Zero-Shot Blind Learning for Single-Image Super-Resolution
Abstract
:1. Introduction
2. Related Work
3. Proposed Method
3.1. Problem Formulation
3.2. The Proposed Zero-Shot Blind Learning Network
Algorithm 1 Joint optimization for ZSB-SR. |
|
4. Experimental Results
4.1. Ablation Study
4.2. Comparison with the State-of-the-Art Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Deeply recursive convolutional network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Shi, W.; Caballero, J.; Huszar, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [Google Scholar]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep laplacian pyramid networks for fast and accurate superresolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; Volume 2. [Google Scholar]
- Shocher, A.; Cohen, N.; Irani, M. “Zero-shot” super-resolution using deep internal learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3118–3126. [Google Scholar]
- Soh, J.W.; Cho, S.; Cho, N.I. Meta-Transfer Learning for Zero-Shot Super-Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 3516–3525. [Google Scholar]
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Deep Image Prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Yamawaki, K.; Han, X.H. Deep Blind Un-Supervised Learning Network for Single Image Super Resolution. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 1789–1793. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Aitken, A.P.; Tejani, A.; Totz, J.; Wang, Z.; Shi, W. Photo-realistic single image superresolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Sajjadi, M.S.M.; Scholkopf, B.; Hirsch, M. Enhancenet: Single image super-resolution through automated texture synthesis. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Chao Dong, Y.Q.; Loy, C.C. ESRGAN: Enhanced super-resolution generative adversarial networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 63, 2672–2680. [Google Scholar]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Cai, J.; Zeng, H.; Yong, H.; Cao, Z.; Zhang, L. Toward real-world single image super-resolution: A new benchmark and A new model. arXiv 2019, arXiv:1904.00523. [Google Scholar]
- Gu, J.; Lu, H.; Zuo, W.; Dong, C. Blind super-resolution with iterative kernel correction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 1604–1613. [Google Scholar]
- Zhang, K.; Zuo, W.; Zhang, L. Learning a single convolutional super-resolution network for multiple degradations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Zhang, K.; Zuo, W.; Zhang, L. Deep plug-and-play super-resolution for arbitrary blurring kernels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Lugmayr, A.; Danelljan, M.; Timofte, R.; Fritsche, M.; Gu, S.; Purohit, K.; Kandula, P.; Suin, M.; Rajagoapalan, A.N.; Joon, N.H.; et al. Aim 2019 challenge on real-world image super-resolution: Methods and results. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, 27–28 October 2019. [Google Scholar]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv 2017, arXiv:1703.10593. [Google Scholar]
- Yi, Z.; Zhang, H.; Tan, P.; Gong, M. Unsupervised dual learning for image-to-image translation. arXiv 2017, arXiv:1704.02510. [Google Scholar]
- Yuan, Y.; Liu, S.; Zhang, J.; Zhang, Y.; Dong, C.; Lin, L. Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Zhao, T.; Ren, W.; Zhang, C.; Ren, D.; Hu, Q. Unsupervised degradation learning for single image super-resolution. arXiv 2018, arXiv:1812.04240. [Google Scholar]
- Lugmayr, A.; Danelljan, M.; Timofte, R. Unsupervised learning for real-world super-resolution. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, 27–28 October 2019. [Google Scholar]
- Fritsche, M.; Gu, S.; Timofte, R. Frequency separation for real-world super-resolution. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, 27–28 October 2019. [Google Scholar]
- Bulat, A.; Yang, J.; Tzimiropoulos, G. To learn image super-resolution, use a gan to learn how to do image degradation first. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Chen, S.; Han, Z.; Dai, E.; Jia, X.; Liu, Z.; Liu, X.; Zou, X.; Xu, C.; Liu, J.; Tian, Q. Unsupervised Image Super-Resolution with an Indirect Supervised Path. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Isola, T.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Wang, T.C.; Liu, M.Y.; Zhu, J.Y.; Tao, A.; Kautz, J.; Catanzaro, B. High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-Attention Generative Adversarial Networks. arXiv 2019, arXiv:1805.08318. [Google Scholar]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. arXiv 2018, arXiv:1710.10196. [Google Scholar]
- Donahue, J.; Krähenbühl, P.; Darrell, T. Adversarial Feature Learning. arXiv 2017, arXiv:1605.09782. [Google Scholar]
- Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. arXiv 2019, arXiv:1812.04948. [Google Scholar]
- Tseng, P. Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 2001, 109, 475–494. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lererr, A. Automatic differentiation in pytorch. In Proceedings of the NIPS Workshop:The Future of Gradient-based Machine Learning Software and Techniques, Long Beach, CA, USA, 9 December 2017. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Bevilacqua, M.; Roumy, A.; Guillemot, C.; Alberi-Morel, M. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In Proceedings of the 23rd British Machine Vision Conference (BMVC), Surrey, UK, 3–7 September 2012; pp. 1–10. [Google Scholar]
- Zeyde, R.; Elad, M.; Protter, M. On single image scale-up using sparse-representations. In Lecture Notes in Computer Science, Proceedings of the International Conference on Curves and Surfaces, Avignon, France, 24–30 June 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 711–730. [Google Scholar]
(a) On the bicubic downsampled LR images | |||||||
Dataset | Factor | Correct Kernel | Wrong Kernel | Learned | Learned | ||
Set5 | X4 | 28.4/0.905 | 19.4/0.704 | 27.3/0.905 | 27.9/0.897 | ||
X8 | 24.3/0.794 | 15.6/0.531 | 23.4/0.775 | 23.9/0.772 | |||
Set14 | X4 | 25.1/0.814 | 18.5/0.647 | 23.4/0.810 | 24.8/0.806 | ||
X8 | 23.4/0.705 | 15.7/0.516 | 20.8/0.687 | 21.9/0.683 | |||
B100 | X4 | 25.2/0.787 | 19.7/0.647 | 23.1/0.786 | 25.0/0.783 | ||
X8 | 23.0/0.682 | 17.5/0.544 | 20.8/0.675 | 22.8/0.672 | |||
(b) On the LR images with Gaussian blurring kernels (different standard deviation values) and the bicubic downsampling (DS) operation | |||||||
Semi-Blind | Complete Blind | ||||||
Dataset | Known DS and Gaussian Kernel with Different | Known DS | Unknown DS and Kernel (Learned) | ||||
= 0 | = 1.1 | True | Learned | ||||
= 1.0 | 24.2/0.790 | 24.3/0.796 | 24.4/0.798 | 23.9/0.787 | 24.1/0.788 | 24.2/0.788 | |
= 1.2 | 24.0/0.785 | 24.3/0.809 | 24.4/0.800 | 24.1/0.792 | 23.8/0.779 | 24.2/0.785 | |
= 1.5 | 23.8/0.779 | 24.2/0.791 | 24.4/0.796 | 24.2/0.795 | 23.6/0.781 | 24.0/0.782 | |
Set5 | = 2.0 | 23.7/0.773 | 24.3/0.792 | 24.4/0.797 | 24.3/0.797 | 23.8/0.789 | 23.9/0.777 |
= 2.5 | 21.4/0.691 | 21.9/0.706 | 23.7/0.772 | 22.1/0.716 | 21.5/0.700 | 21.8/0.701 | |
= 3.0 | 20.8/0.668 | 21.1/0.678 | 23.1/0.746 | 21.2/0.683 | 20.8/0.672 | 21.0/0.675 | |
= 1.0 | 22.2/0.695 | 22.3/0.691 | 22.5/0.705 | 21.8/0.680 | 22.1/0.697 | 22.1/0.690 | |
= 1.2 | 22.1/0.693 | 22.4/0.703 | 22.5/0.704 | 22.0/0.683 | 21.9/0.690 | 22.1/0.688 | |
= 1.5 | 22.1/0.690 | 22.3/0.699 | 22.5/0.704 | 22.0/0.686 | 20.9/0.690 | 22.1/0.686 | |
Set14 | = 2.0 | 22.0/0.687 | 22.3/0.700 | 22.4/0.703 | 22.1/0.688 | 21.1/0.694 | 22.1/0.687 |
= 2.5 | 20.4/0.631 | 20.7/0.641 | 22.0/0.682 | 20.9/0.646 | 19.7/0.636 | 20.7/0.637 | |
= 3.0 | 19.9/0.615 | 19.9/0.615 | 21.7/0.667 | 20.3/0.624 | 19.3/0.616 | 20.1/0.620 |
(a) On the simulated LR images of three benchmark dataset: Set5, Set14, and B100 with the degradation: bicubic downsampling. The first numerical result represents the PSNR value, and the second denotes the SSIM value. | ||||||||
Dataset | Factor | Unsuper/Non-Blind | Unsuper/Blind | Super/Non-Blind | ||||
Bicubic | TV_Prior | DIP [9] | Our_CK | Our_blind | LapSRN [6] | EDSR [5] | ||
Set5 | X4 | 26.7/0.866 | 26.7/0.876 | 27.9/0.893 | 28.4/0.9049 | 27.9/0.898 | 29.4/0.920 | 30.0/0.928 |
X8 | 22.7/0.728 | 23.0/0.743 | 24.0/0.783 | 24.3/0.7944 | 23.9/0.772 | 24.2/0.791 | 24.3/0.796 | |
Set14 | X4 | 24.2/0.786 | 24.3/0.787 | 25.0/0.803 | 25.1/0.8144 | 24.8/0.806 | 25.9/0.838 | 26.4/0.844 |
X8 | 21.4/0.662 | 21.6/0.676 | 22.2/0.695 | 23.4/0.7046 | 21.9/0.683 | 22.4/0.706 | 22.4/0.706 | |
B100 | X4 | 24.9/0.773 | 24.0/0.737 | 25.2/0.786 | 25.2/0.7919 | 25.0/0.793 | 26.0/0.812 | 26.2/0.818 |
X8 | 22.5/0.662 | 22.6/0.672 | 23.0/0.686 | 23.0/0.6824 | 23.0/0.687 | 23.2/0.693 | 23.1/0.689 | |
(b) Comparison of the validation dataset of NTIRE17 Track 2, where the LR images are captured with more realistic degradation. | ||||||||
Bicubic | Supervised | Unsupervised | ||||||
SR_syn | SR_paired | CycleGAN [22] | Cycle+SR [28] | CycleSRGAN [24] | Our | |||
PSNR | 24.0 | 24.0 | 29.8 | 23.2 | 24.7 | 26.0 | 25.7 | |
SSIM | 0.644 | 0.654 | 0.818 | 0.648 | 0.685 | 0.737 | 0.693 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamawaki, K.; Han, X.-H. Zero-Shot Blind Learning for Single-Image Super-Resolution. Information 2023, 14, 33. https://doi.org/10.3390/info14010033
Yamawaki K, Han X-H. Zero-Shot Blind Learning for Single-Image Super-Resolution. Information. 2023; 14(1):33. https://doi.org/10.3390/info14010033
Chicago/Turabian StyleYamawaki, Kazuhiro, and Xian-Hua Han. 2023. "Zero-Shot Blind Learning for Single-Image Super-Resolution" Information 14, no. 1: 33. https://doi.org/10.3390/info14010033
APA StyleYamawaki, K., & Han, X. -H. (2023). Zero-Shot Blind Learning for Single-Image Super-Resolution. Information, 14(1), 33. https://doi.org/10.3390/info14010033