshings—Optimization of operating conditions. Energy Rep. 2020, 6, 381–390. [Google Scholar] [CrossRef]
- Jenkins, B.; Ronis, M.; Koulman, A. LC–MS lipidomics: Exploiting a simple high-throughput method for the comprehensive extraction of lipids in a ruminant fat dose-response study. Metabolites 2020, 10, 296. [Google Scholar] [CrossRef]
- Ali, A.; Qadri, S.; Mashwani, W.K.; Brahim Belhaouari, S.; Naeem, S.; Rafique, S.; Jamal, F.; Chesneau, C.; Anam, S. Machine learning approach for the classification of corn seed using hybrid features. Int. J. Food Prop. 2020, 23, 1097–1111. [Google Scholar] [CrossRef]
- An, T.; Yu, H.; Yang, C.; Liang, G.; Chen, J.; Hu, Z.; Hu, B.; Dong, C. Black tea withering moisture detection method based on convolution neural network confidence. J. Food Process Eng. 2020, 43, e13428. [Google Scholar] [CrossRef]
- Bhargava, A.; Barisal, A. Automatic Detection and Grading of Multiple Fruits by Machine Learning. Food Anal. Methods 2020, 13, 751–761. [Google Scholar] [CrossRef]
- Borodulin, D.M.; Shafrai, A.V.; Maximenko, A.A. Neural Network and Home Hydroponics. Food Process. Tech. Technol. 2023, 53, 384–395. (In Russian) [Google Scholar] [CrossRef]
- Chen, J.D.; Zhang, D.F.; Nanehkaran, Y.A.; Li, D.L. Detection of rice plant diseases based on deep transfer learning. J. Sci. Food Agric. 2020, 100, 3246–3256. [Google Scholar] [CrossRef]
- Ekiz, B.; Baygul, O.; Yalcintan, H.; Ozcan, M. Comparison of the decision tree, artificial neural network and multiple regression methods for prediction of carcass tissues composition of goat kids. Meat Sci. 2020, 161, 108011. [Google Scholar] [CrossRef]
- Lu, A.; Wei, X.; Cai, R.; Xiao, S.; Yuan, H.; Gong, J.; Chu, B.; Xiao, G. Modeling the effect of vibration on the quality of stirred yogurt during transportation. Food Sci. Biotechnol. 2020, 29, 889–896. [Google Scholar] [CrossRef]
- Shafrai, A.V.; Permyakova, L.V.; Borodulin, D.M.; Sergeeva, I.Y. Modeling the Physiological Parameters of Brewer’s Yeast during Storage with Natural Zeolite-Containing Tuffs Using Artificial Neural Networks. Information 2022, 13, 529. [Google Scholar] [CrossRef]
- Tarafdar, A.; Kaur, B.P.; Nema, P.K.; Babar, O.A.; Kumar, D. Using a combined neural network—Genetic algorithm approach for predicting the complex rheological characteristics of microfluidized sugarcane juice. LWT-Food Sci. Technol. 2020, 123, 109058. [Google Scholar] [CrossRef]
- Torshizi, M.V.; Asghari, A.; Tabarsa, F.; Danesh, P.; Akbarzadeh, A. Classification by artificial neural network for mushroom color changing under effect uv—A irradiation. Carpathian J. Food Sci. Technol. 2020, 12, 157–167. [Google Scholar] [CrossRef]
- Vasighi-Shojae, H.; Gholami-Parashkouhi, M.; Mohammadzamani, D.; Soheili, A. Predicting Mechanical Properties of Golden Delicious Apple Using Ultrasound Technique and Artificial Neural Network. Food Anal. Methods 2020, 13, 699–705. [Google Scholar] [CrossRef]
- Khachaturyan, L.R. Expertize of the quality of rendered animal fats. In Bulletin of Scientific Works of Young Scientists, Graduate Students, Undergraduates and Students of Gorsk State Agrarian University; Temiraev, V.K.h., Kudzaev, A.B., Eds.; Gorsky State Agrarian University: Vladikavkaz, Russia, 2018; pp. 365–367. (In Russian) [Google Scholar]
- Li, C.; Wang, B.; Qin, P.; Ge, W.; Zhang, M.; Yue, B.; Chen, H. Enzymatic centrifugation extraction of goose fat liver oil and its quality evaluation. Food Res. Dev. 2018, 39, 72–81. [Google Scholar]
- Novikov, A.M.; Semenov, A.V. Principles of rendering animal fat parameters in a high-frequency electromagnetic field. In Scientific and Practical Ways to Improve Environmental Sustainability and Socio-Economic Support of Agricultural Production: Proceedings of the International Scientific and Practical Conference Dedicated to the Year of Ecology in Russia; Caspian Research Institute of Arid Agricultural: Solenoe Zaymische, Russia, 2017; pp. 1278–1281. (In Russian) [Google Scholar]
- Poruchikov, D.; Samarin, G.; Vasilyev, A.; Ershova, I.; Normova, T.; Aleksandrova, G.A.; Filippova, I.V. UHF device introduction for animal raw material processing. Helix 2020, 10, 64–68. [Google Scholar] [CrossRef]
- Sander, A.; Antonije Košćak, M.; Kosir, D.; Milosavljević, N.; Parlov Vuković, J.; Magić, L. The influence of animal fat type and purification conditions on biodiesel quality. Renew. Energy 2018, 118, 752–760. [Google Scholar] [CrossRef]
- Slobodchikova, M.N.; Vasilyeva, V.T.; Ivanov, R.V.; Lebedeva, U.M. New aspects of non-waste use of secondary raw materials of horse breeding in Yakutia. Probl. Nutr. 2018, 87, 87–92. (In Russian) [Google Scholar] [CrossRef]
- Vasilevich, F.I.; Gorbacheva, M.V.; Sapozhnikova, A.I.; Gordienko, I.M. Integrated, environmentally safe disposal (recycling) of secondary products and animal waste: Innovative technical solutions. In Actual Problems of Veterinary Medicine, Zootechnics and Biotechnology: Collection of Scientific Papers of the International Educational-Methodical and Scientific-Practical Conference Dedicated to the 100th Anniversary of the Founding of Moscow State Academy of Veterinary Medicine and Biotechnology—MVA by K.I. Skryabin; Moscow State Academy of Veterinary Medicine and Biotechnology: Moscow, Russia, 2019; pp. 394–396. [Google Scholar]
- Vasilevich, F.I.; Gorbacheva, M.V.; Tarasov, V.E.; Sapozhnikova, A.I.; Gordienko, I.M. Electro-activated ostrich fat melting: An innovative solution. Res. J. Pharm. Biol. Chem. Sci. 2018, 9, 1615–1623. [Google Scholar]
- Volkov, V.V.; Mezenova OYa Hölling, A.; Grimm, T. Promising developments of processing technologies for byproducts of animal and plant origin using hydrolysis. In Baltic Maritime Forum: Materials of the VI International Baltic Maritime Forum; Kaliningrad State Technical University: Kaliningrad, Russia, 2018; pp. 24–30. [Google Scholar]
- Vostrikova, N.L.; Kuznetsova, O.A.; Kulikovskii, A.V. Methodological aspects of lipid extraction from biological matrices. Theory Pract. Meat Process. 2018, 3, 4–21. [Google Scholar] [CrossRef] [Green Version]
- Zhdankin, G.V.; Samodelkin, A.G.; Novikova, G.V.; Belova, M.V.; Gorbunov, B.I. Microwave Technology for Extracting Fat from Fat-Containing Raw Materials. Russia Patent RU 2636155C1, 21 November 2017. [Google Scholar]
- Dyshlyuk, L.; Pavsky, V.; Ivanova, S.; Babich, O.; Prosekov, A.; Chaplygina, T. The effect of postharvest ultraviolet irradiation on the content of antioxidant compounds and the activity of antioxidant enzymes in tomato. Heliyon 2020, 6, e03288. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
The number of hidden layers | 8 |
The number of neurons in the hidden layers | 64 |
The activation functions | ReLU |
The loss functions | BCELoss |
The step | 0.001 |
The optimizer | Adam |
Regularization | L2 = 0.000001 |
The size and number of batches | 2; 49 |
The number of epochs | 226 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafrai, A.V.; Prosekov, A.Y.; Vechtomova, E.A. Modeling the Biocatalytic Method of Lipid Extraction Using Artificial Neural Networks. Information 2023, 14, 452. https://doi.org/10.3390/info14080452
Shafrai AV, Prosekov AY, Vechtomova EA. Modeling the Biocatalytic Method of Lipid Extraction Using Artificial Neural Networks. Information. 2023; 14(8):452. https://doi.org/10.3390/info14080452
Chicago/Turabian StyleShafrai, Anton V., Alexander Yu. Prosekov, and Elena A. Vechtomova. 2023. "Modeling the Biocatalytic Method of Lipid Extraction Using Artificial Neural Networks" Information 14, no. 8: 452. https://doi.org/10.3390/info14080452
APA StyleShafrai, A. V., Prosekov, A. Y., & Vechtomova, E. A. (2023). Modeling the Biocatalytic Method of Lipid Extraction Using Artificial Neural Networks. Information, 14(8), 452. https://doi.org/10.3390/info14080452