Signal Processing Application Based on a Hybrid Wavelet Transform to Fault Detection and Identification in Power System
Abstract
:1. Introduction
Contribution
2. Mathematic Background
2.1. Stationary Wavelet Transform
2.2. Algebraic Summation Approach for Undecimated Reconstruction
2.3. Continuous Wavelet Transform
- is the input signal being analyzed.
- is the complex conjugate of the mother wavelet.
- is the scale parameter, and it controls the width (frequency) of the wavelet.
- is the translation (time-shift) parameter.
- is the Fourier transform of the mother wavelet .
- is the angular frequency.
3. Proposed Methodology
3.1. Application on Djibouti Power Grid Model
3.2. Artificial Signal
4. Simulation Results on Predictive Fault Detection
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elmasry, W.; Wadi, M. Detection of Faults in Electrical Power Grids Using an Enhanced Anomaly-Based Method. Arab. J. Sci. Eng. 2022, 47, 14899–14914. [Google Scholar] [CrossRef]
- Alvarez, G.P. Real-Time Fault Detection and Diagnosis Using Intelligent Monitoring and Supervision Systems. In Fault Detection, Diagnosis and Prognosis; IntechOpen: London, UK, 2020. [Google Scholar]
- Gautam, P.; Jhala, A.K. Fault Detection & Classification of 3-Phase Transmission Line. Int. Res. J. Eng. Technol. (IRJET) 2015, 2, 5. [Google Scholar]
- Chen, K.; Huang, C.; He, J. Fault detection, classification and location for transmission lines and distribution systems: A review on the methods. High. Volt. 2016, 1, 25–33. [Google Scholar] [CrossRef]
- Aleem, S.A.; Shahid, N.; Naqvi, I.H. Methodologies in power systems fault detection and diagnosis. Energy Syst. 2015, 6, 85–108. [Google Scholar] [CrossRef]
- Tu’uau, D.Y.; Timaima, M.; Assaf, M.H. Electric Power System Fault Analysis. Wseas Trans. Circuits Syst. 2020, 19, 19–27. [Google Scholar] [CrossRef]
- Márquez, F.P.G. Fault Detection, Diagnosis and Prognosis; BoD—Books on Demand: Norderstedt, Germany, 2020. [Google Scholar]
- Yusuff, A.A.; Jimoh, A.A.; Munda, J.L. Fault location in transmission lines based on stationary wavelet transform, determinant function feature and support vector regression. Electr. Power Syst. Res. 2014, 110, 73–83. [Google Scholar] [CrossRef]
- Martinez-Velasco, J.A. Transient Analysis of Power Systems: Solution Techniques, Tools and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Khan, A.Q.; Ullah, Q.; Sarwar, M.; Gul, S.T.; Iqbal, N. Transmission Line Fault Detection and Identification in an Interconnected Power Network using Phasor Measurement Units. IFAC-PapersOnLine 2018, 51, 1356–1363. [Google Scholar] [CrossRef]
- Şeker, S.; Ayaz, E.; Türkcan, E. Elman’s recurrent neural network applications to condition monitoring in nuclear power plant and rotating machinery. Eng. Appl. Artif. Intell. 2003, 16, 647–656. [Google Scholar] [CrossRef]
- Righetto, S.B.; Izumida Martins, M.A.; Carvalho, E.G.; Hattori, L.T.; De Francisci, S. Predictive Maintenance 4.0 Applied in Electrical Power Systems. In Proceedings of the 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16–18 February 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Komorowski, D.; Pietraszek, S. The Use of Continuous Wavelet Transform Based on the Fast Fourier Transform in the Analysis of Multi-channel Electrogastrography Recordings. J. Med. Syst. 2015, 40, 10. [Google Scholar] [CrossRef]
- Bayram, D.; Şeker, S. Redundancy-Based Predictive Fault Detection on Electric Motors by Stationary Wavelet Transform. IEEE Trans. Ind. Appl. 2017, 53, 2997–3004. [Google Scholar] [CrossRef]
- Jurado, F.; Saenz, J.R. Comparison between discrete STFT and wavelets for the analysis of power quality events. Electr. Power Syst. Res. 2002, 62, 183–190. [Google Scholar] [CrossRef]
- Pranav, M.S.; Karthik, C.; Kavitha, D.; Vishal, K.; Tarun, J.; Vanitha, V. Fault Detection and Classification in Three Phase Transmission Lines using Signal Processing. In Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 18–19 May 2018; pp. 347–350. [Google Scholar] [CrossRef]
- Peng, Z.K.; Chu, F.L. Application of the wavelet transform in machine condition monitoring and fault diagnostics: A review with bibliography. Mech. Syst. Signal Process. 2004, 18, 199–221. [Google Scholar] [CrossRef]
- el Bouny, L.; Khalil, M.; Abdellah, A. ECG Noise Reduction Based on Stationary Wavelet Transform and Zero-Crossings Interval Thresholding; IEEE: Piscataway, NJ, USA, 2017; p. 6. [Google Scholar] [CrossRef]
- Kumar, A.; Tomar, H.; Mehla, V.K.; Komaragiri, R.; Kumar, M. Stationary wavelet transform based ECG signal denoising method. ISA Trans. 2021, 114, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Ni, Q.; Beer, M.; Du, H.; Li, C. A novel similarity-based status characterization methodology for gear surface wear propagation monitoring. Tribol. Int. 2022, 174, 107765. [Google Scholar] [CrossRef]
- Feng, K.; Ji, J.C.; Ni, Q.; Li, Y.; Mao, W.; Liu, L. A novel vibration-based prognostic scheme for gear health management in surface wear progression of the intelligent manufacturing system. Wear 2023, 522, 204697. [Google Scholar] [CrossRef]
- Ukil, A.; Yeap, Y.M.; Satpathi, K. Frequency-Domain Based Fault Detection: Application of Short-Time Fourier Transform. In Fault Analysis and Protection System Design for DC Grids; Ukil, A., Yeap, Y.M., Satpathi, K., Eds.; Springer: Singapore, 2020; pp. 195–221. [Google Scholar] [CrossRef]
- Orthogonal Wavelet—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/mathematics/orthogonal-wavelet (accessed on 18 February 2023).
- Orthogonal and Biorthogonal Filter Banks—MATLAB & Simulink. Available online: https://www.mathworks.com/help/wavelet/orthogonal-and-biorthogonal-filter-banks.html (accessed on 18 February 2023).
- Akinci, T.C.; Ekren, N.; Seker, S.; Yildirim, S. Continuous wavelet transform for ferroresonance phenomena in electric power systems. Int. J. Electr. Power Energy Syst. 2013, 44, 403–409. [Google Scholar] [CrossRef]
- Masood, B.; Saleem, U.; Anjum, M.N.; Arshad, U. Faults detection and diagnosis of transmission lines using wavelet transformed based technique. In Proceedings of the 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Amman, Jordan, 11–13 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Nason, G.P.; Silverman, B.W. The Stationary Wavelet Transform and some Statistical Applications. In Wavelets and Statistics; Antoniadis, A., Oppenheim, G., Eds.; Lecture Notes in Statistics; Springer: New York, NY, USA, 1995; pp. 281–299. [Google Scholar] [CrossRef]
- Martinez-Ríos, E.; Bustamante-Bello, R.; Navarro Tuch, S.; Perez-Meana, H. Applications of the Generalized Morse Wavelets: A Review. IEEE Access 2022, 11, 667–688. [Google Scholar] [CrossRef]
- Polat, C.; Özerdem, M.S. Introduction to Wavelets and their applications in signal denoising. Bitlis Eren Univ. J. Sci. Technol. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Bhowmik, P.S.; Purkait, P.; Bhattacharya, K. A novel wavelet transform aided neural network based transmission line fault analysis method. Int. J. Electr. Power Energy Syst. 2009, 31, 213–219. [Google Scholar] [CrossRef]
- Seker, S.; Ayaz, E. Feature extraction related to bearing damage in electric motors by wavelet analysis. J. Frankl. Inst. 2003, 340, 125–134. [Google Scholar] [CrossRef]
- Olhede, S.C.; Walden, A.T. Generalized Morse wavelets. IEEE Trans. Signal Process. 2002, 50, 2661–2670. [Google Scholar] [CrossRef]
- Whitney, R. Quantifying near fault pulses using generalized Morse wavelets. J. Seismol. 2019, 23, 1115–1140. [Google Scholar] [CrossRef]
- Cohen, M.X. A better way to define and describe Morlet wavelets for time-frequency analysis. NeuroImage 2019, 199, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Silik, A.; Noori, M.; Altabey, W.; Ghiasi, R.; Wu, Z. Comparative Analysis of Wavelet Transform for Time-Frequency Analysis and Transient Localization in Structural Health Monitoring. SDHM 2021, 15, 1–22. [Google Scholar] [CrossRef]
- Seker, S. An analytical approach based on information theory for neural network architecture. In Proceedings of the 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan), Nagoya, Japan, 25–29 October 1993; Volume 1, pp. 309–312. [Google Scholar] [CrossRef]
- Pelton Wheel Bucket Fault Diagnosis Using Improved Shannon Entropy and Expectation Maximization Principal Component Analysis|SpringerLink. Available online: https://link.springer.com/article/10.1007/s42417-021-00379-7 (accessed on 12 August 2023).
- Dommisse, J.; Bouckaert, J.; Basso, E.; Hammou, K. Schéma Directeur du réseau National de Distribution électrique de Djibouti Sujet: Livrable 1A—Analyse de la demande et du réseau MT/BT existant Commentaires; Document Technique DIS_DJI/4AA/0818521/000/0; ENGIE Impact: Belgique, 2022; Available online: Engieimpact.com (accessed on 29 November 2022).
- Arrillaga, J.; Smith, B.C.; Watson, N.R.; Wood, A.R. Power System Harmonic Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Ghorbani, J.; Atashpar, S. Nonlinear Loads Effect on Harmonic Distortion and Losses of Distribution Networks. In Proceedings of the International Power System Conference PSC, Tehran, Iran, 17–18 February 2011; Volume 25. [Google Scholar] [CrossRef]
- Macii, D.; Petri, D. Harmonics Estimation in Transient Conditions using Static and Dynamic Frequency-domain Techniques. In Proceedings of the 2018 IEEE 9th International Workshop on Applied Measurements for Power Systems (AMPS), Bologna, Italy, 25–27 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Santoso, S.; McGranaghan, M.F.; Dugan, R.C.; Beaty, H.W. Electrical Power Systems Quality; McGraw-Hill Education: New York, NY, USA, 2012; Available online: https://www.accessengineeringlibrary.com/content/book/9780071761550 (accessed on 29 November 2022).
- Sivaraman, P.; Sharmeela, C. Chapter 1—Power quality and its characteristics. In Power Quality in Modern Power Systems; Sanjeevikumar, P., Sharmeela, C., Holm-Nielsen, J.B., Sivaraman, P., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 1–60. [Google Scholar] [CrossRef]
- Lin, H.C. Intelligent Neural Network-Based Fast Power System Harmonic Detection. IEEE Trans. Ind. Electron. 2007, 54, 43–52. [Google Scholar] [CrossRef]
- Asman, S.H.; Abidin, A.F.; Yusoh, M.A.T.M.; Subiyanto, S. Identification of transient overvoltage using discrete wavelet transform with minimised border distortion effect and support vector machine. Results Eng. 2022, 13, 100311. [Google Scholar] [CrossRef]
Fault Type | Phase A | Phase B | Phase C | Phase G |
---|---|---|---|---|
A-G | 1 | 0 | 0 | 1 |
A-B | 1 | 1 | 0 | 0 |
AB-G | 1 | 1 | 0 | 1 |
ABC | 1 | 1 | 1 | 0 |
ABC-G | 1 | 1 | 1 | 1 |
Fault Type | Mother Wavelet Selected |
---|---|
A-G | ‘bump’ |
A-B | ‘amor’ |
AB-G | ‘amor’ |
ABC | ‘morse’ |
ABC-G | ‘bump’ |
Artificial signal | ‘morse’ |
Fault Type | Fault Time Detected | Frequency Detected |
---|---|---|
A-G | 0.01667–0.1167 s | 600–650 Hz |
A-B | 0.1167 s | 800 Hz |
AB-G | 0.1167 s | 800 Hz |
ABC | 0.1167 s | 700 Hz |
ABC-G | 0.1167 s | 700 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasser Mohamed, Y.; Seker, S.; Akinci, T.C. Signal Processing Application Based on a Hybrid Wavelet Transform to Fault Detection and Identification in Power System. Information 2023, 14, 540. https://doi.org/10.3390/info14100540
Nasser Mohamed Y, Seker S, Akinci TC. Signal Processing Application Based on a Hybrid Wavelet Transform to Fault Detection and Identification in Power System. Information. 2023; 14(10):540. https://doi.org/10.3390/info14100540
Chicago/Turabian StyleNasser Mohamed, Yasmin, Serhat Seker, and Tahir Cetin Akinci. 2023. "Signal Processing Application Based on a Hybrid Wavelet Transform to Fault Detection and Identification in Power System" Information 14, no. 10: 540. https://doi.org/10.3390/info14100540
APA StyleNasser Mohamed, Y., Seker, S., & Akinci, T. C. (2023). Signal Processing Application Based on a Hybrid Wavelet Transform to Fault Detection and Identification in Power System. Information, 14(10), 540. https://doi.org/10.3390/info14100540