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Abstract: Deep convolutional neural networks (DCNNs) have manifested significant performance
gains for single-image super-resolution (SISR) in the past few years. Most of the existing methods are
generally implemented in a fully supervised way using large-scale training samples and only learn
the SR models restricted to specific data. Thus, the adaptation of these models to real low-resolution
(LR) images captured under uncontrolled imaging conditions usually leads to poor SR results. This
study proposes a zero-shot blind SR framework via leveraging the power of deep learning, but
without the requirement of the prior training using predefined imaged samples. It is well known that
there are two unknown data: the underlying target high-resolution (HR) images and the degradation
operations in the imaging procedure hidden in the observed LR images. Taking these in mind, we
specifically employed two deep networks for respectively modeling the priors of both the target
HR image and its corresponding degradation kernel and designed a degradation block to realize
the observation procedure of the LR image. Via formulating the loss function as the approximation
error of the observed LR image, we established a completely blind end-to-end zero-shot learning
framework for simultaneously predicting the target HR image and the degradation kernel without
any external data. In particular, we adopted a multi-scale encoder–decoder subnet to serve as the
image prior learning network, a simple fully connected subnet to serve as the kernel prior learning
network, and a specific depthwise convolutional block to implement the degradation procedure. We
conducted extensive experiments on several benchmark datasets and manifested the great superiority
and high generalization of our method over both SOTA supervised and unsupervised SR methods.

Keywords: image super-resolution; blind unsupervised learning; generated network

1. Introduction

Single-image super-resolution (SISR) aims to estimate a high-resolution (HR) image
from its low-resolution (LR) counterpart and has been a fundamental and important
low-level vision task for decades. In SISR, the observed LR image is usually assumed to be
a low-pass-filtered and downsampled version of the underlying HR image, and multiple
solutions for an LR observation may exist, causing the ill-posed nature of the SR problem.
To handle this challenging SR problem, numerous methods have been proposed, which
mainly are divided into two research lines: the conventional optimization-based pipeline
and the learning-based paradigm, and therein, the learning-based methods due to their
good performance have been extensively explored.

Recently, deep-convolutional-neural-network (CNN)-based learning methods [1–6]
have demonstrated great performance superiority over the non-deep SR methods and have
become the dominant paradigm for the SR task in recent years. These great successes of
the deep learning method for the SR task are mainly beneficial from the well-elaborated
deep and complex network architectures and the long training process with large-scale
LR/HR pairs. In addition, most existing deep learning methods are usually realized in
a fully supervised way, and then, the learned SR model may only be applicable to the
LR observations captured in controlled imaging conditions such as with the assumed
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degradation model: “bicubic” downsampling. The adaptation of these constructed models
to real-world LR images often causes unpleasant/artificial structures and leads to great
performance degradation because of the domain gap. Moreover, to boost SR performance,
the recent state-of-the-art (SOTA) CNN-based methods have struggled to elaborate deeper
and more complicated network architectures and, then, result in a large number of parameters
and memory overheads in real applications.

To handle the limitation of deeply relying on the prior training with external data,
internal learning [7] via extracting training samples from the observed LR image and
its downsampled version has been exploited to produce a specific SR model for the
under-studied image. To enhance the generalization of the specific SR model, Soh et al. [8]
further incorporated meta-transfer learning with the internal learning, which can achieve
a good initial state for different degradation procedures and quickly obtain convergence
in the online learning for a specific LR image. However, these methods face difficulty in
large upscaled SR tasks because of the limited numbers of the available training samples.
Further, several works [9,10] have leveraged the strong capability of the CNN architectures
for modeling low-level image statistics (priors) and proposed to predict the target HR
image using the observed LR image without any prepared supervision signal (label) in
an unsupervised manner, which is implemented by assuming the known degradation
procedure such as the “bicubic” downsampling operation, restricting its wide applicability
in real scenarios.

This study proposes a novel zero-shot blind SR framework (ZSB-SR) via leveraging
the generative network’s powerful ability of capturing low-level image statistics with
the LR observation instead of the prior training using the predefined imaged samples.
The goal of this study was to learn the underlying HR image using the LR observation
only without any external dataset, whilst the degradation procedure (blurring kernel and
downsampling) for capturing the LR data is unknown, which is called the blind SR problem.
To solve the challenge of the blind SR task, we specifically employed two deep networks
for respectively modeling the priors of both the target HR image and its corresponding
degradation kernel and designed a degradation block to realize the observation procedure
of the LR image. Via formulating the loss function as the approximation error of the
observed LR image, we established a completely blind end-to-end zero-shot learning
framework for simultaneously predicting the target HR image and the degradation kernel
without any external data. In particular, we adopted a multi-scale encoder–decoder subnet
to serve as the image prior learning network, a simple fully connected subnet to serve as the
kernel prior learning network, and a specific depthwise convolutional block to implement
the degradation procedure. We conducted extensive experiments on several benchmark
datasets and manifested the great superiority and high generalization of our method over
both SOTA supervised and unsupervised SR methods.

In summary, our contributions are three-fold:
(1) A novel zero-shot blind SR method, i.e., ZSB-SR, is proposed, where external

training samples and prior knowledge about the imaging conditions are not required.
(2) We respectively leveraged an encoder–decoder-based generative network for

modeling the prior of the latent HR image, a fully connected network (FCN) for learning the
blurring kernel, and a specific depthwise convolutional layer for realizing the degradation
model. Moreover, we integrated the SoftMax nonlinearity with the output of the FCN to
impose the non-negative and equality constraints on the blurring kernel.

(3) We exploited a joint optimization algorithm to solve the zero-shot blind SR model
for simultaneously generating the latent HR image, learning the blurring kernel, and
implementing the degradation operation, and thus, we constructed an end-to-end highly
generalized SR learning framework applicable to arbitrary imaging conditions.

2. Related Work

In this section, we briefly survey the relevant works including fully supervised-CNN-based
image super-resolution, the unsupervised-deep-learning-based method, and zero-shot learning.
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Supervised-CNN-based image super-resolution: Recently, extensive research based
on convolutional neural networks (CNNs) has been conducted to address the task of SISR
and demonstrated remarkable progress in terms of the recovery performance. Dong et al. [1]
initially proposed a shallow (three-layer) fully convolutional network for implicitly learning
a mapping between LR and HR images and, then, extended it to use LR representative
feature pre-learning and post-upsampling for constructing the efficient SR model. Current
efforts [2,4,5] mainly focus on the design of deeper and more complicated network architect-
ures for boosting performance. Kim et al. [2] proposed a VDSR model to increase the depth
of the SR network to 20 and further leverage the idea of the residual connection from
ResNet [11] for easing the training difficulty of the DRCN [3]. Later, Shi et al. proposed
an efficient subpixel convolutional layer via upscaling the learned LR features to the
HR output at the end of the SR network in the ESPCN [4], while Lim et al. exploited a
very deep and wide network, EDSR [5], by stacking residual blocks without the batch
normalization (BN) layers. Moreover, to improve the perceptual quality of the SISR results,
several researchers [12–14] integrated adversarial loss [15] and perceptual loss [16] with
the commonly used fidelity loss for SR network training. However, all of these methods
are implemented in a fully supervised way and are trained on HR and synthetic LR
pairs under a specific degradation operation, which usually cannot be well generalized
to real LR images. Thus, Cai et al. [17] attempted to capture LR–HR image pairs under a
realistic setting via tuning the focal length of DSLR cameras to collect images with different
resolutions. Nevertheless, different devices usually have various imaging settings, and
models trained even with the actually captured data under a specific device may not
generalize well to LR images captured by other devices. Furthermore, several recent works
attempted to incorporate the degradation parameters such as the the blurring kernel into the
supervised network learning [18–20]. However, these methods rely on estimating blurring
kernels existing in the prepared training datasets only and, thus, have an insufficient
capability to handle the arbitrary blurring kernel.

Unsupervised-deep-learning-based methods: To address the insufficient generalizat-
ion issue of the fully supervised methods in real scenarios, unsupervised learning methods
have been exploited in recent years [21]. Some work on the GAN [15] have proven that
different styles of images can be mutually translated, dubbed as image-to-image translation,
without using the paired training samples [22,23]. Image super-resolution can be treated
as a special image translation task to translate LR domain images to HR domain images.
Yuan et al. [24] proposed Cycle-in-CycleGAN (CinGan) for the unsupervised image SR
problem, which includes two translation cycles: one for the real LR and synthetic LR images
and the other for the real LR and HR images. However, in CinGan, the used degradation
model of the cycle from the HR images to real LR images is deterministic, thus making it
restricted to generating diverse and real-world LR images. Motivated by the CycleGAN
model, Zhao et al. [25] exploited the unsupervised degradation learning method for image
SR via leveraging the cycle of the reconstruction and degradation models and using an
additional perceptual loss in the LR domain instead of the HR domain. Later, Lugmayr
et al. [26] investigated two stages of the SR framework to firstly generate realistic image
pairs with an unsupervised image translation model and then predicted the HR image with
an image restoration model, where the translation and restoration models were trained
separately, while Fritsche et al. [27] further extended this method by dealing with the
low- and high-frequency components separately. Moreover, Bulat et al. [28] proposed to
automatically learn the degradation from HR images to real LR images and implemented an
end-to-end learning framework via the high-to-low and low-to-high networks for modeling
the relation of the HR and the estimated degraded LR images. Chen et al. [29] further
expanded another cycle learning network between the real and synthetic LR images to
improve the SR performance. Although some performance gains have been achieved with
unsupervised learning, these methods usually require previously learning the degradation
and restoration models using external image samples. In this study, we aimed to learn
the specific prior of an under-studied target via simultaneously modeling the underlying
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structure of the latent HR image with a generative network and the realistic kernel with
a fully connected network without resorting to any external image samples, which is
expected to further improve the practicality and generalization of the SR networks, termed
as “zero-shot” learning.

Zero-shot learning: Zero-shot learning (ZSL) is popularly investigated in the domains
of recognition/classification for the problem setup where the learned model recognizes
the objects from classes not previously seen in the training stage. Shocher et al. [7] firstly
introduced ZSL for single-image SR, dubbed ZSSR. ZSSR exploits deep internal learning
using the synthetic training pairs via treating the LR observation as HR supervision and
the downsampled images from the observed LR image as the LR one and constructed a
specific CNN model for the under-studied scene. Although ZSSR can potentially address
different blurring kernels via varying the downsampling operations in preparing the
internal training samples, it requires retraining the reconstruction models for different
degradation models. Soh et al. [8] further integrated meta-learning into ZSSR methods and
effectively leveraged the advantages of both internal and external learning for boosting SR
performance. Since this kind of SR pipeline treats the observed LR image as HR supervision
(“HR father”) and generates the “LR son” via downsampling the observation for internal
learning, it usually cannot synthesize enough samples for model training, especially for
large upscaled images, and thus, it is generally applied for small upscaled factors such
as 2–4. Moreover, Ulyanov et al. [9] exploited a different paradigm, which utilizes the
powerful modeling ability of deep convolutional neural networks for capturing the inherent
structure of nature images and adapted for several image restoration tasks including the
image SR problem. Without the generation of any synthesized training samples, DIP
directly estimates the latent HR image with a generative network from the observed LR
image only and achieved impressive performance even with a large upscaled factor. Thus,
DIP can also be considered as a zero-shot (self-supervised) learning paradigm. However,
DIP assumes that the LR observation is a “bicubic” downsampling version of the latent HR
image and implements the fixed degradation operation with mathematical computation,
which restricts the applicability to the data captured under diverse imaging conditions. This
study is closely related to DIP [9], but we propose to model not only the latent HR image
with a generative network, but also the degradation kernel with a fully connected subnet
and further implement the downsampling operation with a specifically designed depthwise
convolutional layer to construct an end-to-end blind zero-shot SR learning framework.

3. Proposed Method

In this section, we first introduce the problem formulation of the blind SR task and,
then, present our proposed blind zero-shot learning framework including the generative
network for modeling the latent HR image, the fully connected subnet for modeling the
degradation kernel, and the designed depthwise convolutional block for implementing the
degradation operation, as well as the joint optimization algorithm.

3.1. Problem Formulation

Given an observed LR image y ∈ Rw×h, the goal of the single-image SR problem
aims at reconstructing an HR image x ∈ RW×H with w � W and h � H. In general, the
degradation model of the observed y can be mathematically formulated as

y = (x⊗ k) ↓s +n, (1)

where ⊗ represents the 2D convolution operation, k and ↓s denote the blurring kernel and
downsampling operation with factor s, respectively, while n is the additive white Gaussian
noise. Most existing methods including traditional optimization methods and recent
appealing deep-learning-based paradigms assume the degradation operations (the blurring
kernel k and the downsampling operation) are known. Although outstanding performance
of the deep-learning-based methods has been achieved, the learned models using the
prepared LR–HR pairs with the fixed blurring kernel and downsampling operation can
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only super-resolve the LR image under the controlled imaging conditions. Then, the
estimated results for the observed LR images in real scenarios would be greatly degraded.
Thus, this study exploited a novel zero-shot blind SR learning method and is dedicated
to reconstructing the underlying HR image from the observed LR image only with the
unknown blurring kernel and downsampling operation.

3.2. The Proposed Zero-Shot Blind Learning Network

DIP [9] advocated that the deep CNN architecture itself has a sufficient capability of
capturing a large amount of low-level image statistics (priors) [9] and, then, can generate
a high-quality natural image from a noisy input to be applied to several low-level vision
tasks including image SR. Inspired by this insight, we present a novel zero-shot blind SR
learning paradigm for simultaneously modeling the priors of both the underlying HR image
and blurring kernel using deep generative networks (with the unknown blurring kernel
and downsampling). In particular, we employed a multi-scale encoder–decoder-based
generative network Gx for modeling the priors of the underlying HR image, a simple fully
connected network Gk for capturing the priors of the blurring kernel, and a specifically
designed depthwise convolutional block Fs

DS for realizing the degradation procedure.
Then, we established an unsupervised blind SR framework with end-to-end learning for
simultaneously predicting the target HR image and the blurring kernel using the observed
LR image only. The conceptual flowchart of the proposed zero-shot blind SR learning
network is shown in Figure 1. Following the degradation model of the LR observation
in Equation (1), we express the loss function of our proposed zero-shot blind learning
network as

(θ∗x , θ∗k) = arg min
θx ,θk

‖y− Fs
DS(Gx(zx, θx)⊗ Gk(zk, θk))‖2,

s.t. 0 ≤ Gx(zx)i,j ≤ 1, ∀i, j

0 ≤ Gk(zk)l ≤ 1, ∑
l
Gk(zk)l = 1, ∀l

(2)

where θx and θk are the to-be-learned network parameters of the image generative network
Gx and the kernel learning subnet Gk, respectively, while zx and zk denote the input data to
Gx and Gk. Moreover, Gx(z)i,j represents the magnitude of the i− th row and j− th column
pixel in the target HR image, and Gk(zk)l is the learned weight of the l − th element in the
predicted blurring kernel. Via minimizing the loss function in Equation (2), we aimed to
probe the parameter space of the image and kernel learning generative networks Gx and Gk
to discover the optimal parameter solution, and therefore, the achieved optimal θ∗x is used
to proficiently generate the underlying target: x̂ = Gx(zx, θ∗x), whilst θ∗k is employed to
provide an approximation of the blurring kernel: k̂ = Gk(zk, θ∗k). In the following section,
we embody the network architectures of Gx and Gk for the image and kernel learning, the
input data to the generative networks, the detailed realization of the degradation block,
and the joint optimization algorithm for both θx and θk.

The architectures of the generative networks Gx and Gk: Since natural images have
diverse contents with various salient structures and abundant textures, the network to
generate high-quality HR natural images has to possess a sufficient modeling capability
for providing acceptable results. As demonstrated in several data generation methods
for different tasks [9,30,31], the multi-scale encoder–decoder architecture has a powerful
modeling capability to achieve high-quality images. Therefore, in this study, we employed
a symmetric encoder–decoder network with a simple feature transferring block like
skip connections between the encoder and decoder for feature reusing, to serve as the
image prior learning subnet Gx. The employed encoder–decoder network can capture
multi-scale feature representations for modeling various contexts in in the target image.
In the generative network Gx, we composed both the encoder and decoder paths with
5 convolutional blocks for learning multi-scale contexts and transferred the outputs of
the 5 encoder blocks with a naive pointwise convolution layer to the corresponding
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decoder blocks for reusing the learned detailed features. Specifically, each block contains
3 convolutional ReLU layers, and a max-pooling layer is employed between the adjacent
blocks of the encoder to reduce the feature map to half size, while a bilinear upsampling
layer is used between the adjacent blocks of the decoder to extend the feature map to double
the size. Finally, given the learned features by the last block of the decoder, a reconstruction
block is used to estimate the target HR image.
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Figure 1. The schematic concept of the proposed zero-shot blind SR learning framework (ZSB-SR).

Contrary to the image prior learning subnet Gx with the encoder–decoder architecture
for capturing the low-level statistics of natural images, we adopted a simpler network to
model the prior of the blurring kernel since k has a much lower dimensionality and simplex
spatial structure. Specifically, we employed a fully connected network (FCN) to serve as Gx
and used a one-dimensional noise vector zk as the input data. The overall structure of Gk
is shown in the gray background window of Figure 2, which is composed of a hidden layer,
an output layer with m2 nodes, and a SoftMax layer to constrain the non-negativity and
equality of the learned element in k. Finally, the 1D output with the m2 entries is reshaped
into the 2D m×m matrix as the predicted blurring kernel.

The input data to the generative networks: As proven in different generative
adversarial learning methods such as DCGAN [32] and its variants [33–36], high-quality
natural images can be generated from a random noisy input. Most existing GAN-based
methods attempt to generate diverse images with predefined specific concepts by leveraging
the powerful modeling capability of CNNs, which transfer the low-dimensional noisy input
sampled from a previously defined distribution to the expected images obeying the same
distribution with the large-scale training samples. In contrast, the deep image prior [9]
advocated that the generative network can be potentially used to learn the prior of a specific
image from random noise and is successfully applied to several image restoration tasks. In
this study, we similarly leveraged randomly generated noise z∗ (∗ represents x or k) as the
input of the generative network Gx or Gk. However, utilizing a fixed noise input may cause
the optimization solution to drop into a local minimization point due to the ill-posed nature
of Equation (2). Thus, to mitigate the above-mentioned limitation, we firstly sampled a
random noisy vector as the base input z0

x to the generative network while adding a small
random perturbation (randomly sampled noise with a uniform distribution in the value
range (0, 1)) to the base input at each step of network training. The input to the generative
network Gx in the t− th training step can be expressed as:

zt
x = z0

x + βnt
(0,1), (3)
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where β denotes the interference degree of the fixed noise and nt
(0,1) is the randomly

sampled noise at the t− th training step. In contrast to x, the blurring kernel k is not the
main estimation target and has a much lower dimensionality and smooth spatial structure.
The noise perturbation to the input for the kernel learning subnet would destabilize the
training procedure of k. Thus, for the kernel prior learning subnet Gk, we maintained the
fixed noisy input generated from a uniform distribution in all training steps. Finally, given
the trained generative network, we predicted the target HR image from the initial fixed
noise z0

x as x̂ = Gx(z0
x).

Ground-Truth DIP Our_CK Our_blind LapSRN EDSR

Bicubic 24.85/0.8212 24.87/0.8218 24.37/0.7971 24.29/0.7910 24.39/0.8047

(a) the “bird” image in Set5
Ground-Truth DIP Our_CK Our_blind LapSRN EDSR

Bicubic 22.72/0.6089 22.72/0.6099 22.52/0.6063 22.59/0.6097 22.57/0.6146

(b) the “coastguard” image in Set14

Figure 2. Comparison of the visualization results of the recovered HR images of different SOTA
methods. The first row denotes the resulting HR images, while the second row gives the difference
images between the recovered and the ground-truth images.

The implementation of the degradation block: After generating the HR image x̂
with Gx and the learned blurring kernel k̂ with Gk, we attempted to obtain an approximated
version of the observed LR image for the formulation of the loss function. Specifically,
we elaborated a degradation block to realize the procedure. As shown in Equation (1),
the degradation procedure consists of the convolution operation with a blurring kernel
and a downsampling operation, where the downsampling can be approximated by a
blurring procedure with a fixed kernel and a nearest neighbor downsampling operation
such as the combination of a Lanczos kernel and the nearest downsampling for the
bicubic downsampling. We assumed that the kernel learning subnet can achieve the
integrated kernels containing the real blurring kernel and the approximated kernel for the
downsampling operation. Then, we realized the degradation procedure using a specific
depthwise convolution layer (SDW) with the predicted target HR image x̂ as its input,
with the learned blurring kernel k̂ as its parameters. Moreover, it is well known that each
color channel should have the same degradation operation, i.e., the same blurring kernel
and downsampling operations, in a real scenario, and thus, we imposed the same kernel
weights on the DW layer for all color bands with zero bias and set the stride parameter as
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the downsampling factor for realizing the nearest neighbor downsampling. The designed
DW layer is expressed as

ŷ = f s
SDW(x̂, k̂) (4)

where ŷ denotes an approximated version of the degraded LR image from the generated
HR image: Gθ , and the kernel weights in the SDW layer were set as the learned output
of Gk. Therefore, our proposed SR framework has high flexibility to be adapted to
various real scenarios including unknown blurring kernels and downsampling operations.
Via implementing the degradation procedure (including blurring and downsampling
transformation) in Equation (2) with the designed SDW block, the loss function for training
the blind SR network can be reformulated as

(θ∗x , θ∗k) = arg min
θx ,θk

‖y− Fs
SDW(Gx(zx, θx),Gk(zk, θk))‖2, (5)

Via minimizing the loss in Equation (5), we can jointly optimize the parameters of
the image and kernel prior learning subnets Gx and Gk. Since there is no requirement to
previously prepare the labeled training samples, the learning procedure of the proposed
blind SR framework can be considered as a kind of “zero-shot” unsupervised learning with
only the observed LR image.

Joint optimization algorithm: The constructed model in Equation (5) for our ZSB-SR
is an unconstrained optimization problem and is highly non-convex. Most commonly used
solutions such as for the traditional MAP-based framework usually adopt an alternating
minimization strategy, which may get stuck at saddle points [37]. Benefiting from the
powerful modeling capacity of Gx and Gk, which can avoid implausible HR images and
trivial delta kernel solutions, we exploited a joint optimization method instead of using
alternating optimization for our ZSB-SR. To update the parameters of the generative
networks Gx and Gk, we derived the gradients with respect to θx and θk using the automatic
differentiation techniques [38]. The proposed joint optimization algorithm is summarized
in Algorithm 1, where the parameters θx and θk for the two generative networks are jointly
updated using the ADAM algorithm [39]. In our experiments, we stopped the optimization
procedure after T iterations, and the latent HR image x and the degradation kernel k can
simultaneously be generated as x̂ = Gx(z0

x) and k̂ = Gk(zk).

Algorithm 1 Joint optimization for ZSB-SR.

Input: the observed LR image y
Output: the latent HR image x

Sample z0
x and zk from uniform distribution

for t = 0 to max. iter. (T) do
Sample nt

(0,1) from uniform distribution

Perturb z0
x with nt

(0,1): zt
x = z0

x + βnt
(0,1)

x̂ = Gx(zt
x, θt−1

x )
k̂ = Gk(zk, θt−1

k )

ŷ = f s
SDW(x̂, k̂)

Compute the gradients with respect to θx and θk
Update θx and θk using the ADAM algorithm [39]

end for
x = Gx(z0

x, θT
x )
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4. Experimental Results

To verify the effectiveness of our proposed ZSB-SR framework, we firstly conducted
an ablation study to analyze the effect of the generative network Gk for approximating
different degradation operations. Then, the ZSB-SR was evaluated on several benchmark
datasets to be compared with the state-of-the-art methods including the fully supervised
non-blind methods and the unsupervised SR methods.

The proposed ZSB-SR was implemented using Pytorch. We set the learning rates for
Gx and Gk as 0.01 and 1× 10−4, respectively, and adopted the ADAM optimization strategy.
The experiments followed the same settings, i.e., T = 4000 (2000) for a downsampling
factor of 8 (4), and the noises z0

x, zk, and nt
(0,1) were sampled from the uniform distribution

with a fixed random seed of 0, while the perturbed parameter β was set as 0.05.

4.1. Ablation Study

We conducted an ablation study on the Set5 [40], Set14 [41], and B100 [41] datasets
and simulated the LR inputs with different degradation operations including bicubic
downsampling only (without the blurring kernel) and the combined Gaussian blurring
kernels with different standard deviation values (σ from 1.0 to 3) and the bicubic downsamp-
ling operation. To validate the learning capability of the generative network Gk, we varied
the kernel weights of the degradation operation f s

SDW via setting it as the correct kernel
(such as the Lanczos kernel for bicubic downsampling), the wrong kernel, the automatically
learning inside f s

SDW , and the learned kernel with Gk. Table 1a provides a quantitative
comparison on three datasets from the bicubic downsampled LR images with factors of 4
and 8. From Table 1a, it can be seen that the learned kernels with the generative network
Gk provide comparable results using the correct kernel (here, Lanczos kernel for bicubic
downsampling).

Next, we conducted experiments using the simulated LR images with both blurring
kernels k and the bicubic downsampling operation, where Gaussian kernels with different
standard deviation values from 1.0 to 3.0 were adopted without loss of generality. In
the experiments, we adopted different experimental settings including the semi-blind
conditions, where the bicubic downsampling operation was assumed to be known, but with
less knowledge about the blurring kernel such as only the known kernel type (Gaussian)
or no knowledge about the kernel and the complete blind condition. In the semi-blind
experimental setting, we investigated three values: 0 (without blurring kernel), 1, and the
true value of σ in the known Gaussian type to give the estimated HR image x, while
we only learned the blurring kernel using Gk for the setup without any knowledge
about the blurring kernel. In the blind experimental setting, we automatically learned
the integrated kernel of the blurring and downsampling operations with f s

SDW and Gk.
Table 1b gives the quantitative comparison on the Set5 and Set14 datasets with a factor of
eight and different experimental settings, which manifested comparable performance or
better performance using our ZSB-SR under the completely blind condition compared
to the varied implementations under some controlled conditions such as the known
downsampling operation.
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Table 1. Quantitative comparison with the varied kernels used in f s
SDW . (a) On the bicubic

downsampled LR images; (b) on the LR images with Gaussian blurring kernels and the bicubic
downsampling operation. The first numerical result represents the PSNR value, and the second
denotes the SSIM value.

(a) On the bicubic downsampled LR images

Dataset Factor Correct Kernel Wrong Kernel Learned f s
SDW Learned Gk

Set5 X4 28.4/0.905 19.4/0.704 27.3/0.905 27.9/0.897

X8 24.3/0.794 15.6/0.531 23.4/0.775 23.9/0.772

Set14 X4 25.1/0.814 18.5/0.647 23.4/0.810 24.8/0.806

X8 23.4/0.705 15.7/0.516 20.8/0.687 21.9/0.683

B100 X4 25.2/0.787 19.7/0.647 23.1/0.786 25.0/0.783

X8 23.0/0.682 17.5/0.544 20.8/0.675 22.8/0.672

(b) On the LR images with Gaussian blurring kernels (different standard deviation values) and the bicubic downsampling (DS) operation

Semi-Blind Complete Blind

Dataset σ Known DS and Gaussian Kernel with Different σ Known DS Unknown DS and Kernel (Learned)

σ = 0 σ = 1.1 True σ Learned Gk f s
SDW Gk

σ = 1.0 24.2/0.790 24.3/0.796 24.4/0.798 23.9/0.787 24.1/0.788 24.2/0.788

σ = 1.2 24.0/0.785 24.3/0.809 24.4/0.800 24.1/0.792 23.8/0.779 24.2/0.785

σ = 1.5 23.8/0.779 24.2/0.791 24.4/0.796 24.2/0.795 23.6/0.781 24.0/0.782

Set5 σ = 2.0 23.7/0.773 24.3/0.792 24.4/0.797 24.3/0.797 23.8/0.789 23.9/0.777

σ = 2.5 21.4/0.691 21.9/0.706 23.7/0.772 22.1/0.716 21.5/0.700 21.8/0.701

σ = 3.0 20.8/0.668 21.1/0.678 23.1/0.746 21.2/0.683 20.8/0.672 21.0/0.675

σ = 1.0 22.2/0.695 22.3/0.691 22.5/0.705 21.8/0.680 22.1/0.697 22.1/0.690

σ = 1.2 22.1/0.693 22.4/0.703 22.5/0.704 22.0/0.683 21.9/0.690 22.1/0.688

σ = 1.5 22.1/0.690 22.3/0.699 22.5/0.704 22.0/0.686 20.9/0.690 22.1/0.686

Set14 σ = 2.0 22.0/0.687 22.3/0.700 22.4/0.703 22.1/0.688 21.1/0.694 22.1/0.687

σ = 2.5 20.4/0.631 20.7/0.641 22.0/0.682 20.9/0.646 19.7/0.636 20.7/0.637

σ = 3.0 19.9/0.615 19.9/0.615 21.7/0.667 20.3/0.624 19.3/0.616 20.1/0.620

4.2. Comparison with the State-of-the-Art Methods

Since most existing methods generally super-resolve the bicubic downsampled LR
images, we firstly verified the performance of the reconstructed HR images on the simulated
LR images of the benchmark datasets: Set5 [40], Set14 [41], and B100 [41] with bicubic
downsampling to conduct a fair comparison. The compared state-of-the-art methods
consisted of an unsupervised/non-blind pipeline including the unsupervised-optimization-
based method with TV_Prior, DIP [9], and our method with the correct kernel (Our_CK)
and the supervised deep networks (LapSRN [6] and EDSR [5]), where our method falls
under the unsupervised and blind paradigm. Table 2a provides a quantitative comparison,
which manifests that our ZSB-SR can achieve the best performance under the same
experimental setting and comparable performance under completely an unsupervised and
blind setting to the fully supervised deep learning methods. The compared visualization
results of the recovered HR images with different SOTA methods are shown in Figure 2,
where our ZSB-SR (unsupervised and blind) gives comparable performance to both SOTA
unsupervised and supervised non-blind methods.
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Table 2. Quantitative comparison of our proposed ZSB-SR with the sate-of-the-art methods.

(a) On the simulated LR images of three benchmark dataset: Set5, Set14, and B100 with the degradation: bicubic downsampling.
The first numerical result represents the PSNR value, and the second denotes the SSIM value.

Dataset Factor
Unsuper/Non-Blind Unsuper/Blind Super/Non-Blind

Bicubic TV_Prior DIP [9] Our_CK Our_blind LapSRN [6] EDSR [5]

Set5 X4 26.7/0.866 26.7/0.876 27.9/0.893 28.4/0.9049 27.9/0.898 29.4/0.920 30.0/0.928

X8 22.7/0.728 23.0/0.743 24.0/0.783 24.3/0.7944 23.9/0.772 24.2/0.791 24.3/0.796

Set14 X4 24.2/0.786 24.3/0.787 25.0/0.803 25.1/0.8144 24.8/0.806 25.9/0.838 26.4/0.844

X8 21.4/0.662 21.6/0.676 22.2/0.695 23.4/0.7046 21.9/0.683 22.4/0.706 22.4/0.706

B100 X4 24.9/0.773 24.0/0.737 25.2/0.786 25.2/0.7919 25.0/0.793 26.0/0.812 26.2/0.818

X8 22.5/0.662 22.6/0.672 23.0/0.686 23.0/0.6824 23.0/0.687 23.2/0.693 23.1/0.689

(b) Comparison of the validation dataset of NTIRE17 Track 2, where the LR images are captured with more realistic degradation.

Bicubic
Supervised Unsupervised

SR_syn SR_paired CycleGAN [22] Cycle+SR [28] CycleSRGAN [24] Our

PSNR 24.0 24.0 29.8 23.2 24.7 26.0 25.7

SSIM 0.644 0.654 0.818 0.648 0.685 0.737 0.693

Moreover, we also evaluated our ZSB-SR on 100 validation images of the NTIRE2018
super-resolution challenge, where the LR images were created with more realistic degradation
by the challenge. We adopted the ZSB-SR method for NTIRE17 Track 2, where the LR
images were captured with diverse degradations. Since there is no training dataset for this
task, the popular methods generally fall into two paradigms: (1) synthesizing training pairs
according to the estimated degradation types and, then, constructing the super-resolved
model with the deep learning method; (2) the unsupervised image translation method with
the GAN. Therefore, we compared our ZSB-SR method with the mentioned SOTA methods
for this task, and Table 2b manifests the compared results, which also demonstrates the
superior performance of our ZSB-SR.

5. Conclusions

In this study, we investigated a novel zero-shot blind SR model, i.e., ZSB-SR, for
reconstructing the underlying HR image from the observed LR image only under an
unknown degradation procedure. Instead of learning the prior from the previously
prepared data or exploiting hand-crafted priors according to the accumulated experience,
we leveraged the powerful modeling capability of generative networks to automatically
learn the priors in the latent HR image from the observed LR image. Specifically, we
adopted two generative networks: an encoder–decoder-based network architecture to
model the latent HR image and a fully connected network (FCN) to learn the degradation
knowledge such as the blurring kernel and a specially designed degradation block to
implement the imaging procedure, and thus, we constructed an end-to-end learning ZSB-SR
framework for jointly predicting the latent HR image and the degradation knowledge.
Extensive experiments on several benchmark datasets demonstrated the great superiority
and high generalization of our proposed ZSB-SR method over both SOTA supervised and
unsupervised SR methods.
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