Author Contributions
Methodology, A.K. and P.L.; Resources, S.K.M.; Supervision, A.W. All authors have read and agreed to the published version of the manuscript.
Funding
This research was funded by Science Foundation Ireland grant number 13/RC/2106.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
Not applicable.
Conflicts of Interest
The authors declare no conflict of interest.
References
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, U.; Polosukhin, I. Attention is All You Need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; NIPS’17. Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 6000–6010. [Google Scholar]
- Sennrich, R.; Haddow, B.; Birch, A. Improving Neural Machine Translation Models with Monolingual Data. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers); Association for Computational Linguistics: Berlin, Germany, 2016; pp. 86–96. [Google Scholar] [CrossRef]
- Poncelas, A.; Shterionov, D.; Way, A.; Wenniger, G.; Passban, P. Investigating Backtranslation in Neural Machine Translation. 2018, pp. 249–258. Available online: https://arxiv.org/pdf/1804.06189.pdf (accessed on 8 April 2022).
- Fadaee, M.; Bisazza, A.; Monz, C. Data Augmentation for Low-Resource Neural Machine Translation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers); Association for Computational Linguistics: Vancouver, BC, Canada, 2017; pp. 567–573. [Google Scholar]
- Sennrich, R.; Haddow, B.; Birch, A. Neural Machine Translation of Rare Words with Subword Units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers); Association for Computational Linguistics: Berlin, Germany, 2016; pp. 1715–1725. [Google Scholar] [CrossRef]
- Norouzi, M.; Bengio, S.; Chen, Z.; Jaitly, N.; Schuster, M.; Wu, Y.; Schuurmans, D. Reward Augmented Maximum Likelihood for Neural Structured Prediction. In Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; NIPS’16; Curran Associates Inc.: Red Hook, NY, USA, 2016; pp. 1731–1739. [Google Scholar]
- Zoph, B.; Yuret, D.; May, J.; Knight, K. Transfer Learning for Low-Resource Neural Machine Translation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–4 November 2016; Association for Computational Linguistics: Austin, TX, USA, 2016; pp. 1568–1575. [Google Scholar] [CrossRef]
- Choudhary, H.; Rao, S.; Rohilla, R. Neural Machine Translation for Low-Resourced Indian Languages. In Proceedings of the 12th Language Resources and Evaluation Conference, Marseille, France, 11–16 May 2020; European Language Resources Association: Marseille, France, 2020; pp. 3610–3615. [Google Scholar]
- Shibata, Y.; Kida, T.; Fukamachi, S.; Takeda, M.; Shinohara, A.; Shinohara, T.; Arikawa, S. Byte Pair Encoding: A Text Compression Scheme That Accelerates Pattern Matching. 1999. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.4046&rep=rep1&type=pdf (accessed on 8 April 2022).
- Huang, E.; Socher, R.; Manning, C.; Ng, A. Improving Word Representations via Global Context and Multiple Word Prototypes. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers); Association for Computational Linguistics: Jeju Island, Korea, 2012; pp. 873–882. [Google Scholar]
- Goyal, V.; Sharma, D.M. TRC-MT Simple & Effective Hindi-English Neural Machine Translation Systems at WAT 2019. In Proceedings of the 6th Workshop on Asian Translation; Hong Kong, China, 4 November 2019, Association for Computational Linguistics: Hong Kong, China, 2019; pp. 137–140. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Yerra, P.; Kumar, K.; Sarkar, S. A study of attention-based neural machine translation model on Indian languages. In Proceedings of the 6th Workshop on South and Southeast Asian Natural Language Processing (WSSANLP2016); The COLING 2016 Organizing Committee: Osaka, Japan, 2016; pp. 163–172. [Google Scholar]
- Przystupa, M.; Abdul-Mageed, M. Neural Machine Translation of Low-Resource and Similar Languages with Backtranslation. In Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2); Association for Computational Linguistics: Florence, Italy, 2019; pp. 224–235. [Google Scholar] [CrossRef]
- Sennrich, R.; Firat, O.; Cho, K.; Birch, A.; Haddow, B.; Hitschler, J.; Junczys-Dowmunt, M.; Läubli, S.; Miceli Barone, A.V.; Mokry, J.; et al. Nematus: A Toolkit for Neural Machine Translation. In Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association for Computational Linguistics; Association for Computational Linguistics: Valencia, Spain, 2017; pp. 65–68. [Google Scholar]
- Klein, G.; Hernandez, F.; Nguyen, V.; Senellart, J. The OpenNMT Neural Machine Translation Toolkit: 2020 Edition. In Proceedings of the 14th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Track); Association for Machine Translation in the Americas: Orlando, FL, USA, 2020; pp. 102–109. [Google Scholar]
- Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. BLEU: A Method for Automatic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, Philadelphia, PA, USA, 7–12 July 2002; ACL ’02. Association for Computational Linguistics: Philadelphia, PA, USA, 2002; pp. 311–318. [Google Scholar] [CrossRef] [Green Version]
- Denkowski, M.; Lavie, A. Meteor Universal: Language Specific Translation Evaluation for Any Target Language. In Proceedings of the Ninth Workshop on Statistical Machine Translation, Baltimore, MD, USA, 26–27 June 2014; Association for Computational Linguistics: Baltimore, MD, USA, 2014; pp. 376–380. [Google Scholar] [CrossRef]
- Snover, M.G.; Madnani, N.; Dorr, B.; Schwartz, R. TER-Plus: Paraphrase, Semantic, and Alignment Enhancements to Translation Edit Rate. Mach. Transl. 2009, 23, 117–127. [Google Scholar] [CrossRef]
- Ramesh, G.; Doddapaneni, S.; Bheemaraj, A.; Jobanputra, M.; AK, R.; Sharma, A.; Sahoo, S.; Diddee, H.; Nagaraj, S.; Kakwani, D.; et al. Samanantar: The Largest Publicly Available Parallel Corpora Collection for 11 Indic Languages. arXiv 2021, arXiv:cs.CL/2104.05596. Available online: http://xxx.lanl.gov/abs/2104.05596 (accessed on 8 April 2022). [CrossRef]
| Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).