Mapping Metaverse Research: Identifying Future Research Areas Based on Bibliometric and Topic Modeling Techniques
Abstract
:1. Introduction
- How has research on the metaverse evolved since its emergence in academia?
- What are the current research themes and knowledge structures in the selected metaverse publications, and what is the relationship among the various concepts studied by scholars?
- Who are the most influential authors and studies in the field of the metaverse?
- Which scholars and academic institutions have engaged in the most significant levels of collaboration within the metaverse domain?
2. Methodology
2.1. Database Selection and Search Keywords Identification
2.2. Initial Analysis of the Selected Publications
2.3. Social Network Analysis
2.4. Thematic and Conceptual Structure Maps
3. Results
3.1. Academic Output, Relevant Journals, and Influential Authors
3.2. Network Analysis
3.2.1. Collaboration Networks
3.2.2. Keywords and Keyword Co-Occurrence Analysis
3.3. Topic Modeling
3.4. Conceptual Structure and Thematic Maps
4. Future Research Directions
- In light of the burgeoning interest in the metaverse and its associated technologies, there are numerous avenues for future research that warrant exploration. One such direction could involve a comprehensive examination of the convergence of VR, AR, and blockchain technologies within the metaverse framework [14]. Investigating the synergistic potential of these technologies, while also accounting for their ethical implications and societal impact, would make a significant contribution to the scholarly discourse surrounding the metaverse [133]. Moreover, scholars need to focus on the development and refinement of digital sensing technologies that underpin the immersive experiences within the metaverse [128]. These advancements, in turn, hold the potential to revolutionize the way users interact with digital environments and other users. As a result, delving into the optimization of these sensing technologies and their integration with the metaverse’s infrastructure can provide valuable insights into the creation of more seamless and intuitive virtual experiences. As the metaverse becomes increasingly ubiquitous, it is crucial to examine the dynamics of power, control, and ownership within this digital realm [107]. A critical evaluation of the role of blockchain technology in ensuring decentralization, user autonomy, and data privacy could help illuminate the potential for more equitable governance structures in the metaverse. This line of research might also delve into the regulatory frameworks necessary to mitigate potential misuse and safeguard users’ rights in the rapidly evolving metaverse landscape [166]. In sum, we suggest the following research questions:
- a.
- How can VR, AR, and blockchain be integrated within the metaverse framework?
- b.
- What are the ethical implications of the metaverse?
- c.
- What is the societal impact of the metaverse?
- d.
- How will digital sensing technologies shape users’ experience of the metaverse?
- e.
- How will power, control, and ownership evolve in the metaverse?
- f.
- How can blockchain impact decentralization, user autonomy, and privacy in the metaverse?
- g.
- What regulatory frameworks are needed/appropriate for the metaverse?
- Related to the potential applications of the metaverse in education and learning, future research could involve the systematic evaluation of the efficacy of immersive learning environments, which leverage VR and AR technologies to engender interactive 3D spaces [6]. By examining the impact of these environments on student engagement, motivation, and learning outcomes, researchers can elucidate the advantages and limitations of integrating the metaverse into diverse educational settings. In addition, scholars might investigate the dynamics of virtual interaction among learners hailing from disparate geographical locations, paying particular attention to how these interactions cultivate essential soft skills. This research could also encompass the cultural dimensions of metaverse-enabled learning, examining how these virtual spaces foster cross-cultural understanding and promote global citizenship among students [167]. The metaverse’s capacity for tailored instructional materials and activities offers a promising domain for further investigation into the personalization of learning pathways [168]. In this regard, researchers may delve into the efficacy of adaptive learning algorithms and data-driven approaches to customize educational content within the metaverse, including diverse aspects of personalized learning, such as balancing student autonomy and instructor guidance and addressing ethical considerations related to data privacy and algorithmic fairness [92]. Furthermore, future research might address the challenges and barriers to the widespread adoption of the metaverse in education. Investigating factors such as technological infrastructure, digital literacy, and accessibility can shed light on the disparities that may emerge in a metaverse-enabled learning landscape. The emerging research questions are as follows:
- h.
- How efficient are immersive learning environments in the metaverse?
- i.
- How does a metaverse environment influence student engagement, motivation, and learning outcomes?
- j.
- How does the metaverse impact interactions between learners from different cultural backgrounds?
- k.
- Can the metaverse contribute to the personalization of individual learning pathways?
- l.
- What are the challenges and barriers to widespread metaverse adoption in education?
- The significance of the metaverse in healthcare and its potential impact on human well-being has been highlighted repeatedly in the academic literature. To advance research in this direction, researchers need to assess how the metaverse can overcome geographical barriers, improve access to quality healthcare services, and address the needs of individuals in remote or underserved regions [26]. Another research direction pertains to the development and evaluation of medical education and training within the metaverse. Future studies could also explore how a metaverse-enabled experiential learning approach can accelerate knowledge acquisition and skill development, ultimately contributing to improved patient outcomes [11]. Furthermore, researchers could explore how virtual therapeutic interventions may effectively treat mental health conditions, such as anxiety, depression, or post-traumatic stress disorder [35]. They can leverage the immersive and interactive nature of virtual environments in the metaverse to develop innovative interventions that promote relaxation, mindfulness, and overall wellbeing. Finally, investigations into issues such as data privacy, security, and informed consent can help inform the development of robust regulatory frameworks that protect patients’ rights and ensure the responsible use of metaverse technologies in healthcare [26]. The following questions need to be answered:
- m.
- What is the impact of the metaverse on healthcare?
- n.
- How can the metaverse foster medical education and training?
- o.
- Can the metaverse be applied in therapeutic interventions related to mental health conditions (including wellbeing in general)?
- p.
- What regulatory frameworks are needed to protect patients’ rights in the metaverse?
- An important area of investigation involves the exploration of the metaverse as a platform for studying consumer behavior within immersive, interactive environments [161]. Researchers could develop and evaluate methodologies for replicating realistic marketplaces and consumer scenarios, aiming to extract valuable insights into consumer preferences, decision-making processes, and emotional responses. These findings can ultimately inform the development of more effective marketing and advertising strategies that cater to the evolving needs and expectations of consumers. Moreover, future research might address the role of the metaverse in capturing granular, real-time data on consumer interactions, movements, and transactions. Scholars could investigate the challenges and opportunities associated with harnessing rich, contextualized datasets generated within the metaverse as well as the ethical implications surrounding data privacy and informed consent [169]. This line of inquiry can contribute to the development of best practices for data management and analysis within the metaverse. The integration of AI and ML algorithms in the metaverse context presents a further domain for exploration [161]. Researchers might investigate the effectiveness of these algorithms in analyzing the wealth of data generated within the metaverse, with a particular focus on identifying emerging trends, detecting patterns, and predicting future consumer behavior. Studies that assess the accuracy and precision of these algorithms as well as their potential biases and limitations can contribute to the refinement of data-driven decision-making in the realms of marketing and business intelligence [124]. We postulate the following research questions:
- q.
- What theories/frameworks/methods are suitable for investigating consumer behavior in the metaverse?
- r.
- How does the metaverse shape user preferences, decision-making processes, and emotional responses?
- s.
- Which marketing strategies best utilize the idiosyncrasies of the metaverse?
- t.
- How can metaverse data be used for marketing purposes?
- u.
- What are the ethical and privacy-related consequences of the use of metaverse data?
- v.
- How can AI and machine learning be used on metaverse data to identify emerging trends and predict future consumer behavior?
- Potential applications of the metaverse encompassing fields such as tourism, gaming, movies, and also metaverse creation tools, such as Unity, reveal several intriguing avenues for research. In the realm of gaming and movies, for instance, there exists a valuable opportunity to utilize popular digital media as portals to immersive travel experiences. Gaming landscapes could serve as innovative, interactive travel guides, while movies may offer virtual tours of locations in a more accessible and environmentally friendly manner, especially for people with mobility or financial limitations [169]. Meanwhile, metaverse creation tools such as Unity could be pivotal in digitally archiving and reconstructing historical sites, artifacts, and intangible cultural expressions. These technologies could stimulate a deeper understanding of diverse cultures, fostering cross-cultural exchange and empathy and, ultimately, enriching global tourism [122]. Within the hospitality sector, the metaverse is poised to revolutionize customer service and personalize guest experiences. By incorporating elements of gaming and a cinematic narrative into guest interactions, the industry could engage customers in an entirely new way. Moreover, AI-powered chatbots and virtual concierge services, potentially developed using tools such as Unity, could provide real-time assistance and tailored recommendations to guests.Further study of the impact of these technologies on guest satisfaction and loyalty is warranted. This research can elucidate how the metaverse can reshape the hospitality industry, leading to improved customer experiences. The following questions, encompassing these broader areas of the metaverse, need to be addressed:
- w.
- How can gaming and movies within the metaverse provide environmentally friendly and easily accessible travel alternatives?
- x.
- To what extent can historical sites, artifacts, and intangible cultural expressions be digitally archived and/or reconstructed in the metaverse?
- y.
- How does the metaverse, through its diverse facets such as gaming, movies, and digital construction, impact cultural diversity and cross-cultural exchange in tourism?
- z.
- How can the metaverse help to enhance customer service and personalize guest experiences, possibly through the incorporation of gaming and cinematic elements?
- aa.
- How can AI-powered chatbots and virtual concierges impact the guest experience?
5. Conclusions, Implications, and Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mystakidis, S. Metaverse. Encyclopedia 2022, 2, 486–497. [Google Scholar] [CrossRef]
- Sutherland, I. The Ultimate Display. In Proceedings of the IFIP Congress, New York, NY, USA, 1 January 1965; Volume 2, pp. 506–508. [Google Scholar]
- Akour, I.A.; Al-Maroof, R.S.; Alfaisal, R.; Salloum, S.A. A Conceptual Framework for Determining Metaverse Adoption in Higher Institutions of Gulf Area: An Empirical Study Using Hybrid SEM-ANN Approach. Comput. Educ. Artif. Intell. 2022, 3, 100052. [Google Scholar] [CrossRef]
- Alpala, L.O.; Quiroga-Parra, D.J.; Torres, J.C.; Peluffo-Ordóñez, D.H. Smart Factory Using Virtual Reality and Online Multi-User: Towards a Metaverse for Experimental Frameworks. Appl. Sci. Switz. 2022, 12, 6258. [Google Scholar] [CrossRef]
- Arif, Y.M.; Nurhayati, H. Learning Material Selection for Metaverse-Based Mathematics Pedagogy Media Using Multi-Criteria Recommender System. Int. J. Intell. Eng. Syst. 2022, 15, 541–551. [Google Scholar] [CrossRef]
- Beck, D.; Morgado, L.; O’Shea, P. Educational Practices and Strategies with Immersive Learning Environments: Mapping of Reviews for Using the Metaverse. IEEE Trans. Learn. Technol. 2023, 1–23. [Google Scholar] [CrossRef]
- Ozaki, M.; Gobeawan, L.; Kitaoka, S.; Hamazaki, H.; Kitamura, Y.; Lindeman, R.W. Camera Movement for Chasing a Subject with Unknown Behavior Based on Real-Time Viewpoint Goodness Evaluation. Vis. Comput. 2010, 26, 629–638. [Google Scholar] [CrossRef]
- Sankar, H.; Subramaniyaswamy, V.; Vijayakumar, V.; Arun Kumar, S.; Logesh, R.; Umamakeswari, A. Intelligent Sentiment Analysis Approach Using Edge Computing-Based Deep Learning Technique. Softw. Pract. Exp. 2020, 50, 645–657. [Google Scholar] [CrossRef]
- Ravi, L.; Subramaniyaswamy, V.; Vijayakumar, V.; Chen, S.; Karmel, A.; Devarajan, M. Hybrid Location-Based Recommender System for Mobility and Travel Planning. Mob. Netw. Appl. 2019, 24, 1226–1239. [Google Scholar] [CrossRef]
- An, A. Adopting Metaverse-Related Mixed Reality Technologies to Tackle Urban Development Challenges: An Empirical Study of an Australian Municipal Government. IET Smart Cities 2023, 5, 64–72. [Google Scholar] [CrossRef]
- Chengoden, R.; Victor, N.; Huynh-The, T.; Yenduri, G.; Jhaveri, R.H.; Alazab, M.; Bhattacharya, S.; Hegde, P.; Maddikunta, P.K.R.; Gadekallu, T.R. Metaverse for Healthcare: A Survey on Potential Applications, Challenges and Future Directions. IEEE Access 2023, 11, 12764–12794. [Google Scholar] [CrossRef]
- Golf-Papez, M.; Heller, J.; Hilken, T.; Chylinski, M.; de Ruyter, K.; Keeling, D.I.; Mahr, D. Embracing Falsity through the Metaverse: The Case of Synthetic Customer Experiences. Bus. Horiz. 2022, 65, 739–749. [Google Scholar] [CrossRef]
- Adams, D. Virtual Retail in the Metaverse: Customer Behavior Analytics, Extended Reality Technologies, and Immersive Visualization Systems. Linguist. Philos. Investig. 2022, 21, 73–88. [Google Scholar] [CrossRef]
- Gattullo, M.; Laviola, E.; Evangelista, A.; Fiorentino, M.; Uva, A.E. Towards the Evaluation of Augmented Reality in the Metaverse: Information Presentation Modes. Appl. Sci. 2022, 12, 12600. [Google Scholar] [CrossRef]
- Glencross, M.; Mitchell, K.; Mark, B.; Pan, Y. Foreword to the Special Section on the Reality-Virtuality Continuum and Its Applications (RVCA). Comput. Graph. 2021, 97, A3–A4. [Google Scholar] [CrossRef]
- Chekembayeva, G.; Garaus, M.; Schmidt, O. The Role of Time Convenience and (Anticipated) Emotions in AR Mobile Retailing Application Adoption. J. Retail. Consum. Serv. 2023, 72, 103260. [Google Scholar] [CrossRef]
- Smart, P. Minds in the Metaverse: Extended Cognition Meets Mixed Reality. Philos. Technol. 2022, 35, 87. [Google Scholar] [CrossRef]
- Kral, P.; Janoskova, K.; Potcovaru, A.-M. Digital Consumer Engagement on Blockchain-Based Metaverse Platforms: Extended Reality Technologies, Spatial Analytics, and Immersive Multisensory Virtual Spaces. Linguist. Philos. Investig. 2022, 21, 252–267. [Google Scholar] [CrossRef]
- Zytko, D.; Chan, J. The Dating Metaverse: Why We Need to Design for Consent in Social VR. IEEE Trans. Vis. Comput. Graph. 2023, 29, 2489–2498. [Google Scholar] [CrossRef]
- Xu, S.-Z.; Liu, J.-H.; Wang, M.; Zhang, F.-L.; Zhang, S.-H. Multi-User Redirected Walking in Separate Physical Spaces for Online VR Scenarios. IEEE Trans. Vis. Comput. Graph. 2023, 1–11. [Google Scholar] [CrossRef]
- Jaynes, C.; Steele, R.M.; Webb, S. Rapidly Deployable Multiprojector Immersive Displays. Presence Teleoperators Virtual Environ. 2005, 14, 501–510. [Google Scholar] [CrossRef]
- Mishra, S.; Arora, H.; Parakh, G.; Khandelwal, J. Contribution of Blockchain in Development of Metaverse. In Proceedings of the 2022 7th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 22–24 June 2022; pp. 845–850. [Google Scholar]
- Cha, S.; Seo, K.; Ashtari, A.; Noh, J. Generating Texture for 3D Human Avatar from a Single Image Using Sampling and Refinement Networks. Comput. Graph. Forum 2023, 42, 385–396. [Google Scholar] [CrossRef]
- Kuťák, D.; Vázquez, P.-P.; Isenberg, T.; Krone, M.; Baaden, M.; Byška, J.; Kozlíková, B.; Miao, H. State of the Art of Molecular Visualization in Immersive Virtual Environments. Comput. Graph. Forum 2023, 1–29. [Google Scholar] [CrossRef]
- Al-Ghaili, A.M.; Kasim, H.; Al-Hada, N.M.; Hassan, Z.B.; Othman, M.; Tharik, J.H.; Kasmani, R.M.; Shayea, I. A Review of Metaverse’s Definitions, Architecture, Applications, Challenges, Issues, Solutions, and Future Trends. IEEE Access 2022, 10, 125835–125866. [Google Scholar] [CrossRef]
- Bansal, G.; Rajgopal, K.; Chamola, V.; Xiong, Z.; Niyato, D. Healthcare in Metaverse: A Survey on Current Metaverse Applications in Healthcare. IEEE Access 2022, 10, 119914–119946. [Google Scholar] [CrossRef]
- Bourlakis, M.; Papagiannidis, S.; Li, F. Retail Spatial Evolution: Paving the Way from Traditional to Metaverse Retailing. Electron. Commer. Res. 2009, 9, 135–148. [Google Scholar] [CrossRef]
- Treiblmaier, H. Blockchain Transformation in the Tourism and Hospitality Sector; Blockchain Research Institute: Toronto, ON, Canada, 2022. [Google Scholar]
- Ferreira, M.P.; Pinto, C.F.; Serra, F.R. The Transaction Costs Theory in International Business Research: A Bibliometric Study over Three Decades. Scientometrics 2014, 98, 1899–1922. [Google Scholar] [CrossRef]
- Mostafa, M.M. A Knowledge Domain Visualization Review of Thirty Years of Halal Food Research: Themes, Trends and Knowledge Structure. Trends Food Sci. Technol. 2020, 99, 660–677. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Appolloni, A.; Kayikci, Y.; Iranmanesh, M. The Landscape of Public Procurement Research: A Bibliometric Analysis and Topic Modelling Based on Scopus. J. Public Procure. 2023; ahead-of-print. [Google Scholar] [CrossRef]
- Kye, B.; Han, N.; Kim, E.; Park, Y.; Jo, S. Educational Applications of Metaverse: Possibilities and Limitations. J. Educ. Eval. Health Prof. 2021, 18, 1149230. [Google Scholar] [CrossRef]
- Tlili, A.; Huang, R.; Shehata, B.; Liu, D.; Zhao, J.; Metwally, A.H.S.; Wang, H.; Denden, M.; Bozkurt, A.; Lee, L.-H.; et al. Is Metaverse in Education a Blessing or a Curse: A Combined Content and Bibliometric Analysis. Smart Learn. Environ. 2022, 9, 24. [Google Scholar] [CrossRef]
- Petrigna, L.; Musumeci, G. The Metaverse: A New Challenge for the Healthcare System: A Scoping Review. J. Funct. Morphol. Kinesiol. 2022, 7, 63. [Google Scholar] [CrossRef]
- Cerasa, A.; Gaggioli, A.; Marino, F.; Riva, G.; Pioggia, G. The Promise of the Metaverse in Mental Health: The New Era of MEDverse. Heliyon 2022, 8, e11762. [Google Scholar] [CrossRef] [PubMed]
- Garavand, A.; Aslani, N. Metaverse Phenomenon and Its Impact on Health: A Scoping Review. Inform. Med. Unlocked 2022, 32, 101029. [Google Scholar] [CrossRef]
- Sun, M.; Xie, L.; Liu, Y.; Li, K.; Jiang, B.; Lu, Y.; Yang, Y.; Yu, H.; Song, Y.; Bai, C.; et al. The Metaverse in Current Digital Medicine. Clin. EHealth 2022, 5, 52–57. [Google Scholar] [CrossRef]
- Usmani, S.S.; Sharath, M.; Mehendale, M. Future of Mental Health in the Metaverse. Gen. Psychiatry 2022, 35, e100825. [Google Scholar] [CrossRef]
- Wu, T.-C.; Ho, C.-T.B. A Scoping Review of Metaverse in Emergency Medicine. Australas. Emerg. Care 2023, 26, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. Blockchain Integration in the Era of Industrial Metaverse. Appl. Sci. 2023, 13, 1353. [Google Scholar] [CrossRef]
- Pooyandeh, M.; Han, K.-J.; Sohn, I. Cybersecurity in the AI-Based Metaverse: A Survey. Appl. Sci. 2022, 12, 12993. [Google Scholar] [CrossRef]
- Baghalzadeh Shishehgarkhaneh, M.; Keivani, A.; Moehler, R.C.; Jelodari, N.; Roshdi Laleh, S. Internet of Things (IoT), Building Information Modeling (BIM), and Digital Twin (DT) in Construction Industry: A Review, Bibliometric, and Network Analysis. Buildings 2022, 12, 1503. [Google Scholar] [CrossRef]
- Bojic, L. Metaverse through the Prism of Power and Addiction: What Will Happen When the Virtual World Becomes More Attractive than Reality? Eur. J. Futur. Res. 2022, 10, 22. [Google Scholar] [CrossRef]
- Kshetri, N. Policy, Ethical, Social, and Environmental Considerations of Web3 and the Metaverse. IT Prof. 2022, 24, 4–8. [Google Scholar] [CrossRef]
- Shen, B.; Tan, W.; Guo, J.; Zhao, L.; Qin, P. How to Promote User Purchase in Metaverse? A Systematic Literature Review on Consumer Behavior Research and Virtual Commerce Application Design. Appl. Sci. 2021, 11, 11087. [Google Scholar] [CrossRef]
- Anonymous. The Best of Both Worlds: Using the Metaverse to Enhance Customer Experience. Strateg. Dir. 2022, 38, 29–30. [Google Scholar] [CrossRef]
- Lee, J.; Kwon, K.H. The Significant Transformation of Life into Health and Beauty in Metaverse Era. J. Cosmet. Dermatol. 2022, 21, 6575–6583. [Google Scholar] [CrossRef]
- Lee, J.; Kwon, K.H. Novel Pathway Regarding Good Cosmetics Brands by NFT in the Metaverse World. J. Cosmet. Dermatol. 2022, 21, 6584–6593. [Google Scholar] [CrossRef]
- Çelik, Z.; Dülek, B.; Aydin, İ.; Saydan, R. Metaverse: Bibliometric Analysis, a Conceptual Model Proposal, and a Marketing-Oriented Approach. Bingöl Üniversitesi Sos. Bilim. Enstitüsü Derg. 2022, 383–394. [Google Scholar] [CrossRef]
- Ciasullo, M.V.; Lim, W.M.; Manesh, M.F.; Palumbo, R. The Patient as a Prosumer of Healthcare: Insights from a Bibliometric-Interpretive Review. J. Health Organ. Manag. 2022, 36, 133–157. [Google Scholar] [CrossRef]
- Feng, X.; Wang, X.; Su, Y. An Analysis of the Current Status of Metaverse Research Based on Bibliometrics. Libr. Hi Tech 2022. [Google Scholar] [CrossRef]
- Nan, D.; Sun, S.; Gopi, S.; Lee, K.M.; Kim, J.H. A Bibliometric Analysis of Metaverse Research Using VOSviewer. In Proceedings of the 2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM), Seoul, Republic of Korea, 3–5 January 2023; pp. 1–4. [Google Scholar]
- Palumbo, R.; Manesh, M.F. Travelling along the Public Service Co-Production Road: A Bibliometric Analysis and Interpretive Review. Public Manag. Rev. 2021, 1–37. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Appolloni, A.; Iranmanesh, M.; Treiblmaier, H.; Jagtap, S. Exploring Food Supply Chain Trends in the COVID-19 Era: A Bibliometric Review. Sustainability 2022, 14, 12437. [Google Scholar] [CrossRef]
- Rejeb, A.; Simske, S.; Rejeb, K.; Treiblmaier, H.; Zailani, S. Internet of Things Research in Supply Chain Management and Logistics: A Bibliometric Analysis. Internet Things 2020, 12, 100318. [Google Scholar] [CrossRef]
- Tas, N.; Bolat, Y.İ. Bibliometric Mapping of Metaverse in Education. Int. J. Technol. Educ. 2022, 5, 440–458. [Google Scholar] [CrossRef]
- Rejeb, A.; Keogh, J.G.; Wamba, S.F.; Treiblmaier, H. The Potentials of Augmented Reality in Supply Chain Management: A State-of-the-Art Review. Manag. Rev. Q. 2021, 71, 819–856. [Google Scholar] [CrossRef]
- Fosso Wamba, S.; Mishra, D. Big Data Integration with Business Processes: A Literature Review. Bus. Process Manag. J. 2017, 23, 477–492. [Google Scholar] [CrossRef] [Green Version]
- Rejeb, A.; Rejeb, K.; Simske, S.; Treiblmaier, H. Blockchain Technologies in Logistics and Supply Chain Management: A Bibliometric Review. Logistics 2021, 5, 72. [Google Scholar] [CrossRef]
- Fahimnia, B.; Sarkis, J.; Davarzani, H. Green Supply Chain Management: A Review and Bibliometric Analysis. Int. J. Prod. Econ. 2015, 162, 101–114. [Google Scholar] [CrossRef]
- Gorraiz, J.; Schloegl, C. A Bibliometric Analysis of Pharmacology and Pharmacy Journals: Scopus versus Web of Science. J. Inf. Sci. 2008, 34, 715–725. [Google Scholar] [CrossRef] [Green Version]
- Jauhiainen, J.S.; Krohn, C.; Junnila, J. Metaverse and Sustainability: Systematic Review of Scientific Publications until 2022 and Beyond. Sustainability 2023, 15, 346. [Google Scholar] [CrossRef]
- Li, M.; Yu, Z. A Systematic Review on the Metaverse-Based Blended English Learning. Front. Psychol. 2023, 13, 1087508. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Rodríguez, A.-R.; Ruíz-Navarro, J. Changes in the Intellectual Structure of Strategic Management Research: A Bibliometric Study of the Strategic Management Journal, 1980–2000. Strateg. Manag. J. 2004, 25, 981–1004. [Google Scholar] [CrossRef]
- Price, D.J.S. Little Science, Big Science–And Beyond; Columbia University Press: New York, NY, USA, 1963. [Google Scholar]
- Ajiferuke, I.; Burell, Q.; Tague, J. Collaborative Coefficient: A Single Measure of the Degree of Collaboration in Research. Scientometrics 2005, 14, 421–433. [Google Scholar] [CrossRef]
- Papagiannidis, S.; Bourlakis, M.; Li, F. Making Real Money in Virtual Worlds: MMORPGs and Emerging Business Opportunities, Challenges and Ethical Implications in Metaverses. Technol. Forecast. Soc. Chang. 2008, 75, 610–622. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Abdollahi, A.; Treiblmaier, H. The Big Picture on Instagram Research: Insights from a Bibliometric Analysis. Telemat. Inform. 2022, 73, 101876. [Google Scholar] [CrossRef]
- Gmür, M. Co-Citation Analysis and the Search for Invisible Colleges: A Methodological Evaluation. Scientometrics 2006, 57, 27–57. [Google Scholar] [CrossRef]
- Torres-Pruñonosa, J.; Plaza-Navas, M.A.; Díez-Martín, F.; Beltran-Cangrós, A. The Intellectual Structure of Social and Sustainable Public Procurement Research: A Co-Citation Analysis. Sustainability 2021, 13, 774. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Xue, H.; Wu, L.; Wang, Y.; Wang, C.; Gao, X.; Li, Z.; Zhang, X.; Hasan, M.; et al. Scientometric Analysis and Scientific Trends on Microplastics Research. Chemosphere 2022, 304, 135337. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Abdollahi, A.; Kayikci, Y.; Appolloni, A. Mapping the Scholarly Research on Restaurants: A Bibliometric Analysis. J. Foodserv. Bus. Res. 2022, 1–50. [Google Scholar] [CrossRef]
- Kraus, S.; Li, H.; Kang, Q.; Westhead, P.; Tiberius, V. The Sharing Economy: A Bibliometric Analysis of the State-of-the-Art. Int. J. Entrep. Behav. Res. 2020, 26, 1769–1786. [Google Scholar] [CrossRef]
- Ji, Y.G.; Tao, W.; Rim, H. Mapping Corporate Social Responsibility Research in Communication: A Network and Bibliometric Analysis. Public Relat. Rev. 2020, 46, 101963. [Google Scholar] [CrossRef]
- Mostafa, M.M. Three Decades of Halal Food Scholarly Publications: A PubMed Bibliometric Network Analysis. Int. J. Consum. Stud. 2022, 46, 1058–1075. [Google Scholar] [CrossRef]
- Zou, X.; Yue, W.L.; Vu, H.L. Visualization and Analysis of Mapping Knowledge Domain of Road Safety Studies. Accid. Anal. Prev. 2018, 118, 131–145. [Google Scholar] [CrossRef]
- Glänzel, W.; Schubert, A. Domesticity and Internationality in Co-Authorship, References and Citations. Scientometrics 2005, 65, 323–342. [Google Scholar] [CrossRef]
- Ding, Y. Scientific Collaboration and Endorsement: Network Analysis of Coauthorship and Citation Networks. J. Informetr. 2011, 5, 187–203. [Google Scholar] [CrossRef] [Green Version]
- Rejeb, A.; Rejeb, K.; Zailani, S.; Kayikci, Y.; Keogh, J.G. Examining Knowledge Diffusion in the Circular Economy Domain: A Main Path Analysis. Circ. Econ. Sustain. 2022, 3, 125–166. [Google Scholar] [CrossRef] [PubMed]
- Callon, M.; Courtial, J.P.; Laville, F. Co-Word Analysis as a Tool for Describing the Network of Interactions between Basic and Technological Research: The Case of Polymer Chemsitry. Scientometrics 1991, 22, 155–205. [Google Scholar] [CrossRef]
- Law, J.; Bauin, S.; Courtial, J.; Whittaker, J. Policy and the Mapping of Scientific Change: A Co-Word Analysis of Research into Environmental Acidification. Scientometrics 2005, 14, 251–264. [Google Scholar] [CrossRef]
- Zong, Q.-J.; Shen, H.-Z.; Yuan, Q.-J.; Hu, X.-W.; Hou, Z.-P.; Deng, S.-G. Doctoral Dissertations of Library and Information Science in China: A Co-Word Analysis. Scientometrics 2013, 94, 781–799. [Google Scholar] [CrossRef]
- Dalvi-Esfahani, M.; Niknafs, A.; Kuss, D.J.; Nilashi, M.; Afrough, S. Social Media Addiction: Applying the DEMATEL Approach. Telemat. Inform. 2019, 43, 101250. [Google Scholar] [CrossRef]
- Bajaj, V.; Kumar, P.; Singh, V.K. Linkage Dynamics of Sovereign Credit Risk and Financial Markets: A Bibliometric Analysis. Res. Int. Bus. Financ. 2022, 59, 101566. [Google Scholar] [CrossRef]
- Villa-Ruiz, C.; Kassamali, B.; Mazori, D.R.; Min, M.; Cobos, G.; LaChance, A. Overview of TikTok’s Most Viewed Dermatologic Content and Assessment of Its Reliability. J. Am. Acad. Dermatol. 2021, 85, 273–274. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science Mapping Software Tools: Review, Analysis, and Cooperative Study among Tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Cammack, R.G. Location-Based Service Use: A Metaverse Investigation. J. Locat. Based Serv. 2010, 4, 53–65. [Google Scholar] [CrossRef]
- Doyle, D.; Kim, T. Embodied Narrative: The Virtual Nomad and the Meta Dreamer. Int. J. Perform. Arts Digit. Media 2007, 3, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Estudante, A.; Dietrich, N. Using Augmented Reality to Stimulate Students and Diffuse Escape Game Activities to Larger Audiences. J. Chem. Educ. 2020, 97, 1368–1374. [Google Scholar] [CrossRef]
- Heo, M.-H.; Kim, D. Effect of Augmented Reality Affordance on Motor Performance: In the Sport Climbing. Hum.-Centric Comput. Inf. Sci. 2021, 11, 40. [Google Scholar] [CrossRef]
- Alvarez-Risco, A.; Del-Aguila-Arcentales, S.; Rosen, M.A.; Yáñez, J.A. Social Cognitive Theory to Assess the Intention to Participate in the Facebook Metaverse by Citizens in Peru during the COVID-19 Pandemic. J. Open Innov. Technol. Mark. Complex. 2022, 8, 142. [Google Scholar] [CrossRef]
- Bibri, S.E.; Allam, Z. The Metaverse as a Virtual Form of Data-Driven Smart Urbanism: On Post-Pandemic Governance through the Prism of the Logic of Surveillance Capitalism. Smart Cities 2022, 5, 715–727. [Google Scholar] [CrossRef]
- Joshi, S.; Pramod, P.J. A Collaborative Metaverse Based A-La-Carte Framework for Tertiary Education (CO-MATE). Heliyon 2023, 9, e13424. [Google Scholar] [CrossRef]
- Kumar, H.A.; Dora, M. Citation Analysis of Doctoral Dissertations at IIMA: A Review of the Local Use of Journals. Libr. Collect. Acquis. Tech. Serv. 2011, 35, 32–39. [Google Scholar] [CrossRef]
- Burrell, Q.L. On the Growth of Bibliographies with Time: An Exercise in Bibliometric Prediction. J. Doc. 1989, 45, 302–317. [Google Scholar] [CrossRef]
- Bradford, S.C. Sources of Information on Specific Subjects. Engineering 1934, 137, 85–86. [Google Scholar]
- Patra, S.K.; Mishra, S. Bibliometric Study of Bioinformatics Literature. Scientometrics 2006, 67, 477–489. [Google Scholar] [CrossRef]
- Yeung, A.W.K. Bibliometric Study on Functional Magnetic Resonance Imaging Literature (1995–2017) Concerning Chemosensory Perception. Chemosens. Percept. 2018, 11, 42–50. [Google Scholar] [CrossRef]
- Kinnucan, M.T.; Wolfram, D. Direct Comparison of Bibliometric Models. Inf. Process. Manag. 1990, 26, 777–790. [Google Scholar] [CrossRef]
- Fan, Z.; Chen, C.; Huang, H. Immersive Cultural Heritage Digital Documentation and Information Service for Historical Figure Metaverse: A Case of Zhu Xi, Song Dynasty, China. Herit. Sci. 2022, 10, 148. [Google Scholar] [CrossRef]
- Chamusca, I.L.; Ferreira, C.V.; Murari, T.B.; Apolinario, A.L.; Winkler, I. Towards Sustainable Virtual Reality: Gathering Design Guidelines for Intuitive Authoring Tools. Sustainability 2023, 15, 2924. [Google Scholar] [CrossRef]
- Huang, Z.; Choi, D.-H.; Lai, B.; Lu, Z.; Tian, H. Metaverse-Based Virtual Reality Experience and Endurance Performance in Sports Economy: Mediating Role of Mental Health and Performance Anxiety. Front. Public Health 2022, 10, 991489. [Google Scholar] [CrossRef]
- Neff, M.; Corley, E. 35 Years and 160,000 Articles: A Bibliometric Exploration of the Evolution of Ecology. Scientometrics 2009, 80, 657–682. [Google Scholar] [CrossRef]
- Colicchia, C.; Strozzi, F. Supply Chain Risk Management: A New Methodology for a Systematic Literature Review. Supply Chain Manag. Int. J. 2012, 17, 403–418. [Google Scholar] [CrossRef]
- Agustini, K.; Putrama, I.M.; Wahyuni, D.S.; Mertayasa, I.N.E. Applying Gamification Technique and Virtual Reality for Prehistoric Learning toward the Metaverse. Int. J. Inf. Educ. Technol. 2023, 13, 247–256. [Google Scholar] [CrossRef]
- Alsaleh, S.; Tepljakov, A.; Kose, A.; Belikov, J.; Petlenkov, E. ReImagine Lab: Bridging the Gap Between Hands-On, Virtual and Remote Control Engineering Laboratories Using Digital Twins and Extended Reality. IEEE Access 2022, 10, 89924–89943. [Google Scholar] [CrossRef]
- Jungherr, A.; Schlarb, D.B. The Extended Reach of Game Engine Companies: How Companies Like Epic Games and Unity Technologies Provide Platforms for Extended Reality Applications and the Metaverse. Soc. Media Soc. 2022, 8, 1–12. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Saraswat, D.; Savaliya, D.; Sanghavi, S.; Verma, A.; Sakariya, V.; Tanwar, S.; Sharma, R.; Raboaca, M.S.; Manea, D.L. Towards Future Internet: The Metaverse Perspective for Diverse Industrial Applications. Mathematics 2023, 11, 941. [Google Scholar] [CrossRef]
- Grupac, M.; Husakova, K.; Balica, R.-Ș. Virtual Navigation and Augmented Reality Shopping Tools, Immersive and Cognitive Technologies, and Image Processing Computational and Object Tracking Algorithms in the Metaverse Commerce. Anal. Metaphys. 2022, 21, 210–226. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Baabdullah, A.M.; Ribeiro-Navarrete, S.; Giannakis, M.; Al-Debei, M.M.; Dennehy, D.; Metri, B.; Buhalis, D.; Cheung, C.M.K.; et al. Metaverse beyond the Hype: Multidisciplinary Perspectives on Emerging Challenges, Opportunities, and Agenda for Research, Practice and Policy. Int. J. Inf. Manag. 2022, 66, 102542. [Google Scholar] [CrossRef]
- Chen, Z. Exploring the Application Scenarios and Issues Facing Metaverse Technology in Education. Interact. Learn. Environ. 2022, 1–13. [Google Scholar] [CrossRef]
- Fernandes, F.A.; Werner, C.M.L. A Scoping Review of the Metaverse for Software Engineering Education: Overview, Challenges and Opportunities. PRESENCE Virtual Augment. Real. 2023, 1–40. [Google Scholar] [CrossRef]
- Kaddoura, S.; Husseiny, F.A. The Rising Trend of Metaverse in Education: Challenges, Opportunities, and Ethical Considerations. PeerJ Comput. Sci. 2023, 9, e1252. [Google Scholar] [CrossRef]
- Rospigliosi, P. ‘asher’ Metaverse or Simulacra? Roblox, Minecraft, Meta and the Turn to Virtual Reality for Education, Socialisation and Work. Interact. Learn. Environ. 2022, 30, 1–3. [Google Scholar] [CrossRef]
- Zhong, J.; Zheng, Y. Empowering Future Education: Learning in the Edu-Metaverse. In Proceedings of the 2022 International Symposium on Educational Technology (ISET), Hong Kong, China, 19–22 July 2022; pp. 292–295. [Google Scholar]
- Lee, J.; Lee, T.S.; Lee, S.; Jang, J.; Yoo, S.; Choi, Y.; Park, Y.R. Development and Application of a Metaverse-Based Social Skills Training Program for Children With Autism Spectrum Disorder to Improve Social Interaction: Protocol for a Randomized Controlled Trial. JMIR Res. Protoc. 2022, 11, e35960. [Google Scholar] [CrossRef]
- López-Belmonte, J.; Pozo-Sánchez, S.; Carmona-Serrano, N.; Moreno-Guerrero, A.-J. Flipped Learning and E-Learning as Training Models Focused on the Metaverse. Emerg. Sci. J. 2022, 6, 188–198. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, D.; Liu, Z.; Osmani, M.; Demian, P. Construction 4.0, Industry 4.0, and Building Information Modeling (BIM) for Sustainable Building Development within the Smart City. Sustainability 2022, 14, 10028. [Google Scholar] [CrossRef]
- Hwang, G.-J.; Chien, S.-Y. Definition, Roles, and Potential Research Issues of the Metaverse in Education: An Artificial Intelligence Perspective. Comput. Educ. Artif. Intell. 2022, 3, 100082. [Google Scholar] [CrossRef]
- Suh, W.; Ahn, S. Utilizing the Metaverse for Learner-Centered Constructivist Education in the Post-Pandemic Era: An Analysis of Elementary School Students. J. Intell. 2022, 10, 17. [Google Scholar] [CrossRef]
- Anshari, M.; Syafrudin, M.; Fitriyani, N.L.; Razzaq, A. Ethical Responsibility and Sustainability (ERS) Development in a Metaverse Business Model. Sustainability 2022, 14, 15805. [Google Scholar] [CrossRef]
- Zaman, U.; Koo, I.; Abbasi, S.; Raza, S.H.; Qureshi, M.G. Meet Your Digital Twin in Space? Profiling International Expat’s Readiness for Metaverse Space Travel, Tech-Savviness, COVID-19 Travel Anxiety, and Travel Fear of Missing Out. Sustainability 2022, 14, 6441. [Google Scholar] [CrossRef]
- Hennig-Thurau, T.; Aliman, D.N.; Herting, A.M.; Cziehso, G.P.; Linder, M.; Kübler, R.V. Social Interactions in the Metaverse: Framework, Initial Evidence, and Research Roadmap. J. Acad. Mark. Sci. 2022, 51, 889–913. [Google Scholar] [CrossRef]
- Kraus, S.; Kumar, S.; Lim, W.M.; Kaur, J.; Sharma, A.; Schiavone, F. From Moon Landing to Metaverse: Tracing the Evolution of Technological Forecasting and Social Change. Technol. Forecast. Soc. Chang. 2023, 189, 122381. [Google Scholar] [CrossRef]
- Tan, T.M.; Saraniemi, S. Trust in Blockchain-Enabled Exchanges: Future Directions in Blockchain Marketing. J. Acad. Mark. Sci. 2022, 51, 914–939. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Z.; Zhang, N.; Xing, R.; Liu, D.; Luan, T.H.; Shen, X. A Survey on Metaverse: Fundamentals, Security, and Privacy. IEEE Commun. Surv. Tutor. 2023, 25, 319–352. [Google Scholar] [CrossRef]
- Han, J.; Yang, M.; Chen, X.; Liu, H.; Wang, Y.; Li, J.; Su, Z.; Li, Z.; Ma, X. ParaDefender: A Scenario-Driven Parallel System for Defending Metaverses. IEEE Trans. Syst. Man Cybern. Syst. 2022, 53, 2118–2127. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, Y.; Tian, Y.; Na, X. Parallel Sensing in Metaverses: Virtual-Real Interactive Smart Systems for “6S” Sensing. IEEECAA J. Autom. Sin. 2022, 9, 2047–2054. [Google Scholar] [CrossRef]
- Wang, F.-Y. The DAO to MetaControl for MetaSystems in Metaverses: The System of Parallel Control Systems for Knowledge Automation and Control Intelligence in CPSS. IEEECAA J. Autom. Sin. 2022, 9, 1899–1908. [Google Scholar] [CrossRef]
- Vidal-Tomás, D. The Illusion of the Metaverse and Meta-Economy. Int. Rev. Financ. Anal. 2023, 86, 102560. [Google Scholar] [CrossRef]
- Wu, J.; Lin, K.; Lin, D.; Zheng, Z.; Huang, H.; Zheng, Z. Financial Crimes in Web3-Empowered Metaverse: Taxonomy, Countermeasures, and Opportunities. IEEE Open J. Comput. Soc. 2023, 4, 37–49. [Google Scholar] [CrossRef]
- Cao, L. Decentralized AI: Edge Intelligence and Smart Blockchain, Metaverse, Web3, and DeSci. IEEE Intell. Syst. 2022, 37, 6–19. [Google Scholar] [CrossRef]
- Wang, G.; Shin, C. Influencing Factors of Usage Intention of Metaverse Education Application Platform: Empirical Evidence Based on PPM and TAM Models. Sustainability 2022, 14, 17037. [Google Scholar] [CrossRef]
- Ahmad, I.; Sharma, S.; Singh, R.; Gehlot, A.; Priyadarshi, N.; Twala, B. MOOC 5.0: A Roadmap to the Future of Learning. Sustainability 2022, 14, 11199. [Google Scholar] [CrossRef]
- Korbel, J.J.; Siddiq, U.H.; Zarnekow, R. Towards Virtual 3D Asset Price Prediction Based on Machine Learning. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 924–948. [Google Scholar] [CrossRef]
- Li, K.; Cui, Y.; Li, W.; Lv, T.; Yuan, X.; Li, S.; Ni, W.; Simsek, M.; Dressler, F. When Internet of Things Meets Metaverse: Convergence of Physical and Cyber Worlds. IEEE Internet Things J. 2023, 10, 4148–4173. [Google Scholar] [CrossRef]
- Lv, Z.; Xie, S.; Li, Y.; Shamim Hossain, M.; El Saddik, A. Building the Metaverse by Digital Twins at All Scales, State, Relation. Virtual Real. Intell. Hardw. 2022, 4, 459–470. [Google Scholar] [CrossRef]
- Yang, B.; Yang, S.; Lv, Z.; Wang, F.; Olofsson, T. Application of Digital Twins and Metaverse in the Field of Fluid Machinery Pumps and Fans: A Review. Sensors 2022, 22, 9294. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Zhang, Z.; Li, P.; Xi, S.; Guo, W.; Shen, Y.; Xiong, Z.; Kang, J.; Niyato, D.; Qiao, X.; et al. 6G-Enabled Edge AI for Metaverse: Challenges, Methods, and Future Research Directions. J. Commun. Inf. Netw. 2022, 7, 107–121. [Google Scholar] [CrossRef]
- Wang, G.; Badal, A.; Jia, X.; Maltz, J.S.; Mueller, K.; Myers, K.J.; Niu, C.; Vannier, M.; Yan, P.; Yu, Z.; et al. Development of Metaverse for Intelligent Healthcare. Nat. Mach. Intell. 2022, 4, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, E.S.; Naqishbandi, T.A.; Veronese, G. Metaverse! Possible Potential Opportunities and Trends in E-Healthcare and Education. Int. J. E-Adopt. 2023, 15, 1–21. [Google Scholar] [CrossRef]
- Kim, E.J.; Kim, J.Y. The Metaverse for Healthcare: Trends, Applications, and Future Directions of Digital Therapeutics for Urology. Int. Neurourol. J. 2023, 27 (Suppl. S1), S3–S12. [Google Scholar] [CrossRef]
- Ali, S.; Abdullah; Armand, T.P.T.; Athar, A.; Hussain, A.; Ali, M.; Yaseen, M.; Joo, M.-I.; Kim, H.-C. Metaverse in Healthcare Integrated with Explainable AI and Blockchain: Enabling Immersiveness, Ensuring Trust, and Providing Patient Data Security. Sensors 2023, 23, 565. [Google Scholar] [CrossRef]
- Chow, Y.-W.; Susilo, W.; Li, Y.; Li, N.; Nguyen, C. Visualization and Cybersecurity in the Metaverse: A Survey. J. Imaging 2023, 9, 11. [Google Scholar] [CrossRef]
- Gadalla, E.; Keeling, K.; Abosag, I. Metaverse-Retail Service Quality: A Future Framework for Retail Service Quality in the 3D Internet. J. Mark. Manag. 2013, 29, 1493–1517. [Google Scholar] [CrossRef]
- Park, S.-M.; Kim, Y.-G. A Metaverse: Taxonomy, Components, Applications, and Open Challenges. IEEE Access 2022, 10, 4209–4251. [Google Scholar] [CrossRef]
- Riar, M.; Xi, N.; Korbel, J.J.; Zarnekow, R.; Hamari, J. Using Augmented Reality for Shopping: A Framework for AR Induced Consumer Behavior, Literature Review and Future Agenda. Internet Res. 2022, 33, 242–279. [Google Scholar] [CrossRef]
- Chen, X.; Xie, H.; Cheng, G.; Li, Z. A Decade of Sentic Computing: Topic Modeling and Bibliometric Analysis. Cogn. Comput. 2022, 14, 24–47. [Google Scholar] [CrossRef]
- Williamson, A.J.; Short, J.C.; Wolfe, M.T. Standing out in Crowdfunded Microfinance: A Topic Modeling Approach Examining Campaign Distinctiveness and Prosocial Performance. J. Bus. Ventur. Insights 2021, 16, e00261. [Google Scholar] [CrossRef]
- Janmaijaya, M.; Shukla, A.K.; Muhuri, P.K.; Abraham, A. Industry 4.0: Latent Dirichlet Allocation and Clustering Based Theme Identification of Bibliography. Eng. Appl. Artif. Intell. 2021, 103, 104280. [Google Scholar] [CrossRef]
- Kozlowski, D.; Semeshenko, V.; Molinari, A. Latent Dirichlet Allocation Model for World Trade Analysis. PLoS ONE 2021, 16, e0245393. [Google Scholar] [CrossRef]
- Xue, J.; Chen, J.; Chen, C.; Zheng, C.; Li, S.; Zhu, T. Public Discourse and Sentiment during the COVID 19 Pandemic: Using Latent Dirichlet Allocation for Topic Modeling on Twitter. PLoS ONE 2020, 15, e0239441. [Google Scholar] [CrossRef] [PubMed]
- Blei, D.M. Probabilistic Topic Models. Commun. ACM 2012, 55, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Li, R.-T.; Khor, K.A.; Yu, L.-G. Identifying Indicators of Progress in Thermal Spray Research Using Bibliometrics Analysis. J. Therm. Spray Technol. 2016, 25, 1526–1533. [Google Scholar] [CrossRef]
- Guo, Y.; Barnes, S.J.; Jia, Q. Mining Meaning from Online Ratings and Reviews: Tourist Satisfaction Analysis Using Latent Dirichlet Allocation. Tour. Manag. 2017, 59, 467–483. [Google Scholar] [CrossRef] [Green Version]
- Moro, S.; Cortez, P.; Rita, P. Business Intelligence in Banking: A Literature Analysis from 2002 to 2013 Using Text Mining and Latent Dirichlet Allocation. Expert Syst. Appl. 2015, 42, 1314–1324. [Google Scholar] [CrossRef] [Green Version]
- McCallum, A.K. Mallet: A Machine Learning for Languagetoolkit. 2002. Available online: http://mallet.cs.umass.edu (accessed on 5 June 2023).
- Alfaisal, R.; Hashim, H.; Azizan, U.H. Metaverse System Adoption in Education: A Systematic Literature Review. J. Comput. Educ. 2022, 1–45. [Google Scholar] [CrossRef]
- Yoon, H. Opportunities and Challenges of Smartglass-Assisted Interactive Telementoring. Appl. Syst. Innov. 2021, 4, 56. [Google Scholar] [CrossRef]
- Cheah, I.; Shimul, A.S. Marketing in the Metaverse: Moving Forward—What’s next? J. Glob. Sch. Mark. Sci. Bridg. Asia World 2023, 33, 1–10. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Wang, Y.; Alalwan, A.A.; Ahn, S.J.; Balakrishnan, J.; Barta, S.; Belk, R.; Buhalis, D.; Dutot, V.; et al. Metaverse Marketing: How the Metaverse Will Shape the Future of Consumer Research and Practice. Psychol. Mark. 2023, 40, 750–776. [Google Scholar] [CrossRef]
- Buhalis, D.; Lin, M.S.; Leung, D. Metaverse as a Driver for Customer Experience and Value Co-Creation: Implications for Hospitality and Tourism Management and Marketing. Int. J. Contemp. Hosp. Manag. 2023, 35, 701–716. [Google Scholar] [CrossRef]
- Buhalis, D.; Leung, D.; Lin, M. Metaverse as a Disruptive Technology Revolutionising Tourism Management and Marketing. Tour. Manag. 2023, 97, 104724. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, D.; Yow, C.H.; Huang, L.; Wu, X.; Huang, X.; Guo, J.; Zhou, S.; Cai, Y. Metaverse for Cultural Heritages. Electronics 2022, 11, 3730. [Google Scholar] [CrossRef]
- Buhalis, D.; O’Connor, P.; Leung, R. Smart Hospitality: From Smart Cities and Smart Tourism towards Agile Business Ecosystems in Networked Destinations. Int. J. Contemp. Hosp. Manag. 2023, 35, 369–393. [Google Scholar] [CrossRef]
- Dolata, M.; Schwabe, G. What Is the Metaverse and Who Seeks to Define It? Mapping the Site of Social Construction. J. Inf. Technol. 2023. [Google Scholar] [CrossRef]
- Wang, M.; Yu, H.; Bell, Z.; Chu, X. Constructing an Edu-Metaverse Ecosystem: A New and Innovative Framework. IEEE Trans. Learn. Technol. 2022, 15, 685–696. [Google Scholar] [CrossRef]
- AbuKhousa, E.; El-Tahawy, M.S.; Atif, Y. Envisioning Architecture of Metaverse Intensive Learning Experience (MiLEx): Career Readiness in the 21st Century and Collective Intelligence Development Scenario. Future Internet 2023, 15, 53. [Google Scholar] [CrossRef]
- Koohang, A.; Nord, J.H.; Ooi, K.-B.; Tan, G.W.-H.; Al-Emran, M.; Aw, E.C.-X.; Baabdullah, A.M.; Buhalis, D.; Cham, T.-H.; Dennis, C.; et al. Shaping the Metaverse into Reality: A Holistic Multidisciplinary Understanding of Opportunities, Challenges, and Avenues for Future Investigation. J. Comput. Inf. Syst. 2023, 63, 735–765. [Google Scholar] [CrossRef]
Description | Results |
---|---|
Main information about data | |
Timespan | 2005:2023 |
Sources (e.g., journals, books) | 318 |
Documents | 595 |
Average years from publication | 1.38 |
Average citations per document | 7.262 |
Average citations per year per document | 2.81 |
Document types | |
Article | 532 |
Review | 63 |
Document contents | |
Keywords plus (ID) | 2431 |
Author’s keywords (DE) | 1771 |
Authors | |
Authors | 1900 |
Author appearances | 2201 |
Authors of single-authored documents | 116 |
Authors of multi-authored documents | 1795 |
Author collaboration | |
Single-authored documents | 123 |
Documents per author | 0.313 |
Authors per document | 2.8 |
Co-authors per documents | 3.7 |
Collaboration index | 3.78 |
Journal | No. of Articles |
---|---|
Sustainability | 21 |
IEEE Access | 16 |
Linguistic and Philosophical Investigations | 16 |
IEEE Transactions on Systems, Man, and Cybernetics: Systems | 12 |
Analysis and Metaphysics | 11 |
Applied Sciences | 11 |
Review of Contemporary Philosophy | 11 |
Sensors | 10 |
Others (310 journals) | 487 |
Number of Topics | Coherence Score | Number of Topics | Coherence Score |
---|---|---|---|
2 | 0.4079 | 22 | 0.3693 |
3 | 0.4091 | 23 | 0.3782 |
4 | 0.4390 | 24 | 0.3707 |
5 | 0.4537 | 25 | 0.3532 |
6 | 0.4368 | 26 | 0.3607 |
7 | 0.4225 | 27 | 0.3754 |
8 | 0.4079 | 28 | 0.3687 |
9 | 0.4351 | 29 | 0.3675 |
10 | 0.4051 | 30 | 0.3699 |
11 | 0.3955 | 31 | 0.3534 |
12 | 0.3883 | 32 | 0.3529 |
13 | 0.3821 | 33 | 0.3592 |
14 | 0.3850 | 34 | 0.3590 |
15 | 0.3841 | 35 | 0.3502 |
16 | 0.3820 | 36 | 0.3510 |
17 | 0.3646 | 37 | 0.3516 |
18 | 0.3787 | 38 | 0.3724 |
19 | 0.3738 | 39 | 0.3554 |
20 | 0.3785 | 40 | 0.3466 |
21 | 0.3643 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rejeb, A.; Rejeb, K.; Treiblmaier, H. Mapping Metaverse Research: Identifying Future Research Areas Based on Bibliometric and Topic Modeling Techniques. Information 2023, 14, 356. https://doi.org/10.3390/info14070356
Rejeb A, Rejeb K, Treiblmaier H. Mapping Metaverse Research: Identifying Future Research Areas Based on Bibliometric and Topic Modeling Techniques. Information. 2023; 14(7):356. https://doi.org/10.3390/info14070356
Chicago/Turabian StyleRejeb, Abderahman, Karim Rejeb, and Horst Treiblmaier. 2023. "Mapping Metaverse Research: Identifying Future Research Areas Based on Bibliometric and Topic Modeling Techniques" Information 14, no. 7: 356. https://doi.org/10.3390/info14070356