Physical Layer Security for Military IoT Links Using MIMO-Beamforming at 60 GHz
Abstract
:1. Introduction
2. MIMO-Beamforming Techniques for PHY Security
2.1. Sub-Band Tunable Beamforming
2.2. Tunable Beamforming Circuits
2.3. Adaptive Tuning of Radios for Secure IoT Links
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tadjdeh, Y. Defense Department Further Accelerating 5G Development. Natl. Def. 2021, 105, 22–23. [Google Scholar]
- Martin, M.J.; Kidd, S.R.; Landis, C.B. 5G Technology: Improved Capabilities Enable Joint Logistics for the Future Joint Force: Army Logistician. Army Sustain. 2020, 52, 74–79. [Google Scholar]
- Hoehn, J.R.; Sayler, K.M. National Security Implications of Fifth Generation (5G) Mobile Technologies. Congr. Res. Serv. 2021, 15, F11251. [Google Scholar]
- Harvey, J.; Steer, M.B.; Rappaport, T.S. Exploiting High Millimeter Wave Bands for Military Communications, Applications and Design. IEEE Access 2019, 7, 52350–52359. [Google Scholar] [CrossRef]
- Li, B.; Fei, Z.; Zhou, C.; Zhang, Y. Physical layer security in space information networks: A survey. IEEE Internet Things J. 2020, 7. [Google Scholar] [CrossRef]
- Li, B.; Qi, X.; Huang, K.; Fei, Z.; Zhou, F.; Hu, R.Q. Security-reliability tradeoff analysis for cooperative NOMA in cognitive radio networks. IEEE Trans. Commun. 2019, 67, 83–96. [Google Scholar] [CrossRef]
- Seifi, N.; Heath, R.W., Jr.; Coldrey, M.; Svensson, T. Adaptive Multicell 3-D Beamforming in Multiantenna Cellular Networks. IEEE Trans. Vehicular Technol. 2016, 65, 6217–6231. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Shu, C.; Huang, F.; Sun, T.; Tian, L.; Hong, W. Design and Implementation of A Highly Integrated 8-Channel Transceiver for Massive MIMO in 5G. In Proceedings of the 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Chengdu, China, 7–11 May 2018. [Google Scholar]
- Sulyman, A.I.; Alwarafy, A.; MacCartney, G.R.; Samimi, M.K.; Rappaport, T.S.; Alsanie, A. Directional Radio Propagation Path Loss Models for Millimeter-Wave Wireless Networks in the 28, 60, and 73 GHz Bands. IEEE Trans. Wirel. Commun. 2016, 15, 6939–6947. [Google Scholar] [CrossRef]
- Sulyman, A.I.; Alwarafy, A.; Seleem, H.E.; Humadi, K.; Alsanie, A. Effects of Solar Radio Emissions on Outdoor Propagation Path Loss Models at 60 GHz Bands for Access/Backhaul Links and D2D Communications. IEEE Trans. Antennas Propag. 2017, 65, 6624–6635. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Rappaport, T.S.; Qiao, Y.; Lauffenburger, S.J. Millimeter-Wave 60 {GH}z Outdoor and Vehicle {AOA} Propagation Measurements Using a Broadband Channel Sounder. In Proceedings of the 2011 IEEE Global Telecommunications Conference (GLOBECOM 2011), Houston, TX, USA, 5–9 December 2011. [Google Scholar]
- Sulyman, A.I.; Oteafy, S.; Hassanein, H. Expanding the Cellular-IoT Umbrella: An Architectural Approach. IEEE Wireless Commun. 2017, 24, 66–71. [Google Scholar] [CrossRef]
- Sulyman, A.I.; Montano, T.J.; Post, J.E. Experimental Data on Connecting Proprietary IoT Systems to the Cellular IoT Networks. In Proceedings of the 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019. [Google Scholar]
- Alwarafy, A.; Al-Thelaya, K.A.; Abdallah, M.; Schneider, J.; Hamdi, M. A survey on Security and Privacy Issues in Edge-Computing-Assisted Internet of Things. IEEE Internet Things J. 2021, 8, 4004–4022. [Google Scholar] [CrossRef]
- Radio Communication Sector of ITU (ITU-R). Attenuation by Atmospheric Gases. Recommendation Document ITU-R P.676-12, Aug. 2019. Available online: https://itu-rpy.readthedocs.io/en/latest/apidoc/itu676.html# (accessed on 5 February 2022).
- Sulyman, A.I.; Hefnawi, M. Adaptive MIMO Beamforming Algorithm Based on Gradient Search of the Channel Capacity in OFDM-SDMA Systems. IEEE Commun. Lett. 2008, 12, 642–644. [Google Scholar] [CrossRef]
- Joshi, P.; Ghasemifard, F.; Colombi, D.; Tornevik, C. Actual Output Power Levels of User Equipment in 5G Commercial Networks and Implications on Realistic RF EMF Exposure Assessment. IEEE Access 2020, 8, 204068–204075. [Google Scholar] [CrossRef]
- Sulyman, A.I.; Nassar, A.T.; Samimi, M.K.; MacCartney, G.R.; Rappaport, T.S.; Alsanie, A. Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Commun. Mag. 2014, 52, 78–86. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulyman, A.I.; Henggeler, C. Physical Layer Security for Military IoT Links Using MIMO-Beamforming at 60 GHz. Information 2022, 13, 100. https://doi.org/10.3390/info13020100
Sulyman AI, Henggeler C. Physical Layer Security for Military IoT Links Using MIMO-Beamforming at 60 GHz. Information. 2022; 13(2):100. https://doi.org/10.3390/info13020100
Chicago/Turabian StyleSulyman, Ahmed Iyanda, and Calvin Henggeler. 2022. "Physical Layer Security for Military IoT Links Using MIMO-Beamforming at 60 GHz" Information 13, no. 2: 100. https://doi.org/10.3390/info13020100
APA StyleSulyman, A. I., & Henggeler, C. (2022). Physical Layer Security for Military IoT Links Using MIMO-Beamforming at 60 GHz. Information, 13(2), 100. https://doi.org/10.3390/info13020100