Constrained Static/Dynamic Economic Emission Load Dispatch Using Elephant Herd Optimization
Abstract
:1. Introduction
1.1. Overview
1.2. Research Contributions
- An artificial intelligence algorithm, namely, elephant herd optimization (EHO), is implemented in order to solve a critical engineering problem.
- The algorithm is implemented in order to solve both the convex static and dynamic EELD problems of power systems.
- The predictability of the proposed algorithm is evaluated by implementing the algorithm on three different systems, such as 6-, 10-, and 40-unit systems.
- The obtained results are compared to the recent available algorithms in the literature to demonstrate the efficacy of the proposed approach.
1.3. Organization of the Present Work
2. Problem Formulation for the Basic ELD Problem
2.1. Objective Function
2.2. Constraints
2.2.1. Power Balance Constraints
2.2.2. Generator Capacity Constraints
2.2.3. Ramp Rate Limits Constraints
3. Problem Formulation for Dynamic EELD Problem
3.1. Fuel Cost Function
3.2. Emission Dispatch Function
3.3. Constraints
3.4. Weighted Fitness Function to Obtain the Optimal Scheduling Strategy
Constraint Handling
4. Elephant Herd Optimization
Clan Updating Operator
5. Case Study
5.1. Description of Systems
5.1.1. Test System 1
5.1.2. Test System 2
5.1.3. Test System 3
5.2. Parameter Setting and System Configurations
5.3. Computation Results and Comparisons
5.3.1. Test System 1
5.3.2. Test System 2
5.3.3. Test Case 3
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
The quadratic cost function of gth generator in | |
, and | The cost coefficients of the gth generator in |
The active power output from the gth generator in | |
The total number of CFTGU | |
The power demand at the load in | |
The loss coefficient matrices | |
Maximum limit of active power generation of gth generator | |
Minimum limit of active power generation of gth generator | |
Recently refreshed for elephant in clan | |
Recently refreshed for elephant in clan | |
Matriarch which is the fittest elephant individual in clan | |
Random value between [0, 1] | |
Random value between [0, 1] | |
Total dimension | |
Quantity of elephants in clan | |
The dth elephant individual of | |
The upper bound of the position of elephant individual | |
The lower bound of the position of elephant individual | |
Worst elephant individual in clan | |
Centre of clan | |
A real between the range [0 1] |
Acronyms
GHGs | Greenhouse Gases |
ELD | Economic Load Dispatch |
DEELD | Dynamic Economic Emission Load Dispatch |
EHO | Elephant Herd Optimization |
CFTGU | Coal-Fired Thermal Generating Unit |
VPE | Valve Point Effects |
PTS | Partial Transmit Sequence |
SFG | Switched Reluctance Generator |
UFMC | Universal Filtered Multicarrier |
GA | Genetic Algorithm |
EP | Evolutionary Programming |
SQP | Sequential Quadratic Programming |
PSO | Particle Swarm Optimization |
TL | Transmission Losses |
IGAMU | Improved Genetic Algorithm with Multiplier Updating |
HDE | Self-Tuning Hybrid Differential Algorithm |
AP-PSO | Anti-Predatory PSO |
ESO | Evolutionary Strategy Optimization |
Q-PSO | Quantum Mechanics Inspired PSO |
BBO | Biogeography Optimization |
HPSO | Hybrid PSO |
GSA | Gravitational Search Algorithm |
EMOCA | Enhanced Multi-Objective Cultural Algorithm |
IDPSO | Improved Orthogonal Design PSO |
MKHA | Modified Kill Herd Algorithm |
MCSA | Modified Crow Search Algorithm |
SA-ANS | Self-Adapted Across Neighborhood Search |
FBTDA | Flooding Based Topology Discovery Algorithm |
HGWO | Hybrid Grey Wolf Optimization |
ESSA | Emended Salp Swarm Algorithm |
EMAM | Exchange Market Algorithm Method |
POA | Peafowl Optimization Algorithm |
Dy-NSBBO | Dynamic Non-Sorted Biogeography-Based Optimization |
MO-VCS | Multi-Objective Virus Colony Search |
MFO-PDU | Moth–Flame Optimization with Position Disturbance Updating Strategy |
ITSA | Improved Tunicate Swarm Algorithm |
ISFO | Improved Sailfish Algorithm |
IBFA | Improved Bacterial Foraging Algorithm |
References
- Wu, M.; He, Q.; Liu, Y.; Zhang, Z.; Shi, Z.; He, Y. Machine Learning Techniques for Decarbonizing and Managing Renewable Energy Grids. Sustainability 2022, 14, 13939. [Google Scholar] [CrossRef]
- Mei, P.; Wu, L.; Zhang, H.; Liu, Z. A Hybrid Multi-Objective Crisscross Optimization for Dynamic Economic/Emission Dispatch Considering Plug-In Electric Vehicles Penetration. Energies 2019, 12, 3847. [Google Scholar] [CrossRef] [Green Version]
- Montoya, O.D.; Gil-González, W.; Grisales-Noreña, L.F. An Exact MINLP Model for Optimal Location and Sizing of DGs in Distribution Networks: A General Algebraic Modeling System Approach. Ain. Shams. Eng. J. 2019, 11, 409–418. [Google Scholar] [CrossRef]
- Subathra, M.S.P.; Easter Selvan, S.; Aruldoss Albert Victoire, T.; Hepzibah Christinal, A.; Amato, U. A Hybrid with Cross-Entropy Method and Sequential Quadratic Programming to Solve Economic Load Dispatch Problem. IEEE Syst. J. 2015, 9, 1031–1044. [Google Scholar] [CrossRef]
- Jabr, R.A. Solution to Economic Dispatching with Disjoint Feasible Regions via Semidefinite Programming. IEEE Trans. Power Syst. 2012, 27, 572–573. [Google Scholar] [CrossRef]
- Sailesh Babu, G.S.; Bhagwan Das, D.; Patvardhan, C. Real-Parameter Quantum Evolutionary Algorithm for Economic Load Dispatch. IET Gener. Transm. Distrib. 2008, 2, 22–31. [Google Scholar] [CrossRef]
- Chiang, C.L. Genetic-Based Algorithm for Power Economic Load Dispatch. IET Gener. Transm. Distrib. 2007, 1, 261–269. [Google Scholar] [CrossRef]
- Wang, S.K.; Chiou, J.P.; Liu, C.W. Non-Smooth/Non-Convex Economic Dispatch by a Novel Hybrid Differential Evolution Algorithm. IET Gener. Transm. Distrib. 2007, 1, 793–803. [Google Scholar] [CrossRef] [Green Version]
- Selvakumar, A.I.; Thanushkodi, K. Anti-Predatory Particle Swarm Optimization: Solution to Nonconvex Economic Dispatch Problems. Electr. Power Syst. Res. 2008, 78, 2–10. [Google Scholar] [CrossRef]
- Sinha, N.; Chakrabarti, R.; Chattopadhyay, P.K. Evolutionary Programming Techniques for Economic Load Dispatch. IEEE Trans. Evol. Comput. 2003, 7, 83–94. [Google Scholar] [CrossRef]
- Gaing, Z.L. Particle Swarm Optimization to Solving the Economic Dispatch Considering the Generator Constraints. IEEE Trans. Power Syst. 2003, 18, 1187–1195. [Google Scholar] [CrossRef]
- Pereira-Neto, A.; Unsihuay, C.; Saavedra, O.R. Efficient Evolutionary Strategy Optimisation Procedure to Solve the Nonconvex Economic Dispatch Problem with Generator Constraints. IEE Proc. Gener. Transm. Distrib. 2005, 152, 653. [Google Scholar] [CrossRef]
- Hemamalini, S.; Simon, S.P. Artificial Bee Colony Algorithm for Economic Load Dispatch Problem with Non-Smooth Cost Functions. Electr. Power Compon. Syst. 2010, 38, 786–803. [Google Scholar] [CrossRef]
- Meng, K.; Wang, H.G.; Dong, Z.Y.; Wong, K.P. Quantum-Inspired Particle Swarm Optimization for Valve-Point Economic Load Dispatch. IEEE Trans. Power Syst. 2010, 25, 215–222. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Chattopadhyay, P.K. Biogeography-Based Optimization for Different Economic Load Dispatch Problems. IEEE Trans. Power Syst. 2010, 25, 1064–1077. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Chattopadhyay, P.K. Hybrid Differential Evolution with Biogeography-Based Optimization for Solution of Economic Load Dispatch. IEEE Trans. Power Syst. 2010, 25, 1955–1964. [Google Scholar] [CrossRef]
- Li, L.; He, D.; Jin, J.; Yu, B.; Gao, X. Multi-Objective Load Dispatch Control of Biomass Heat and Power Cogeneration Based on Economic Model Predictive Control. Energies 2021, 14, 762. [Google Scholar] [CrossRef]
- Tao, S.; Zhang, Y.; Yuan, M.; Zhang, R.; Xu, Z.; Sun, Y. Behavioral Economics Optimized Renewable Power Grid: A Case Study of Household Energy Storage. Energies 2021, 14, 4154. [Google Scholar] [CrossRef]
- Mahdy, A.; El-Sehiemy, R.; Shaheen, A.; Ginidi, A.; Elbarbary, Z.M.S. An Improved Artificial Ecosystem Algorithm for Economic Dispatch with Combined Heat and Power Units. Appl. Sci. 2022, 12, 1773. [Google Scholar] [CrossRef]
- Chakraborty, S.; Senjyu, T.; Yona, A.; Saber, A.Y.; Funabashi, T. Solving Economic Load Dispatch Problem with Valve-Point Effects Using a Hybrid Quantum Mechanics Inspired Particle Swarm Optimisation. IET Gener. Transm. Distrib. 2011, 5, 1042–1052. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Sriyanyong, P.; Song, Y.H.; Dillon, T. Experimental Study of a New Hybrid PSO with Mutation for Economic Dispatch with Non-Smooth Cost Function. Int. J. Electr. Power Energy Syst. 2010, 32, 921–935. [Google Scholar] [CrossRef]
- Güvenç, U.; Sönmez, Y.; Duman, S.; Yörükeren, N. Combined Economic and Emission Dispatch Solution Using Gravitational Search Algorithm. Sci. Iran. 2012, 19, 1754–1762. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Zhou, J.; Mo, L.; Ouyang, S.; Liao, X. Economic Environmental Dispatch Using an Enhanced Multi-Objective Cultural Algorithm. Electr. Power Syst. Res. 2013, 99, 18–29. [Google Scholar] [CrossRef]
- Qin, Q.; Cheng, S.; Chu, X.; Lei, X.; Shi, Y. Solving Non-Convex/Non-Smooth Economic Load Dispatch Problems via an Enhanced Particle Swarm Optimization. Appl. Soft Comput. J. 2017, 59, 229–242. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, L.; Dhillon, J.S. Modified Krill Herd Algorithm for Constrained Economic Load Dispatch Problem. Int. J. Ambient. Energy 2022, 43, 4332–4342. [Google Scholar] [CrossRef]
- Mohammadi, F.; Abdi, H. A Modified Crow Search Algorithm (MCSA) for Solving Economic Load Dispatch Problem. Appl. Soft Comput. J. 2018, 71, 51–65. [Google Scholar] [CrossRef]
- Shen, X.; Wu, G.; Wang, R.; Chen, H.; Li, H.; Shi, J. A Self-Adapted Across Neighborhood Search Algorithm with Variable Reduction Strategy for Solving Non-Convex Static and Dynamic Economic Dispatch Problems. IEEE Access 2018, 6, 41314–41324. [Google Scholar] [CrossRef]
- Li, F.; Qin, J.; Kang, Y. Multi-Agent System Based Distributed Pattern Search Algorithm for Non-Convex Economic Load Dispatch in Smart Grid. IEEE Trans. Power Syst. 2019, 34, 2093–2102. [Google Scholar] [CrossRef]
- Yu, J.T.; Kim, C.H.; Wadood, A.; Khurshaid, T.; Rhee, S.B. Jaya Algorithm with Self-Adaptive Multi-Population and Lévy Flights for Solving Economic Load Dispatch Problems. IEEE Access 2019, 7, 21372–21384. [Google Scholar] [CrossRef]
- Mokarram, M.J.; Niknam, T.; Aghaei, J.; Shafie-Khah, M.; Catalão, J.P.S. Hybrid Optimization Algorithm to Solve the Nonconvex Multiarea Economic Dispatch Problem. IEEE Syst. J. 2019, 13, 3400–3409. [Google Scholar] [CrossRef]
- Tai, T.C.; Lee, C.C.; Kuo, C.C. A Hybrid Grey Wolf Optimization Algorithm Using Robust Learning Mechanism for Large Scale Economic Load Dispatch with Vale-Point Effect. Appl. Sci. 2023, 13, 2727. [Google Scholar] [CrossRef]
- Dong, R.; Wang, S. New Optimization Algorithm Inspired by Kernel Tricks for the Economic Emission Dispatch Problem with Valve Point. IEEE Access 2020, 8, 16584–16594. [Google Scholar] [CrossRef]
- Xin-gang, Z.; Ji, L.; Jin, M.; Ying, Z. An Improved Quantum Particle Swarm Optimization Algorithm for Environmental Economic Dispatch. Expert Syst. Appl. 2020, 152, 113370. [Google Scholar] [CrossRef]
- Kansal, V.; Dhillon, J.S. Emended Salp Swarm Algorithm for Multiobjective Electric Power Dispatch Problem. Appl. Soft Comput. J. 2020, 90, 106172. [Google Scholar] [CrossRef]
- Azeem, M.; Malik, T.N.; Muqeet, H.A.; Hussain, M.M.; Ali, A.; Khan, B.; Rehman, A. Combined Economic Emission Dispatch in Presence of Renewable Energy Resources Using CISSA in a Smart Grid Environment. Electron 2023, 12, 715. [Google Scholar] [CrossRef]
- Hagh, M.T.; Kalajahi, S.M.S.; Ghorbani, N. Solution to Economic Emission Dispatch Problem Including Wind Farms Using Exchange Market Algorithm Method. Appl. Soft Comput. 2020, 88, 106044. [Google Scholar] [CrossRef]
- Ali, M.H.; El-Rifaie, A.M.; Youssef, A.A.F.; Tulsky, V.N.; Tolba, M.A. Techno-Economic Strategy for the Load Dispatch and Power Flow in Power Grids Using Peafowl Optimization Algorithm. Energies 2023, 16, 846. [Google Scholar] [CrossRef]
- Ellahi, M.; Abbas, G.; Satrya, G.B.; Usman, M.R.; Gu, J. A Modified Hybrid Particle Swarm Optimization with Bat Algorithm Parameter Inspired Acceleration Coefficients for Solving Eco-Friendly and Economic Dispatch Problems. IEEE Access 2021, 9, 82169–82187. [Google Scholar] [CrossRef]
- Xu, M.; Li, W.; Feng, Z.; Bai, W.; Jia, L.; Wei, Z. Economic Dispatch Model of High Proportional New Energy Grid-Connected Consumption Considering Source Load Uncertainty. Energies 2023, 16, 1696. [Google Scholar] [CrossRef]
- Kurundkar, K.M.; Vaidya, G.A. Stochastic Security-Constrained Economic Dispatch of Load-Following and Contingency Reserves Ancillary Service Using a Grid-Connected Microgrid during Uncertainty. Energies 2023, 16, 2607. [Google Scholar] [CrossRef]
- Ma, H.; Yang, Z.; You, P.; Fei, M. Multi-Objective Biogeography-Based Optimization for Dynamic Economic Emission Load Dispatch Considering Plug-in Electric Vehicles Charging. Energy 2017, 135, 101–111. [Google Scholar] [CrossRef]
- Zou, Y.; Zhao, J.; Ding, D.; Miao, F.; Sobhani, B. Solving Dynamic Economic and Emission Dispatch in Power System Integrated Electric Vehicle and Wind Turbine Using Multi-Objective Virus Colony Search Algorithm. Sustain. Cities Soc. 2021, 67, 102722. [Google Scholar] [CrossRef]
- Liu, Z.F.; Li, L.L.; Liu, Y.W.; Liu, J.Q.; Li, H.Y.; Shen, Q. Dynamic Economic Emission Dispatch Considering Renewable Energy Generation: A Novel Multi-Objective Optimization Approach. Energy 2021, 235, 121407. [Google Scholar] [CrossRef]
- Li, L.L.; Liu, Z.F.; Tseng, M.L.; Zheng, S.J.; Lim, M.K. Improved Tunicate Swarm Algorithm: Solving the Dynamic Economic Emission Dispatch Problems. Appl. Soft Comput. 2021, 108, 107504. [Google Scholar] [CrossRef]
- Li, L.L.; Shen, Q.; Tseng, M.L.; Luo, S. Power System Hybrid Dynamic Economic Emission Dispatch with Wind Energy Based on Improved Sailfish Algorithm. J. Clean. Prod. 2021, 316, 128318. [Google Scholar] [CrossRef]
- Kheshti, M.; Ding, L.; Ma, S.; Zhao, B. Double Weighted Particle Swarm Optimization to Non-Convex Wind Penetrated Emission/Economic Dispatch and Multiple Fuel Option Systems. Renew. Energy 2018, 125, 1021–1037. [Google Scholar] [CrossRef]
- Pandit, N.; Tripathi, A.; Tapaswi, S.; Pandit, M. An Improved Bacterial Foraging Algorithm for Combined Static/Dynamic Environmental Economic Dispatch. Appl. Soft Comput. J. 2012, 12, 3500–3513. [Google Scholar] [CrossRef]
- Liang, H.; Liu, Y.; Li, F.; Shen, Y. Dynamic Economic/Emission Dispatch Including PEVs for Peak Shaving and Valley Filling. IEEE Trans. Ind. Electron. 2019, 66, 2880–2890. [Google Scholar] [CrossRef]
- Al-Bahrani, L.T.; Horan, B.; Seyedmahmoudian, M.; Stojcevski, A. Dynamic Economic Emission Dispatch with Load Dema Nd Management for the Load Demand of Electric Vehicles during Crest Shaving and Valley Filling in Smart Cities Environment. Energy 2020, 195, 116946. [Google Scholar] [CrossRef]
- Behera, S.; Behera, S.; Barisal, A.K. Dynamic Combined Economic Emission Dispatch Integrating Plug-in Electric Vehicles and Renewable Energy Sources. Int. J. Ambient. Energy 2022, 43, 4683–4700. [Google Scholar] [CrossRef]
- Wang, G.G.; Deb, S.; Coelho, L.D.S. Elephant Herding Optimization. In Proceedings of the 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI), Bali, Indonesia, 7–9 December 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, G.G.; Deb, S.; Gao, X.Z.; Dos Santos Coelho, L. A New Metaheuristic Optimisation Algorithm Motivated by Elephant Herding Behaviour. Int. J. Bio-Inspired Comput. 2016, 8, 394–409. [Google Scholar] [CrossRef]
- Li, W.; Wang, G.G.; Alavi, A.H. Learning-Based Elephant Herding Optimization Algorithm for Solving Numerical Optimization Problems. Knowl.-Based Syst. 2020, 195, 105675. [Google Scholar] [CrossRef]
- El-Naggar, M.F.; Mosaad, M.I.; Hasanien, H.M.; AbdulFattah, T.A.; Bendary, A.F. Elephant Herding Algorithm-Based Optimal PI Controller for LVRT Enhancement of Wind Energy Conversion Systems. Ain. Shams. Eng. J. 2021, 12, 599–608. [Google Scholar] [CrossRef]
- Tariq, F.; Alelyani, S.; Abbas, G.; Qahmash, A.; Hussain, M.R. Solving Renewables-Integrated Economic Load Dispatch Problem by Variant of Metaheuristic Bat-Inspired Algorithm. Energies 2020, 13, 6225. [Google Scholar] [CrossRef]
- Mukherjee, V.; Verma, S. Optimal Real Power Rescheduling of Generators for Congestion Management Using a Novel Ant Lion Optimiser. IET Gener. Transm. Distrib. 2016, 10, 2548–2561. [Google Scholar] [CrossRef]
- Peesapati, R.; Yadav, V.K.; Kumar, N. Flower Pollination Algorithm Based Multi-Objective Congestion Management Considering Optimal Capacities of Distributed Generations. Energy 2018, 147, 980–994. [Google Scholar] [CrossRef]
- Wulandhari, L.A.; Komsiyah, S.; Wicaksono, W. Bat Algorithm Implementation on Economic Dispatch Optimization Problem. Procedia Comput. Sci. 2018, 135, 275–282. [Google Scholar] [CrossRef]
- Al-Betar, M.A.; Awadallah, M.A.; Krishan, M.M. A Non-Convex Economic Load Dispatch Problem with Valve Loading Effect Using a Hybrid Grey Wolf Optimizer. Neural Comput. Appl. 2020, 32, 12127–12154. [Google Scholar] [CrossRef]
- Mohammadi-ivatloo, B.; Rabiee, A.; Soroudi, A.; Ehsan, M. Imperialist Competitive Algorithm for Solving Non-Convex Dynamic Economic Power Dispatch. Energy 2012, 44, 228–240. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zhou, J.; Qin, H.; Wang, Y.; Zhang, Y. Chaotic Differential Evolution Methods for Dynamic Economic Dispatch with Valve-Point Effects. Eng. Appl. Artif. Intell. 2011, 24, 378–387. [Google Scholar] [CrossRef]
- Balamurugan, R.; Subramanian, S. Differential Evolution-Based Dynamic Economic Dispatch of Generating Units with Valve-Point Effects. Electr. Power Compon. Syst. 2008, 36, 828–843. [Google Scholar] [CrossRef]
- Hemamalini, S.; Simon, S.P. Dynamic Economic Dispatch Using Artificial Immune System for Units with Valve-Point Effect. Int. J. Electr. Power Energy Syst. 2011, 33, 868–874. [Google Scholar] [CrossRef]
- Immanuel Selvakumar, A. Enhanced Cross-Entropy Method for Dynamic Economic Dispatch with Valve-Point Effects. Int. J. Electr. Power Energy Syst. 2011, 33, 783–790. [Google Scholar] [CrossRef]
- Yuan, X.; Su, A.; Yuan, Y.; Nie, H.; Wang, L. An Improved PSO for Dynamic Load Dispatch of Generators with Valve-Point Effects. Energy 2009, 34, 67–74. [Google Scholar] [CrossRef]
- Victoire, T.A.A.; Jeyakumar, A.E. Deterministically Guided PSO for Dynamic Dispatch Considering Valve-Point Effect. Electr. Power Syst. Res. 2005, 73, 313–322. [Google Scholar] [CrossRef]
- Sivasubramani, S.; Swarup, K.S. Hybrid SOA–SQP Algorithm for Dynamic Economic Dispatch with Valve-Point Effects. Energy 2010, 35, 5031–5036. [Google Scholar] [CrossRef]
- Victoire, T.A.A.; Jeyakumar, A.E. Reserve Constrained Dynamic Dispatch of Units with Valve-Point Effects. IEEE Trans. Power Syst. 2005, 20, 1273–1282. [Google Scholar] [CrossRef]
- Victoire, T.A.A.; Jeyakumar, A.E. A Modified Hybrid EP–SQP Approach for Dynamic Dispatch with Valve-Point Effect. Int. J. Electr. Power Energy Syst. 2005, 27, 594–601. [Google Scholar] [CrossRef]
- Basu, M. Hybridization of Artificial Immune Systems and Sequential Quadratic Programming for Dynamic Economic Dispatch. Electr. Power Compon. Syst. 2009, 37, 1036–1045. [Google Scholar] [CrossRef]
- He, D.; Dong, G.; Wang, F.; Mao, Z. Optimization of Dynamic Economic Dispatch with Valve-Point Effect Using Chaotic Sequence Based Differential Evolution Algorithms. Energy Convers. Manag. 2011, 52, 1026–1032. [Google Scholar] [CrossRef]
Reference | Methodology | Static ELD | Dynamic EELD |
---|---|---|---|
[4,5] | SQP | √ | × |
[7] | IGAMU | √ | × |
[8] | HDE | √ | × |
[9] | AP-PSO | √ | × |
[12] | ESO | √ | × |
[13] | ABC | √ | × |
[14,20] | Q-PSO | √ | × |
[15] | BBO | √ | × |
[16] | Hybrid-BBO | √ | × |
[21] | Hybrid-PSO | √ | × |
[22] | GSA | √ | × |
[23] | EMOCA | √ | × |
[24] | IDPSPO | √ | × |
[25] | MKHA | √ | × |
[26] | MCSA | √ | × |
[31] | HGWO | √ | × |
[34] | ESSA | √ | × |
[36] | EMAM | √ | × |
[41] | Dy-NSBBO | × | √ |
[42] | MO-VCS | × | √ |
[43] | MFO-PDU | × | √ |
[44] | ITSA | × | √ |
[45] | ISFO | × | √ |
[47] | IBFA | √ | √ |
Proposed | EHO | √ | √ |
1 | 500 | 100 | 0.007 | 7 | 240 | 0.002022 | −0.000286 | −0.000534 | −0.000565 | −0.000454 | −0.000103 |
2 | 200 | 50 | 0.0095 | 10 | 200 | −0.000286 | 0.003243 | 0.000016 | −0.000307 | −0.000422 | −0.000147 |
3 | 300 | 80 | 0.009 | 8.5 | 220 | −0.000533 | 0.000016 | 0.002805 | 0.000831 | 0.000023 | −0.000270 |
4 | 150 | 50 | 0.009 | 11 | 200 | −0.000565 | −0.000307 | 0.000831 | 0.001129 | 0.000113 | −0.000295 |
5 | 200 | 50 | 0.008 | 10.5 | 220 | −0.000454 | −0.000422 | 0.000023 | 0.000113 | 0.000460 | −0.000153 |
6 | 120 | 50 | 0.0075 | 12 | 190 | 0.000103 | −0.000147 | −0.000270 | −0.000295 | −0.000153 | 0.000898 |
Best Cost (USD) | Worst Cost (USD) | Average Cost (USD) | Standard Deviations | |
---|---|---|---|---|
100 | 15,299.62 | 15,428.46 | 15,339.83 | 34.78751 |
200 | 15,286.47 | 15,349.92 | 15,315.31 | 17.00265 |
500 | 15,293.25 | 15,351.38 | 15,308.31 | 15.80449 |
/Parameter | EHO | MKHA [25] | ALO [56] | BAT [58] |
---|---|---|---|---|
(MW) | 439.858 | 447.3998 | 473.84 | 499.9837 |
(MW) | 185.133 | 173.2424 | 181.75 | 148.8036 |
(MW) | 247.6364 | 263.3833 | 265.87 | 270.8342 |
(MW) | 133.7811 | 138.9778 | 129.85 | 127.1789 |
(MW) | 160.6319 | 165.3929 | 165.35 | 179.3078 |
(MW) | 96.18851 | 87.0495 | 85.081 | 75.5512 |
(MW) | 1263.229 | 1275.44 | 1301.74 | 1301.659 |
Losses (MW) | 0.229 | 12.44 | 38.74 | 38.659 |
Best Cost (USD) | 15,286.47 | 15,443.00 | 15,796.02746 | 15,814.97355 |
Worst Cost (USD) | 15,349.92 | 15,443.00 | 15,796.02746 | 15,898.4937 |
Standard Deviations | 17.00265 | 0.2318 | 7.46498 × 10−12 | 23.83492754 |
Average Cost (USD) | 15,315.31 | 15,443.00 | 15,796.02746 | 15,839.77276 |
CPU Time (secs) | 2.29 | 7.41 | 2.46 | 2.72 |
Method | Best Cost (USD) | Time Consumption |
---|---|---|
BAT | 124,835.00 | 21.0129 |
ALO | 124,229.97 | 27.5294 |
KSO [32] | 125,491.00 | Not Reported |
Self Turing HDE [8] | 123,496.02 | 16.86025 |
Beta-HC-GWO (0.5) [59] | 123,162.04 | Not Reported |
CBPSO-RVM [21] | 122,281.14 | Not Reported |
EHO | 121,478.96 | 21.2882 |
Best Cost (USD) | Worst Cost (USD) | Average Cost (USD) | Standard Deviations | |
---|---|---|---|---|
100 | 1,019,633.2 | 1,042,786.93 | 10,357,443.29 | 789.6 |
200 | 1,018,657.22 | 1,036,723.74 | 1,024,656.78 | 742.86 |
500 | 1,013,950.00 | 1,019,502.00 | 10,301,860.00 | 889.1759 |
1 | 28,466 | 22,085 | 13 | 51,341 | 30,031 |
2 | 30,231 | 23,954 | 14 | 47,737 | 30,462 |
3 | 33,190 | 22,353 | 15 | 44,481 | 26,528 |
4 | 36,406 | 25,311 | 16 | 39,467 | 24,031 |
5 | 38,248 | 29,537 | 17 | 38,078 | 26,984 |
6 | 41,081 | 24,784 | 18 | 41,240 | 23,879 |
7 | 42,784 | 27,220 | 19 | 44,597 | 25,721 |
8 | 44,425 | 28,461 | 20 | 51,694 | 30,470 |
9 | 47,801 | 28,854 | 21 | 47,638 | 27,604 |
10 | 51,476 | 31,531 | 22 | 41,236 | 25,644 |
11 | 53,038 | 31,366 | 23 | 34,649 | 23,745 |
12 | 53,079 | 33,799 | 24 | 31,567 | 23,731 |
Total | 1,013,950 | 648,085 |
Method | Best Cost (USD) | Average Cost (USD) | Worst Cost (USD) | Standard Deviation |
---|---|---|---|---|
Individual approaches | ||||
ICA [60] | 1,018,467.49 | 1,019,291.358 | 1,021,795.773 | 687.56 |
CDE [61] | 1,019,123.00 | 1,020,870.00 | 1,023,115.00 | - |
DE [62] | 1,019,786.00 | - | - | - |
AIS [63] | 1,021,980.00 | 1,023,156.00 | 1,024,173.00 | - |
ECE [64] | 1,022,271.58 | 1,023,334.93 | - | - |
IPSO [65] | 1,023,807.00 | 1,026,863.00 | - | - |
DGPSO [66] | 1,028,835.00 | 1,030,183.00 | - | - |
BAT | 1,033,416.00 | - | - | - |
ALO | 1,035,431.00 | - | - | - |
Hybrid approaches | ||||
SOA-SQP [67] | 1,021,460.00 | - | - | - |
PSO-SQP [68] | 1,027,334.00 | 1,028,546.00 | - | - |
MHEP-SQP [69] | 1,028,924.00 | 1,021,179.00 | - | - |
AIS-SQP [70] | 1,029,900.00 | - | - | - |
CS-DE [71] | 1,023,432.00 | 1,026,475.00 | 1,027,634.00 | - |
Proposed EHO | 1,013,950.00 | 1,019,502.00 | 10,301,860.00 | 889.1759 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peesapati, R.; Nayak, Y.K.; Warungase, S.K.; Salkuti, S.R. Constrained Static/Dynamic Economic Emission Load Dispatch Using Elephant Herd Optimization. Information 2023, 14, 339. https://doi.org/10.3390/info14060339
Peesapati R, Nayak YK, Warungase SK, Salkuti SR. Constrained Static/Dynamic Economic Emission Load Dispatch Using Elephant Herd Optimization. Information. 2023; 14(6):339. https://doi.org/10.3390/info14060339
Chicago/Turabian StylePeesapati, Rajagopal, Yogesh Kumar Nayak, Swati K. Warungase, and Surender Reddy Salkuti. 2023. "Constrained Static/Dynamic Economic Emission Load Dispatch Using Elephant Herd Optimization" Information 14, no. 6: 339. https://doi.org/10.3390/info14060339
APA StylePeesapati, R., Nayak, Y. K., Warungase, S. K., & Salkuti, S. R. (2023). Constrained Static/Dynamic Economic Emission Load Dispatch Using Elephant Herd Optimization. Information, 14(6), 339. https://doi.org/10.3390/info14060339