A Deep Learning Model for Ship Trajectory Prediction Using Automatic Identification System (AIS) Data
Abstract
:1. Introduction
2. Methodology
2.1. Research Framework
2.2. Data Preprocessing
2.3. Ship Trajectory Prediction Based on CNN-LSTM-SE
2.3.1. Convolutional Neural Network (CNN)
2.3.2. Long Short-Term Memory (LSTM)
2.3.3. Squeeze-and-Excitation Network (SE)
2.3.4. CNN-LSTM-SE Model
2.4. Evaluation Index
3. Experiments
3.1. Experimental Setup
3.2. Experimental Data
3.3. Results
3.3.1. Analysis of Ship-1 Trajectory Prediction Results
3.3.2. Analysis of Ship-2 Trajectory Prediction Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, D.; Ma, W.; Hao, S.; Jin, S.; Qu, F. Ship’s Response to Low-Sulfur Regulations: From the Perspective of Route, Speed and Refueling Strategy. Comput. Ind. Eng. 2021, 155, 107140. [Google Scholar] [CrossRef]
- Benz, L.; Münch, C.; Hartmann, E. Development of a Search and Rescue Framework for Maritime Freight Shipping in the Arctic. Transp. Res. A Policy Pract. 2021, 152, 54–69. [Google Scholar] [CrossRef]
- Zhou, Y.; Daamen, W.; Vellinga, T.; Hoogendoorn, S. Review of Maritime Traffic Models from Vessel Behavior Modeling Perspective. Transp. Res. Part C Emerg. Technol. 2019, 105, 323–345. [Google Scholar] [CrossRef]
- Guo, S.; Mou, J.; Chen, L.; Chen, P. An Anomaly Detection Method for AIS Trajectory Based on Kinematic Interpolation. J. Mar. Sci. Eng. 2021, 9, 609. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Li, B.; Qi, Z. Ship Abnormal Behavior Detection Method Based on Optimized GRU Network. J. Mar. Sci. Eng. 2022, 10, 249. [Google Scholar] [CrossRef]
- Chen, K.; Zhu, Y.; Yan, K.; Cai, Y.; Ren, Z.; Gao, D. The Ship Track Prediction Method Based on Long Short-term Memory Network. Ship Ocean Eng. 2019, 48, 121–125. [Google Scholar] [CrossRef]
- Gao, M.; Shi, G.-Y. Ship-Handling Behavior Pattern Recognition Using Ais Sub-Trajectory Clustering Analysis Based on the T-Sne and Spectral Clustering Algorithms. Ocean Eng. 2020, 205, 106919. [Google Scholar] [CrossRef]
- Murray, B.; Perera, L.P. Ship behavior prediction via trajectory extraction-based clustering for maritime situation awareness. J. Ocean Eng. Sci. 2022, 7, 1–13. [Google Scholar] [CrossRef]
- Rodger, M.; Guida, R. Classification-Aided SAR and AIS Data Fusion for Space-Based Maritime Surveillance. Remote Sens. 2021, 13, 104. [Google Scholar] [CrossRef]
- Murray, B.; Perera, L.P. A Dual Linear Autoencoder Approach for Vessel Trajectory Prediction Using Historical Ais Data. Ocean Eng. 2020, 209, 107478. [Google Scholar] [CrossRef]
- Gao, D.; Zhu, Y.; Zhang, J.; He, Y.; Yan, K.; Yan, B. A Novel MP-LSTM Method for Ship Trajectory Prediction Based on Ais Data. Ocean Eng. 2021, 228, 108956. [Google Scholar] [CrossRef]
- Feng, H.; Cao, G.; Xu, H.; Ge, S. IS-STGCNN: An Improved Social spatial-temporal graph convolutional neural network for ship trajectory prediction. Ocean Eng. 2022, 266, 112960. [Google Scholar] [CrossRef]
- Liu, R.W.; Liang, M.; Nie, J.; Lim, W.Y.B.; Zhang, Y.; Guizani, M. Deep Learning-Powered Vessel Trajectory Prediction for Improving Smart Traffic Services in Maritime Internet of Things. IEEE Trans. Netw. Sci. Eng. 2022, 9, 3080–3094. [Google Scholar] [CrossRef]
- Chen, X.; Wei, C.; Zhou, G.; Wu, H.; Wang, Z.; Biancardo, S.A. Automatic Identification System (AIS) Data Supported Ship Trajectory Prediction and Analysis via a Deep Learning Model. J. Mar. Sci. Eng. 2022, 10, 1314. [Google Scholar] [CrossRef]
- Qian, L.; Zheng, Y.; Li, L.; Ma, Y.; Zhou, C.; Zhang, D. A New Method of Inland Water Ship Trajectory Prediction Based on Long Short-Term Memory Network Optimized by Genetic Algorithm. Appl. Sci. 2022, 12, 4073. [Google Scholar] [CrossRef]
- Liu, J.; Shi, G.; Zhu, K. Vessel Trajectory Prediction Model Based on AIS Sensor Data and Adaptive Chaos Differential Evolution Support Vector Regression (ACDE-SVR). Appl. Sci. 2019, 9, 2983. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, J.; Niu, J.; Wu, Q.M.J.; Li, G. Track Prediction for HF Radar Vessels Submerged in Strong Clutter Based on MSCNN Fusion with GRU-AM and AR Model. Remote Sens. 2021, 13, 2164. [Google Scholar] [CrossRef]
- Volkova, T.A.; Balykina, Y.E.; Bespalov, A. Predicting Ship Trajectory Based on Neural Networks Using AIS Data. J. Mar. Sci. Eng. 2021, 9, 254. [Google Scholar] [CrossRef]
- Park, J.; Jeong, J.; Park, Y. Ship Trajectory Prediction Based on Bi-LSTM Using Spectral-Clustered AIS Data. J. Mar. Sci. Eng. 2021, 9, 1037. [Google Scholar] [CrossRef]
- Suo, Y.; Chen, W.; Claramunt, C.; Yang, S. A Ship Trajectory Prediction Framework Based on a Recurrent Neural Network. Sensors 2020, 20, 5133. [Google Scholar] [CrossRef]
- Bao, K.; Bi, J.; Gao, M.; Sun, Y.; Zhang, X.; Zhang, W. An Improved Ship Trajectory Prediction Based on AIS Data Using MHA-BiGRU. J. Mar. Sci. Eng. 2022, 10, 804. [Google Scholar] [CrossRef]
- Sørensen, K.A.; Heiselberg, P.; Heiselberg, H. Probabilistic Maritime Trajectory Prediction in Complex Scenarios Using Deep Learning. Sensors 2022, 22, 2058. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lu, J.; Chen, X.; Yan, Z.; Yan, Y.; Sun, Y. High-fidelity data supported ship trajectory prediction via an ensemble machine learning framework. Phys. A 2022, 586, 126470. [Google Scholar] [CrossRef]
- Gao, D.; Zhu, Y.; Soares, C.G. Uncertainty modelling and dynamic risk assessment for long-sequence AIS trajectory based on multivariate Gaussian Process. Reliab. Eng. Syst. Safe 2023, 230, 108963. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, L.; Qian, L.; Cheng, B.; Hou, W.; Zhuang, Y. Sine-SSA-BP Ship Trajectory Prediction Based on Chaotic Mapping Improved Sparrow Search Algorithm. Sensors 2023, 23, 704. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, S.; Feng, D. A New Method for Short-Term Traffic Flow Prediction Based on Multi-Segments Features. In Proceedings of the 2020 12th International Conference on Machine Learning and Computing, Shenzhen, China, 15–17 February 2020; ACM: New York, NY, USA, 2020; pp. 34–38. [Google Scholar] [CrossRef]
- Zhao, T.; Wu, X. Pyramid Feature Attention Network for Saliency Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3080–3089. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Ma, C.; Qiao, Y.; Lu, X.; Hao, W.; Dong, S. A Hybrid Deep Learning Model with 1dcnn-Lstm-Attention Networks for Short-Term Traffic Flow Prediction. Phys. A Stat. Mech. Appl. 2021, 583, 126293. [Google Scholar] [CrossRef]
- Hu, Y.K.; Xia, W.; Hu, X.X.; Sun, H.Q.; Wang, Y.H. Prediction of Ship Track Based on Recurrent Neural Network. Sys. Eng. Elect. Technol. 2020, 42, 871–877. [Google Scholar] [CrossRef]
- Capobianco, S.; Millefiori, L.M.; Forti, N.; Braca, P.; Willett, P. Deep Learning Methods for Vessel Trajectory Prediction Based on Recurrent Neural Networks. IEEE Trans. Aero. Elec. Sys. 2021, 57, 4329–4346. [Google Scholar] [CrossRef]
- Tengesdal, T.; Johansen, T.A.; Brekke, E.F. Ship Collision Avoidance Utilizing the Cross-Entropy Method for Collision Risk Assessment. IEEE Trans. Intell. Transp. Syst. 2022, 23, 11148–11161. [Google Scholar] [CrossRef]
- Liu, Z.; Zhuang, Y.; Jia, P.; Wu, C. A Novel Underwater Image Enhancement and Improved Underwater Biological Detection Pipeline. arXiv 2022. [Google Scholar] [CrossRef]
- Wu, S.; Chen, X.; Shi, C.; Shi, C.; Fu, J.; Wang, S. Ship detention prediction via feature selection scheme and support vector machine (SVM). Marit. Policy Manag. 2022, 49, 140–153. [Google Scholar] [CrossRef]
- Zhao, J.; Yan, Z.; Chen, X.; Han, B.; Wu, S.; Ke, R. k-GCN-LSTM: A k-hop Graph Convolutional Network and Long–Short-Term Memory for ship speed prediction. Phys. A 2022, 606, 128107. [Google Scholar] [CrossRef]
- Cornia, M.; Baraldi, L.; Serra, G.; Cucchiara, R. Predicting Human Eye Fixations via an LSTM-Based Saliency Attentive Model. IEEE Trans. Image Process. 2018, 27, 5142–5154. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-Y.; Yu, C.-H.; Lin, Y.-T.; Su, H.-L.; Kan, K.-W.; Liu, F.-C.; Chen, C.-T.; Lin, Y.-T.; Hsu, H.-F.; Lin, Y.-H. The Potential Application of Spring Sargassum glaucescens Extracts in the Moisture-Retention of Keratinocytes and Dermal Fibroblast Regeneration after UVA-Irradiation. Cosmetics 2019, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Ran, X.; Shan, Z.; Fang, Y.; Lin, C. An LSTM-Based Method with Attention Mechanism for Travel Time Prediction. Sensors 2019, 19, 861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 7132–7141. [Google Scholar]
- Peng, Y.; Xiang, W. Short-Term Traffic Volume Prediction Using GA-BP Based on Wavelet Denoising and Phase Space Reconstruction. Phys. A 2020, 549, 123913. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, H.; Li, T.; Guo, J.; Huang, W.; Wei, Y.; Cao, J. An Interpretable Model for Short Term Traffic Flow Prediction. Math. Comput. Simul. 2020, 171, 264–278. [Google Scholar] [CrossRef]
- Mazzarella, F.; Vespe, M.; Alessandrini, A.; Tarchi, D.; Aulicino, G.; Vollero, A. A novel anomaly detection approach to identify intentional AIS on-off switching. Expert Syst. Appl. 2017, 78, 110–123. [Google Scholar] [CrossRef]
- Wang, S.; He, Z. A Prediction Model of Vessel Trajectory Based on Generative Adversarial Network. J. Navig. 2021, 74, 1161–1171. [Google Scholar] [CrossRef]
Model | Time Interval | Parameter Name | Optimal Parameters |
---|---|---|---|
CNN-LSTM-SE | 10 s | Kernel size | 2 |
Stride | 2 | ||
LSTM node | 300 | ||
Linear layer node | 100 | ||
Output layer node | 2 | ||
30 s | Kernel size | 2 | |
Stride | 1 | ||
LSTM node | 300 | ||
Linear layer node | 100 | ||
Output layer node | 2 | ||
1 min | Kernel size | 2 | |
Stride | 1 | ||
LSTM node | 150 | ||
Linear layer node | 50 | ||
Output layer node | 2 |
Time Interval | Model | ARMSE | AMAPE | AED | FD | AGD |
---|---|---|---|---|---|---|
10 s | CNN-LSTM-SE | 0.0014 | 0.0031 | 0.0020 | 0.0051 | 0.2141 |
CNN-LSTM | 0.0024 | 0.0033 | 0.0028 | 0.0244 | 0.2816 | |
CNN | 0.0042 | 0.0055 | 0.0050 | 0.0356 | 0.5037 | |
LSTM | 0.0027 | 0.0043 | 0.0032 | 0.0168 | 0.3308 | |
30 s | CNN-LSTM-SE | 0.0022 | 0.0034 | 0.0030 | 0.0070 | 0.3001 |
CNN-LSTM | 0.0043 | 0.0063 | 0.0050 | 0.0334 | 0.5171 | |
CNN | 0.0051 | 0.0065 | 0.0061 | 0.0451 | 0.6077 | |
LSTM | 0.0068 | 0.0112 | 0.0081 | 0.0432 | 0.8504 | |
1 min | CNN-LSTM-SE | 0.0029 | 0.0044 | 0.0037 | 0.0089 | 0.3721 |
CNN-LSTM | 0.0061 | 0.0107 | 0.0074 | 0.0313 | 0.7831 | |
CNN | 0.0125 | 0.0172 | 0.0154 | 0.0749 | 0.9467 | |
LSTM | 0.0095 | 0.0133 | 0.0107 | 0.0529 | 1.0987 |
Time Interval | Model | ARMSE | AMAPE | AED | FD | AGD |
---|---|---|---|---|---|---|
10 s | CNN-LSTM-SE | 0.0012 | 0.0018 | 0.0007 | 0.0043 | 0.0750 |
CNN-LSTM | 0.0018 | 0.0023 | 0.0008 | 0.0228 | 0.0854 | |
CNN | 0.0016 | 0.0020 | 0.0008 | 0.0156 | 0.0781 | |
LSTM | 0.0017 | 0.0032 | 0.0011 | 0.0059 | 0.1179 | |
30 s | CNN-LSTM-SE | 0.0024 | 0.0024 | 0.0010 | 0.0071 | 0.1006 |
CNN-LSTM | 0.0037 | 0.0042 | 0.0015 | 0.0269 | 0.1597 | |
CNN | 0.0029 | 0.0044 | 0.0016 | 0.0166 | 0.1671 | |
LSTM | 0.0024 | 0.0037 | 0.0015 | 0.0204 | 0.1538 | |
1 min | CNN-LSTM-SE | 0.0025 | 0.0030 | 0.0017 | 0.0089 | 0.1682 |
CNN-LSTM | 0.0045 | 0.0084 | 0.0029 | 0.0107 | 0.3002 | |
CNN | 0.0042 | 0.0066 | 0.0023 | 0.0170 | 0.2448 | |
LSTM | 0.0060 | 0.0101 | 0.0034 | 0.0102 | 0.3659 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Xiao, Y. A Deep Learning Model for Ship Trajectory Prediction Using Automatic Identification System (AIS) Data. Information 2023, 14, 212. https://doi.org/10.3390/info14040212
Wang X, Xiao Y. A Deep Learning Model for Ship Trajectory Prediction Using Automatic Identification System (AIS) Data. Information. 2023; 14(4):212. https://doi.org/10.3390/info14040212
Chicago/Turabian StyleWang, Xinyu, and Yingjie Xiao. 2023. "A Deep Learning Model for Ship Trajectory Prediction Using Automatic Identification System (AIS) Data" Information 14, no. 4: 212. https://doi.org/10.3390/info14040212
APA StyleWang, X., & Xiao, Y. (2023). A Deep Learning Model for Ship Trajectory Prediction Using Automatic Identification System (AIS) Data. Information, 14(4), 212. https://doi.org/10.3390/info14040212