A Review of Time-Based Solar Photovoltaic Tracking Systems
Abstract
:1. Introduction
- An extensive review of solar tracking systems based on the axis of rotation is presented, including the hybrid-axis solar tracking system and a comparison based on different properties.
- A comprehensive analysis of solar tracking systems based on drive types is provided with an exhaustive review and a proposed taxonomy of these systems.
- An exhaustive review of learning-based solar tracking systems is presented, including a proposed taxonomy of these systems.
- Critical open research issues and future directions are identified for time-based solar tracking systems and elaborated.
2. Background of Solar Tracking Systems
3. Classification Based on Axis Rotation
3.1. Single-Axis Solar Tracking System
3.2. Dual-Axis Solar Tracking System
3.3. Hybrid Solar Tracking System
4. Classification Based on Drive Types
4.1. Active Solar Tracking System
4.1.1. Single-Axis Active Solar Tracking System
4.1.2. Dual-Axis Active Solar Tracking System
4.2. Passive Solar Tracking System
4.2.1. Dual-Axis Passive Solar Tracking System
4.2.2. Hybrid-Axis Passive Solar Tracking System
4.3. Chronological Solar Tracking System
5. Learning-Based Solar Tracking System
6. Lessons Learned
- Lesson 1: LDRs are widely utilized for the Development of Solar Tracking Systems
- Lesson 2: Hybrid Solar Tracking System Produces the Maximum Output Power
- Lesson 3: Autonomous Solar Tracking Systems
- Lesson 4: Fuzzy logic is extensively utilized for Controlling Solar Tracking Systems
7. Further Research Direction
7.1. Application of Solar Tracking System to Smart Grid Interoperability
7.2. Integration of Learning-Based Algorithm to Hybrid Solar Tracking System
7.3. Solar Tracking System Maintenance
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Astronomical Almanac | ||
AADAT | Azimuth-Altitude Dual-Axis Tracker | ||
AC | Alternating Current | ||
AI | Artificial Intelligence | ||
ANFIS | Adaptive Neural Fuzzy Inference System | ||
AoP | Azimuth of Panel | ||
BLR | Binomial Logistic Regression | ||
CDS | Cadmium-Sulfide | ||
CMLP | Cascaded Multilayer Perceptron | ||
CSP | Concentrated Solar Power | ||
DC | Direct Current | ||
ENEA | Energy and Sustainable Economic Development | ||
FFBPN | Feed-Forward and Backpropagation Network | ||
FLC | Fuzzy Logic Controller | ||
FoV | Field of View | ||
FPGA | Field-Programmable Gate Array | ||
GA | Genetic Algorithm | ||
GSM | Global System for Mobile Communication | ||
GPS | Global Positioning System | ||
HSAT | Horizontal Single-Axis Tracker | ||
LCD | Liquid Crystal Display | ||
LDR | Light-Dependent Resistor | ||
LR | Logistic Regression | ||
MAE | Mean Absolute Error | ||
MLP | Multilayer Perceptron | ||
MLR | Multinomial Logistic Regression | ||
MPPT | Maximum Power Point Tracking | ||
MSE | Mean Square Error | ||
PASAT | Polar-Aligned Single-Axis Tracker | ||
PDA | Photodiode Array | ||
PIC | Programmable Interface Controller | ||
PID | Proportional–Integral–Derivative | ||
PDCM | Permanent Direct Current Magnet | ||
PV | Photovoltaic | ||
PR | Prediction Rate | ||
RAE | Relative Absolute Error | ||
RMSE | Root Mean Square Error | ||
RRSE | Root Relative Square Error | ||
RS | Reset Set | ||
RTC | Real-Time Clock | ||
SoP | Slope of Panel | ||
SPA | Sun Position Algorithm | ||
SPB | Smart Photovoltaic Blind | ||
SVR | Support Vector Regression | ||
TSAT | Tilted Single-Axis Tracker | ||
TTDAT | Tip-Tilt Dual-Axis Tracker | ||
VSAT | Vertical Single-Axis Tracker | ||
Wi-Fi | Wireless Fidelity | ||
Symbols | |||
Boltzmann constant | |||
Tilt Angle | |||
Radius of Earth | |||
Average distance between the Sun and Earth | |||
Elevation Angle | |||
Solar Altitude Angle | |||
Zenith Angle | |||
Standard Longitude | |||
Declination Angle | |||
Standard Time | |||
Solar Azimuth Angle | |||
Surface Azimuth Angle | |||
Hour Angle |
References
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable Energy Resources: Current Status, Future Prospects and Their Enabling Technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Oghogho, I.; Sulaimon, O.; Egbune, D.; Abanihi, K. V Solar Energy Potential and Its Development for Sustainable Energy Generation in Nigeria: A Road Map to Achieving This Feat. Int. J. Eng. Manag. Sci. 2014, 5, 61–67. [Google Scholar]
- Mustafa, F.I.; Shakir, S.; Mustafa, F.F.; Naiyf, A.T. Simple Design and Implementation of Solar Tracking System Two Axis with Four Sensors for Baghdad City. In Proceedings of the 2018 9th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 20–22 March 2018. [Google Scholar]
- Choudhary, P.; Srivastava, R.K. Sustainability Perspectives—A Review for Solar Photovoltaic Trends and Growth Opportunities. J. Clean. Prod. 2019, 227, 589–612. [Google Scholar] [CrossRef]
- El Hammoumi, A.; Chtita, S.; Motahhir, S.; El Ghzizal, A. Solar PV Energy: From Material to Use, and the Most Commonly Used Techniques to Maximize the Power Output of PV Systems: A Focus on Solar Trackers and Floating Solar Panels. Energy Rep. 2022, 8, 11992–12010. [Google Scholar] [CrossRef]
- Ray, S.; Tripathi, A.K. Design and Development of Tilted Single Axis and Azimuth-Altitude Dual Axis Solar Tracking Systems. In Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016; ISBN 9781467385879. [Google Scholar]
- Costa, H.; Liang, D.; Almeida, J.; Catela, M.; Garcia, D.; Tibúrcio, B.D.; Vistas, C.R. Seven-Rod Pumping Concept for Highly Stable Solar Laser Emission. Energies 2022, 15, 9140. [Google Scholar] [CrossRef]
- Tibúrcio, B.D.; Liang, D.; Almeida, J.; Garcia, D.; Catela, M.; Costa, H.; Vistas, C.R. Tracking Error Compensation Capacity Measurement of a Dual-Rod Side-Pumping Solar Laser. Renew. Energy 2022, 195, 1253–1261. [Google Scholar] [CrossRef]
- Muhammad, J.Y.; Tajudeen Jimoh, M.; Baba Kyari, I.; Abdullahi Gele, M.; Musa, I. A Review on Solar Tracking System: A Technique of Solar Power Output Enhancement. Eng. Sci. 2019, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hafez, A.Z.; Yousef, A.M.; Harag, N.M. Solar Tracking Systems: Technologies and Trackers Drive Types—A Review. Renew. Sustain. Energy Rev. 2018, 91, 754–782. [Google Scholar] [CrossRef]
- Amelia, A.R.; Irwan, Y.M.; Safwati, I.; Leow, W.Z.; Mat, M.H.; Rahim, M.S.A. Technologies of Solar Tracking Systems: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 767, 12052. [Google Scholar] [CrossRef]
- AL-Rousan, N.; Isa, N.A.M.; Desa, M.K.M. Advances in Solar Photovoltaic Tracking Systems: A Review. Renew. Sustain. Energy Rev. 2018, 82, 2548–2569. [Google Scholar] [CrossRef]
- Seme, S.; Štumberger, B.; Hadžiselimović, M.; Sredenšek, K. Solar Photovoltaic Tracking Systems for Electricity Generation: A Review. Energies 2020, 13, 4224. [Google Scholar] [CrossRef]
- Maatallah, T.; El Alimi, S.; Nassrallah, S. Ben Performance Modeling and Investigation of Fixed, Single and Dual-Axis Tracking Photovoltaic Panel in Monastir City, Tunisia. Renew. Sustain. Energy Rev. 2011, 15, 4053–4066. [Google Scholar] [CrossRef]
- Kaur, T.; Mahajan, S.; Verma, S.; Priyanka; Gambhir, J. Arduino Based Low Cost Active Dual Axis Solar Tracker. In Proceedings of the 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016, Delhi, India, 4–6 July 2016; pp. 1–5. [Google Scholar]
- Racharla, S.; Rajan, K. Solar Tracking System—A Review. Int. J. Sustain. Eng. 2017, 10, 72–81. [Google Scholar]
- De Rooij, D. Single Axis Trackers. Available online: https://sinovoltaics.com/learning-center/csp/single-axis-trackers/ (accessed on 4 March 2023).
- Das, A.; Durgaprasad, S. Simulation and Implementation of Single Axis Solar Tracker. Int. Res. J. Eng. Technol. 2020, 7, 756. [Google Scholar]
- Ponniran, A.; Hashim, A.; Joret, A. A Design of Low Power Single Axis Solar Tracking System Regardless of Motor Speed. Int. J. Integr. Eng. 2011, 3, 5–9. [Google Scholar]
- Ponniran, A.; Hashim, A.; Ali Munir, H. A Design of Single Axis Sun Tracking System. In Proceedings of the 2011 5th International Power Engineering and Optimization Conference, Shah Alam, Malaysia, 6–7 June 2011; ISBN 9781457703546. [Google Scholar]
- Karthik, K.; Kumar, D. Design and Implementation of High Efficiency Solar Tracking System. Int. J. Eng. 2013, 2, 2886–2892. [Google Scholar]
- Akbar, H.S.; Fathallah, M.N.; Raoof, O.O. Efficient Single Axis Sun Tracker Design for Photovoltaic System Applications. IOSR J. Appl. Phys. 2017, 9, 53–60. [Google Scholar] [CrossRef]
- Aung, E.E. Single Axis Solar Tracking System. Int. J. Sci. Eng. Appl. 2019, 8, 283–286. [Google Scholar] [CrossRef]
- Gupta, S. Maximum Sunlight Tracking Using Single Axis Solar Panel Prototype with Simulation. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 221–225. [Google Scholar]
- Nori, A.F.; Mohammed, F.G. Design and Implementation of an Efficient Solar Tracker System. J. Phys. Conf. Ser. 2020, 1530, 12150. [Google Scholar] [CrossRef]
- Idoko, J.A.; Abubakar, I.N.; Yusuf, H.M.; Mustapha, B.M.; Adegboye, B.A. Design and Implementation of Automatic Solar Tracking System to Maximize Solar Energy Extraction. Bayero J. Eng. Technol. 2020, 15, 2020–2110. [Google Scholar]
- Kuttybay, N.; Saymbetov, A.; Mekhilef, S.; Nurgaliyev, M.; Tukymbekov, D.; Dosymbetova, G.; Meiirkhanov, A.; Svanbayev, Y. Optimized Single-Axis Schedule Solar Tracker in Different Weather Conditions. Energies 2020, 13, 5226. [Google Scholar] [CrossRef]
- Nahar, M.J.; Sarkar, M.R.; Uddin, M.; Hossain, M.F.; Rana, M.M.; Tanshen, M.R. Single Axis Solar Tracker for Maximizing Power Production and Sunlight Overlapping Removal on the Sensors of Tracker. Int. J. Robot. Control Syst. 2021, 1, 186–197. [Google Scholar] [CrossRef]
- Musa, A.; Suleiman, S.A.; Fijabi, M.M.; Hussain, A.O.; Ganiyu, I.A. Design and Implementation of a Real Time Clock Based Solar Tracking System. Zaria J. Electr. Eng. Technol. 2021, 10, 39–46. [Google Scholar]
- Balaji, B.; Arulvizhi, J.A. Maximum Solar Power Tracker Mechanically by Using Dual Axis Tracker. J. Int. J. Adv. Res. 2017, 3, 1157–1162. [Google Scholar]
- Driggs, D.; Mensah, P.; Stephen, A.; Fareed, D.; Jana, A. Dual Axis Solar Panel Optimized Using Programming Languages. In Proceedings of the 2006 GSW; ASEE Conferences, Tuscaloosa, AL, USA, 6–10 March 2006; Available online: https://sites.asee.org/se/publications/proceedings/2006-asee-se/ (accessed on 6 March 2023).
- Shufat, S.A.A.; Kurt, E.; Hancerlioğulları, A. Modeling and Design of Azimuth-Altitude Dual Axis Solar Tracker for Maximum Solar Energy Generation. Int. J. Renew. Energy Dev. 2019, 8, 7. [Google Scholar] [CrossRef]
- Wang, J.M.; Lu, C.L. Design and Implementation of a Sun Tracker with a Dual-Axis Single Motor for an Optical Sensor-Based Photovoltaic System. Sensors 2013, 13, 3157–3168. [Google Scholar] [CrossRef]
- Wu, Y.E.; Huang, K.C. Design and Implementation of Dual-Axis Solar Tracking System with GSM Fault Reporting Capability. In Applied Energy Technology; Trans Tech Publications Ltd.: Bäch, Switzerland, 2013; Volume 724, pp. 43–51. [Google Scholar]
- Munna, M.S.; Bhuyan, M.A.I.; Rahman, K.M.; Hoque, M.A. Design, Implementation and Performance Analysis of a Dual-Axis Autonomous Solar Tracker. In Proceedings of the 2015 International Conference on Green Energy and Technology, ICGET 2015, Dhaka, Bangladesh, 11 September 2015; pp. 1–5. [Google Scholar]
- Acakpovi, A.; Yaw, N.; Babbo, D. Low Cost Two-Axis Automatic Solar Tracking System. Commun. Appl. Electron. 2015, 3, 46–53. [Google Scholar] [CrossRef]
- Özer, T.; Mustafa Kelek, M.; Oğuz, Y.; Kivrak, S.; Kıvrak, S.; Şahin, M. Double Axis Solar Tracking System Design and Implementation. Int. J. Sci. Eng. Res. 2018, 9, 66–71. [Google Scholar]
- Kumar, K.N.; Subramaniam, V. Real Time Clock Based Energy Efficient Automatic Dual Axis Solar Tracking System. Eng. J. 2018, 22, 15–26. [Google Scholar] [CrossRef]
- Patro, V.; Kumar, C.P.; Godthi, P.; Murugan, S. Dual Axis Solar Tracker System. Int. J. Adv. Res. Basic Eng. Sci. Technol. 2018, 4, 82–93. [Google Scholar]
- Wicaksono, D.S.; Musafa, A. Design and Implementation of Dual Axis Solar Tracker {PV} to Increase Cleaning Robot Operating Time. J. Phys. Conf. Ser. 2019, 1376, 12022. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.E.H.; Khandakar, A.; Hossain, B.; Abouhasera, R. A Low-Cost Closed-Loop Solar Tracking System Based on the Sun Position Algorithm. J. Sens. 2019, 2019, 3681031. [Google Scholar]
- Munshi, R.; Hussain, F.; Bristi, F.; Karmoker, S.K.; Zefat, Z.M.; Sumu, F.B. Design and Fabrication of Microcontroller-Based Dual Axis Light-Sensitive Rotating Solar Panel. Adv. Mater. Process. Technol. 2020, 8, 444–460. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Ho, H.X.T. Design, Implementation and Performance Analysis of a Dual Axis Solar Tracking System. Adv. Sci. Technol. Eng. Syst. 2020, 5, 41–45. [Google Scholar] [CrossRef]
- Awad, S.R.; Al Jbaar, M.A.; Abdullah, M.A.M. Efficient and Low-Cost Arduino Based Solar Tracking System. IOP Conf. Ser. Mater. Sci. Eng. 2020, 745, 012016. [Google Scholar] [CrossRef]
- Ali, F.B.; Chakma, R.; Raihan, A.; Hasan, M.; Khan, M.F.S.; Alam, M.J.; Akter, R.; Mahtab, S.S. Design and Implementation of a Time-Based Sun Tracking Solar System. AIP Conf. Proc. 2021, 2327, 20024. [Google Scholar] [CrossRef]
- Mohanapriya, V.; Manimegalai, V.; Praveenkumar, V.; Sakthivel, P. Implementation of Dual Axis Solar Tracking System. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1084, 012073. [Google Scholar] [CrossRef]
- Prakash, M.B.; Govindarajulu, K. Analysis and Testing of Dual Axis Solar Tracker for Standalone PV Systems Using Worm Gear. Int. J. Mod. Trends Sci. Technol. 2022, 8, 1–8. [Google Scholar]
- Tamang, D.; Roy, O.P. Hybrid Solar Tracking System: A Brief Overview. In Proceedings of the 2019 3rd IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT 2019, Coimbatore, India, 20–22 February 2019; pp. 1–5. [Google Scholar]
- Gupta, P.; Gupta, V.; Sharma, M.; Pachauri, R.K.; Akhtar, J. Design and Performance Analysis of Three Axis Solar Tracking System. In Proceedings of the 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE), Hangzhou, China, 15–17 April 2022; pp. 1876–1880. [Google Scholar]
- Zhang, J.; Yin, Z.; Jin, P. Error Analysis and Auto Correction of Hybrid Solar Tracking System Using Photo Sensors and Orientation Algorithm. Energy 2019, 182, 585–593. [Google Scholar] [CrossRef]
- Siddharth, P.S.; Ganesh, S.; Sreenath, S. A Hybrid Solar Tracking System. Int. J. Electr. Electron. Eng. Res. 2013, 3, 77–80. [Google Scholar]
- Mohammad, N.; Karim, T. Design and Implementation of Hybrid Automatic Solar-Tracking System. J. Sol. Energy Eng. Trans. ASME 2013, 135, 011013. [Google Scholar] [CrossRef]
- Mumtahina, U.; Bhuiya, M.; Sayem, A.; N, A.; Mohammad, N. Design and Implementation of a Multi-Dimensional Automatic Solar Tracking System. Energy Technol. 2014, 6, 1–11. [Google Scholar]
- Ferdaus, R.A.; Mohammed, M.A.; Rahman, S.; Salehin, S.; Mannan, M.A. Energy Efficient Hybrid Dual Axis Solar Tracking System. J. Renew. Energy 2014, 2014, 629717. [Google Scholar] [CrossRef]
- Lee, H.G.; Kim, S.S.; Kim, S.J.; Park, S.J.; Yun, C.W.; Im, G. Pyeong Development of a Hybrid Solar Tracking Device Using a GPS and a Photo-Sensor Capable of Operating at Low Solar Radiation Intensity. J. Korean Phys. Soc. 2015, 67, 980–985. [Google Scholar] [CrossRef]
- Abdulrahman, A.; Hamoud, A.; Al-Nehari, A.; Almakhlafy, M. Design and Implementation of Solar Tracking System. In Proceedings of the 2015 International Conference on Applied Science and Engineering Innovation (ASEI 2015), Jinan, China, 30–31 August 2015; Volume 12, pp. 785–788. [Google Scholar] [CrossRef] [Green Version]
- Hong, T.; Jeong, K.; Ban, C.; Oh, J.; Koo, C.; Kim, J.; Lee, M. A Preliminary Study on the 2-Axis Hybrid Solar Tracking Method for the Smart Photovoltaic Blind. Energy Procedia 2016, 88, 484–490. [Google Scholar] [CrossRef] [Green Version]
- Jianwattananukul, K.; Locharoenrat, K.; Lekchaum, S. Design and Construction of New Hybrid Solar Tracking System. In Applied Mechanics and Materials; Trans Tech Publications: Bäch, Switzerland, 2016; Volume 851, pp. 510–515. [Google Scholar]
- Tharamuttam, J.K.; Ng, A.K. Design and Development of an Automatic Solar Tracker. Energy Procedia 2017, 143, 629–634. [Google Scholar] [CrossRef]
- Haider, M.R.; Shufian, A.; Alam, M.N.; Hossain, M.I.; Islam, R.; Azim, M.A. Design and Implementation of Three-Axis Solar Tracking System with High Efficiency. In Proceedings of the 2021 International Conference on Information and Communication Technology for Sustainable Development, ICICT4SD 2021, Dhaka, Bangladesh, 27–28 February 2021; pp. 1–5. [Google Scholar]
- Baouche, F.Z.; Abderezzak, B.; Ladmi, A.; Arbaoui, K.; Suciu, G.; Mihaltan, T.C.; Raboaca, M.S.; Hudișteanu, S.V.; Țurcanu, F.E. Design and Simulation of a Solar Tracking System for PV. Appl. Sci. 2022, 12, 9682. [Google Scholar] [CrossRef]
- Indrasari, W.; Fahdiran, R.; Budi, E.; Jannah, L.; Kadarwati, L.; Ramli, R. Active Solar Tracker Based on The Horizon Coordinate System. J. Phys. Conf. Ser. 2018, 1120, 12102. [Google Scholar] [CrossRef]
- Ghosh, J.; Dey, N.; Das, P. Active Solar Tracking System Using Node MCU. In Proceedings of the 2019 International Conference on Computing, Power and Communication Technologies, GUCON 2019, New Delhi, India, 27–28 September 2019; pp. 924–928. [Google Scholar]
- Chin, C.S.; Babu, A.; McBride, W. Design, Modeling and Testing of a Standalone Single Axis Active Solar Tracker Using MATLAB/Simulink. Renew. Energy 2011, 36, 3075–3090. [Google Scholar] [CrossRef]
- Hammoumi, A.E.; Motahhir, S.; El Ghzizal, A.; Chalh, A.; Derouich, A. A Simple and Low-Cost Active Dual-Axis Solar Tracker. Energy Sci. Eng. 2018, 6, 607–620. [Google Scholar] [CrossRef] [Green Version]
- Rambhowan, Y.; Oree, V. Improving the Dual-Axis Solar Tracking System Efficiency via Drive Power Consumption Optimization. Appl. Sol. Energy Engl. Transl. Geliotekhnika 2014, 50, 74–80. [Google Scholar] [CrossRef]
- Patil, A.; Dhavalikar, M.; Dingare, S.; Bhojwani, V. Design and Prototyping of Dual Axis Solar Tracking System for Performance Enhancement of Solar Photo-Voltaic Power Plant. In Proceedings of the E3S Web of Conferences, Pune City, India, 18–20 December 2019; EDP Sciences: Les Ulis, France, 2020; Volume 170, p. 1011. [Google Scholar]
- Thunberg, W. Thermal Hydraulics Simulations for Nuclear Energy. Master Thesis, Uppsala University, Uppsala, Sweden, 2022; pp. 1–22. [Google Scholar]
- Bestion, D. The Structure of System Thermal-Hydraulic (SYS-TH) Code for Nuclear Energy Applications. In Thermal-Hydraulics of Water Cooled Nuclear Reactors; Elsevier: Amsterdam, The Netherlands, 2017; pp. 639–727. ISBN 9780081006627. [Google Scholar]
- Deekshith, K.; Aravind, D.; Nagaraju, H.; Reddy, B. Solar Tracking System. Int. J. Sci. Eng. Res. 2015, 6, 994–999. [Google Scholar]
- Krishnaraj, S.; Ravinthiran, A.; Ganapathy, S.; Siddharth, A.G.S.; Karan, K. Automatic Solar Panel Tracking System. Int. J. Innov. Technol. Explor. Eng. 2019, 9, 264–269. [Google Scholar] [CrossRef]
- Angulo, M.; Díaz-Ponce, A.; Valentín, L.; Valdivia, R.; Keshtkar, S. Design and Control of a Passive Solar Tracking System Using a Sky Imager. In Mechanisms and Machine Science; Hernandez, E.E., Keshtkar, S., Valdez, S.I., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 86, pp. 170–178. [Google Scholar]
- Sánchez, M.M.P.; Tamayo, D.B.; Estrada, R.H.C. Design and Construction of a Dual Axis Passive Solar Tracker, for Use on Yucatán. In Proceedings of the 2011 5th International Conference on Energy Sustainability, Washington, DC, USA, 7–10 August 2011; ISBN 9780791854686. [Google Scholar]
- Clifford, M.J.; Eastwood, D. Design of a Novel Passive Solar Tracker. Sol. Energy 2004, 77, 269–280. [Google Scholar] [CrossRef]
- Brito, M.C.; Pó, J.M.; Pereira, D.; Simões, F.; Rodriguez, R.; Amador, J.C. Passive Solar Tracker Based in the Differential Thermal Expansion of Vertical Strips. J. Renew. Sustain. Energy 2019, 11, 43701. [Google Scholar] [CrossRef]
- Roong, A.S.C.; Chong, S.H. Laboratory-Scale Single Axis Solar Tracking System: Design and Implementation. Int. J. Power Electron. Drive Syst. 2016, 7, 254–264. [Google Scholar] [CrossRef]
- Usta, M.A.; Akyazi, Ö.; Altaş, I.H. Design and Performance of Solar Tracking System with Fuzzy Logic Controller Used Different Membership Functions. In Proceedings of the 2011 7th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 1–4 December 2011; ISBN 9786050102048. [Google Scholar]
- Ataei, E.; Afshari, R.; Pourmina, M.A.; Karimian, M.R. Design and Construction of a Fuzzy Logic Dual Axis Solar Tracker Based on DSP. In Proceedings of the Proceedings—2011 2nd International Conference on Control, Instrumentation and Automation, ICCIA 2011, Shiraz, Iran, 27–29 December 2011; pp. 185–189. [Google Scholar]
- Shenawy, E.E.T.; Kamal, M.; Mohamad, M.A. Artificial Intelligent Control of a Solar Tracking System. J. Appl. Sci. Res. 2012, 8, 3971–3984. [Google Scholar]
- Batayneh, W.; Owais, A.; Nairoukh, M. An Intelligent Fuzzy Based Tracking Controller for a Dual-Axis Solar PV System. Autom. Constr. 2013, 29, 100–106. [Google Scholar] [CrossRef]
- Bawa, D.; Patil, C.Y. Fuzzy Control Based Solar Tracker Using Arduino Uno. Int. J. Eng. Innov. Technol. 2013, 2, 179–187. [Google Scholar]
- Rosario, J.R.B.D.; Dadios, E. Development of a Fuzzy Logic-Based PV Solar Tracking System Simulated Using QT Fuzzy Engine. In Proceedings of the 2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, Palawan, Philippines, 12–16 November 2014; pp. 1–8. [Google Scholar]
- Abadi, I.; Soeprijanto, A.; Musyafa, A. Design of Single Axis Solar Tracking System at Photovoltaic Panel Using Fuzzy Logic Controller. In Proceedings of the 5th Brunei International Conference on Engineering and Technology (BICET 2014), Bandar Seri Begawan, Brunei, 1–3 November 2014. [Google Scholar] [CrossRef] [Green Version]
- Stamatescu, I.; Stamatescu, G.; Arghira, N.; Făgărăsan, I.; Iliescu, S.S. Fuzzy Decision Support System for Solar Tracking Optimization. In Proceedings of the 2014 International Conference on Development and Application Systems (DAS), Suceava, Romania, 15–17 May 2014; pp. 16–20. [Google Scholar]
- Zakariah, A.; Jamian, J.J.; Yunus, M.A.M. Dual-Axis Solar Tracking System Based on Fuzzy Logic Control and Light Dependent Resistors as Feedback Path Elements. In Proceedings of the 2015 IEEE Student Conference on Research and Development (SCOReD), Kuala Lumpur, Malaysia, 13–14 December 2015; ISBN 9781467395724. [Google Scholar]
- Racharla, S.; Rajan, K.; Senthil Kumar, K.R. A Fuzzy Logic Controlled Single Axis Solar Tracking System. Appl. Mech. Mater. 2015, 787, 893–898. [Google Scholar] [CrossRef]
- Uebari, B.; Stanley Bere, B.; Komi, B.; Uebari, S.L. Design of Automatic Two-Axis Solar Tracker with Fuzzy Logic Controller for Maximum Power System in Nigeria. Int. J. Innov. Sci. Eng. Technol. 2016, 3, 329–336. [Google Scholar]
- Huang, C.H.; Pan, H.Y.; Lin, K.C. Development of Intelligent Fuzzy Controller for a Two-Axis Solar Tracking System. Appl. Sci. 2016, 6, 130. [Google Scholar] [CrossRef] [Green Version]
- Kiyak, E.; Gol, G. A Comparison of Fuzzy Logic and PID Controller for a Single-Axis Solar Tracking System. Renew. Wind. Water Sol. 2016, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Kayri, I.; Gencoglu, M.T. Prediction of Power Production from a Single Axis Photovoltaic System by Artificial Neural Networks. In Proceedings of the 2017 14th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, 1–2 June 2017; ISBN 9781509060733. [Google Scholar]
- Away, Y.; Rahman, A.; Auliandra, T.R.; Firdaus, M. Performance Comparison between PID and Fuzzy Algorithm for Sun Tracker Based on Tetrahedron Geometry Sensor. In Proceedings of the2018 International Conference on Electrical Engineering and Informatics (ICELTICs), Banda Aceh, Indonesia, 19–20 September 2018; ISBN 9781538661406. [Google Scholar]
- Cruz-Alejo, J.d.l.; Antonio-Méndez, R.; Salazar-Pereyra, M. Fuzzy Logic Control on FPGA for Two Axes Solar Tracking. Neural Comput. Appl. 2019, 31, 2469–2483. [Google Scholar] [CrossRef]
- Lehloka, M.; Swart, J.; Hertzog, P. A Comparison of Two Automatic Solar Tracking Algorithms. E3S Web Conf. 2020, 152, 2009. [Google Scholar] [CrossRef]
- Toylan, H. Design and Application of Solar Tracking System Using Optimized Fuzzy Logic Controller by Genetic Algorithm. Mugla J. Sci. Technol. 2020, 6, 136–145. [Google Scholar] [CrossRef]
- Faraji, J.; Khanjanianpak, M.; Rezaei, M.; Kia, M.; Aliyan, E.; Dehghanian, P. Fast-Accurate Dual-Axis Solar Tracker Controlled by PO Technique with Neural Network Optimization. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2020, Madrid, Spain, 9–12 June 2020; pp. 1–6. [Google Scholar]
- AL-Rousan, N.; Isa, N.A.M.; Desa, M.K.M. Efficient Single and Dual Axis Solar Tracking System Controllers Based on Adaptive Neural Fuzzy Inference System. J. King Saud Univ.-Eng. Sci. 2020, 32, 459–469. [Google Scholar] [CrossRef]
- Ontiveros, J.J.; Avalos, C.D.; Loza, F.; Galan, N.D.; Rubio, G.J. Evaluation and Design of Power Controller of Two-Axis Solar Tracking by PID and FL for a Photovoltaic Module. Int. J. Photoenergy 2020, 2020, 8813732. [Google Scholar] [CrossRef]
- AL-Rousan, N.; Isa, N.A.M.; Desa, M.K.M.; AL-Najjar, H. Integration of Logistic Regression and Multilayer Perceptron for Intelligent Single and Dual Axis Solar Tracking Systems. Int. J. Intell. Syst. 2021, 36, 5605–5669. [Google Scholar] [CrossRef]
- AL-Rousan, N.; Isa, N.A.M.; Desa, M.K.M. Correlation Analysis and MLP/CMLP for Optimum Variables to Predict Orientation and Tilt Angles in Intelligent Solar Tracking Systems. Int. J. Energy Res. 2021, 45, 453–477. [Google Scholar] [CrossRef]
- Thang, L.V.; Myo Naing, Z.; Xuan Cuong, N.; DInh Hieu, L.; Anatolii, S. Research of Solar Tracking Controller for PV Panel Based on Fuzzy Logic Control. In Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021, St. Petersburg, Russia, 26–29 January 2021; pp. 2696–2699. [Google Scholar]
- Hossain, M.R.; Oo, A.M.T.; Ali, A.B.M.S. Smart Grid. In Green Energy and Technology; Ali, A.B.M.S., Ed.; Springer: London, UK, 2013; Volume 132, pp. 23–44. ISBN 9781447152095. [Google Scholar]
- Dileep, G. A Survey on Smart Grid Technologies and Applications. Renew. Energy 2020, 146, 2589–2625. [Google Scholar] [CrossRef]
Properties | Single-Axis | Dual-Axis | Hybrid-Axis |
---|---|---|---|
Cost | Cheap to implement | More expensive to implement than a single but less expensive than a hybrid | Most expensive to implement |
Complexity | Less complex | High complexity | Very complex to implement |
Tracking accuracy | It offers the least accuracy compared to the other types of trackers | It offers high accuracy compared to the single-axis | It offers the best accuracy as the Sun will be tracked at any angle and position |
Number of Axis | It is limited to only one axis | It is limited to having only two axes | It can have three or more axes |
Efficiency | Very reduced since it only tracks the Sun’s movement in the East–West direction, and during cloudy days, its efficiency is almost close to the fixed-angle solar tracking system | Has high efficiency as in addition to tracking the Sun’s movement from East–West, it also follows the angular height position of the Sun | Has the highest efficiency, especially during the cloudy days |
Properties | Active | Passive | Chronological |
---|---|---|---|
Cost | Most expensive to implement | Cheap to implement | More expensive to implement than passive but less expensive than active |
Complexity | It is more complex and requires more parts | It is less complex and requires few parts | It is complex |
Reliability | More reliable | Less reliable | It is less reliable than passive |
Energy | It requires an external source of energy to function | It does not require an external source of energy to function | It requires more energy to function |
Accuracy | Most accurate | Less accurate | More accurate than passive but less than active |
Monitoring and alarm | It can incorporate automated systems | It cannot incorporate automated systems | It can incorporate automated systems |
Efficiency (morning and evening) | It has very efficient | It is less efficient because it is weather dependent | It is more efficient than passive |
Low temperature | It can work at low temperature | It cannot work at low temperature | It cannot work on cloudy days |
Wind | It can shut down and resume operation automatically during a windstorm | It has to be shut down manually during a windstorm | It cannot function during a windstorm |
Ref. | The Axis of Rotation Considered | ANFIS | Logistic Regression | MLP | Fuzzy Logic | ANN | FFBPN | Linear Regression |
---|---|---|---|---|---|---|---|---|
[77] | - | × | × | × | ✓ | × | × | × |
[78] | Dual-axis | × | × | × | ✓ | × | × | × |
[79] | Dual-axis | × | × | × | ✓ | ✓ | × | × |
[80] | Dual-axis | × | × | × | ✓ | × | × | × |
[81] | - | × | × | × | ✓ | × | × | × |
[82] | - | × | × | × | ✓ | × | × | × |
[83] | Single-axis | × | × | × | ✓ | × | × | × |
[84] | - | × | × | × | ✓ | × | × | × |
[85] | Dual-axis | × | × | × | ✓ | × | × | × |
[86] | Single-axis | × | × | × | ✓ | × | × | × |
[87] | Dual-axis | × | × | × | ✓ | × | × | × |
[88] | Dual-axis | × | × | × | ✓ | × | × | × |
[89] | Single-axis | × | × | × | ✓ | × | × | × |
[90] | Single-axis | × | × | × | × | × | ✓ | × |
[91] | Dual-axis | × | × | × | ✓ | × | × | × |
[92] | Dual-axis | × | × | × | ✓ | × | × | × |
[93] | Dual-axis | × | × | × | ✓ | × | × | ✓ |
[94] | Dual-axis | × | × | × | ✓ | × | × | × |
[95] | Dual-axis | × | × | ✓ | × | × | × | × |
[96] | Single- and Dual-axis | ✓ | × | × | × | × | × | × |
[97] | Dual-axis | × | × | × | ✓ | × | × | × |
[98] | Single- and Dual-axis | × | ✓ | ✓ | × | × | × | × |
[99] | Single- and Dual-axis | × | ✓ | ✓ | × | × | × | × |
[100] | Single-axis | × | × | × | ✓ | × | × | × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musa, A.; Alozie, E.; Suleiman, S.A.; Ojo, J.A.; Imoize, A.L. A Review of Time-Based Solar Photovoltaic Tracking Systems. Information 2023, 14, 211. https://doi.org/10.3390/info14040211
Musa A, Alozie E, Suleiman SA, Ojo JA, Imoize AL. A Review of Time-Based Solar Photovoltaic Tracking Systems. Information. 2023; 14(4):211. https://doi.org/10.3390/info14040211
Chicago/Turabian StyleMusa, Abdulwaheed, Emmanuel Alozie, Suleiman A. Suleiman, John Adedapo Ojo, and Agbotiname Lucky Imoize. 2023. "A Review of Time-Based Solar Photovoltaic Tracking Systems" Information 14, no. 4: 211. https://doi.org/10.3390/info14040211
APA StyleMusa, A., Alozie, E., Suleiman, S. A., Ojo, J. A., & Imoize, A. L. (2023). A Review of Time-Based Solar Photovoltaic Tracking Systems. Information, 14(4), 211. https://doi.org/10.3390/info14040211