A Sentence Classification Framework to Identify Geometric Errors in Radiation Therapy from Relevant Literature
Abstract
:1. Introduction
2. Related Works
3. Proposed Framework
3.1. Building Training Corpus
Algorithm 1 Generation of Training Data |
Input: (1) A number of free text documents (2) {geometric organ error, random displacement error etc.} (3) A threshold on Steps:
|
3.2. Extraction of Desired Data Elements
4. Experimental Evaluation
4.1. Experimental Setup
4.2. Evaluation Measures
4.3. Analysis and Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jonnalagadda, S.R.; Goyal, P.; Huffman, M.D. Automating data extraction in systematic reviews: A systematic review. Syst. Rev. 2015, 4, 78. [Google Scholar] [CrossRef] [Green Version]
- Basu, T.; Kumar, S.; Kalyan, A.; Jayaswal, P.; Goyal, P.; Pettifer, S.; Jonnalagadda, S.R. A Novel Framework to Expedite Systematic Reviews by Automatically Building Information Extraction Training Corpora. arXiv 2016, arXiv:1606.06424. [Google Scholar]
- Goldsworthy, S.; Palmer, S.; Latour, J.; McNair, H.; Cramp, M. A systematic review of effectiveness of interventions applicable to radiotherapy that are administered to improve patient comfort, increase patient compliance, and reduce patient distress or anxiety. Radiography 2020. [Google Scholar] [CrossRef] [PubMed]
- Van Herk, M. Errors and margins in radiotherapy. Semin. Radiat. Oncol. 2004, 14, 52–64. [Google Scholar] [CrossRef]
- Goldsworthy, S.; Leslie-Dakers, M.; Higgins, S.; Barnes, T.; Jankowska, P.; Dogramadzi, S.; Latour, J.M. A pilot study evaluating the effectiveness of dual-registration image-guided radiotherapy in patients with oropharyngeal cancer. J. Med. Imaging Radiat. Sci. 2017, 48, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, B.; Munshi, A.; Ganesh, T.; Manikandan, A.; Krishnankutty, S.; Chitral, L.; Pradhan, A.; Kalyan Mohanti, B. Rotational positional error corrected intrafraction set-up margins in stereotactic radiotherapy: A spatial assessment for coplanar and noncoplanar geometry. Med. Phys. 2019, 46, 4749–4754. [Google Scholar] [CrossRef]
- Caillet, V.; Zwan, B.; Briggs, A.; Hardcastle, N.; Szymura, K.; Podreka, A.; O’Brien, T.R.; Harris, B.; Greer, P.B.; Haddad, C.; et al. Geometric uncertainty analysis of MLC tracking for lung SABR. Phys. Med. Biol. 2020, 65, 235040. [Google Scholar] [CrossRef] [PubMed]
- Unkelbach, J.; Alber, M.; Bangert, M.; Bokrantz, R.; Chan, T.C.; Deasy, J.O.; Fredriksson, A.; Gorissen, B.L.; Van Herk, M.; Liu, W.; et al. Robust radiotherapy planning. Phys. Med. Biol. 2018, 63, 22TR02. [Google Scholar] [CrossRef] [Green Version]
- Fraass, B.A. Errors in radiotherapy: Motivation for development of new radiotherapy quality assurance paradigms. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, S162–S165. [Google Scholar] [CrossRef] [PubMed]
- Mišić, V.V.; Chan, T.C. The perils of adapting to dose errors in radiation therapy. PLoS ONE 2015, 10, e0125335. [Google Scholar] [CrossRef] [Green Version]
- Goswami, S.; Pal, S.; Goldsworthy, S.; Basu, T. An effective machine learning framework for data elements extraction from the literature of anxiety outcome measures to build systematic review. In Proceedings of the International Conference on Business Information Systems, Seville, Spain, 26–28 June 2019; pp. 247–258. [Google Scholar]
- Guntuku, S.C.; Yaden, D.B.; Kern, M.L.; Ungar, L.H.; Eichstaedt, J.C. Detecting depression and mental illness on social media: An integrative review. Curr. Opin. Behav. Sci. 2017, 18, 43–49. [Google Scholar] [CrossRef]
- Shen, G.; Jia, J.; Nie, L.; Feng, F.; Zhang, C.; Hu, T.; Chua, T.S.; Zhu, W. Depression detection via harvesting social media: A multimodal dictionary learning solution. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17), Melbourne, Australia, 19–25 August 2017; pp. 3838–3844. [Google Scholar]
- Marshall, I.J.; Kuiper, J.; Banner, E.; Wallace, B.C. Automating biomedical evidence synthesis: RobotReviewer. In Proceedings of the Conference Association for Computational Linguistics, Vancouver, BC, Canada, 30 July–4 August 2017; Volume 2017, p. 7. [Google Scholar]
- Hassanzadeh, H.; Nguyen, A.; Verspoor, K. Quantifying semantic similarity of clinical evidence in the biomedical literature to facilitate related evidence synthesis. J. Biomed. Inform. 2019, 100, 103321. [Google Scholar] [CrossRef] [PubMed]
- Uzuner, Ö.; Luo, Y.; Szolovits, P. Evaluating the state-of-the-art in automatic de-identification. J. Am. Med. Inform. Assoc. 2007, 14, 550–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzuner, Ö.; Solti, I.; Cadag, E. Extracting medication information from clinical text. J. Am. Med. Inform. Assoc. 2010, 17, 514–518. [Google Scholar] [CrossRef] [Green Version]
- Halgrim, S.R.; Xia, F.; Solti, I.; Cadag, E.; Uzuner, Ö. A cascade of classifiers for extracting medication information from discharge summaries. J. Biomed. Semant. Biomed. Cent. 2011, 2, S2. [Google Scholar] [CrossRef] [Green Version]
- Stubbs, A.; Kotfila, C.; Uzuner, Ö. Automated systems for the de-identification of longitudinal clinical narratives: Overview of 2014 i2b2/UTHealth shared task Track 1. J. Biomed. Inform. 2015, 58, S11–S19. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, A.; Filannino, M.; Uzuner, Ö. De-identification of psychiatric intake records: Overview of 2016 CEGS N-GRID Shared Tasks Track 1. J. Biomed. Inform. 2017, 75, S4–S18. [Google Scholar] [CrossRef]
- Yim, W.W.; Denman, T.; Kwan, S.W.; Yetisgen, M. Tumor information extraction in radiology reports for hepatocellular carcinoma patients. In Proceedings of the AMIA Summits on Translational Science Proceedings, San Francisco, CA, USA, 21–24 March 2016; pp. 455–484. [Google Scholar]
- Wang, Y.; Wang, L.; Rastegar-Mojarad, M.; Moon, S.; Shen, F.; Afzal, N.; Liu, S.; Zeng, Y.; Mehrabi, S.; Sohn, S.; et al. Clinical information extraction applications: A literature review. J. Biomed. Inform. 2018, 77, 34–49. [Google Scholar] [CrossRef]
- Lee, L. Measures of distributional similarity. In Proceedings of the 37th Annual Meeting of the ACL, College Park, MD, USA, 20–26 June 1999; pp. 25–32. [Google Scholar]
- Manning, C.D.; Raghavan, P.; Schutze, H. Introduction to Information Retrieval; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Basu, T.; Murthy, C. A supervised term selection technique for effective text categorization. Int. J. Mach. Learn. Cybern. 2016, 7, 877–892. [Google Scholar] [CrossRef]
- Mukherjee, A.; Basu, T. A medoid-based weighting scheme for nearest-neighbor decision rule toward effective text categorization. SN Appl. Sci. 2020, 2, 1–9. [Google Scholar] [CrossRef]
- Selamat, A.; Omatu, S. Web page feature selection and classification using neural networks. Inf. Sci. 2004, 158, 69–88. [Google Scholar] [CrossRef]
- Sabbah, T.; Selamat, A.; Selamat, M.H.; Al-Anzi, F.S.; Viedma, E.H.; Krejcar, O.; Fujita, H. Modified frequency-based term weighting schemes for text classification. Appl. Soft Comput. 2017, 58, 193–206. [Google Scholar] [CrossRef]
- Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification; 2010. Available online: https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf (accessed on 17 March 2021).
- Joachims, T. Text categorization with support vector machines: Learning with many relevant features. In Proceedings of the European Conference on Machine Learning, Chemnitz, Germany, 21–23 April 1998; pp. 137–142. [Google Scholar]
- Basu, T.; Murthy, C.A. A Feature Selection Method for Improved Document Classification. In Proceedings of the International Conference on Advanced Data Mining and Applications, Nanjing, China, 15–18 December 2012; pp. 296–305. [Google Scholar]
- Paul, S.; Jandhyala, S.K.; Basu, T. Early Detection of Signs of Anorexia and Depression Over Social Media using Effective Machine Learning Frameworks. In Proceedings of the CLEF (Working Notes), Avignon, France, 10–14 September 2018. [Google Scholar]
- Hasan, M.; Rundensteiner, E.; Agu, E. Automatic emotion detection in text streams by analyzing twitter data. Int. J. Data Sci. Anal. 2019, 7, 35–51. [Google Scholar] [CrossRef]
- Oita, M.; Ohmori, K.; Obinata, K.; Kinoshita, R.; Onimaru, R.; Tsuchiya, K.; Suzuki, K.; Nishioka, T.; Ohsaka, H.; Fujita, K.; et al. Uncertainty in treatment of head-and-neck tumors by use of intraoral mouthpiece and embedded fiducials. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 1581–1588. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 2019, 36, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar]
systematic displacement error | random displacement error |
systematic random displacement error | rotational random systematic error |
translational random systematic setup error | translational error |
x y z direction translational | x y z direction rotational |
x y z correction translational | x y z correction rotational |
translation discrepancies | translational discrepancies |
rotational discrepancy | rotational discrepancies |
rotation translation error | rotation translation discrepancy |
rotation translation discrepancies | rotation translation displacement |
mean set up error | geometric organ error |
standard deviation of set up error | population systematic error |
population random error | organ motion translation |
organ motion rotation | set up error translation |
set up error rotation | translational correction |
rotational correction | vector correction |
residual error | total error mean or SD |
total error mean or standard deviation | rotational systematic error |
translational systematic error | rotational random error |
translational random error | systematic and random population error |
anterior posterior inferior superior | translation discrepancy |
Test Document | True Positive | False Positive | False Negative | Precision | Recall |
---|---|---|---|---|---|
Doc 1 | 12 | 4 | 1 | 0.75 | 0.92 |
Doc 2 | 29 | 4 | 1 | 0.87 | 0.96 |
Doc 3 | 12 | 13 | 0 | 0.48 | 1 |
Doc 4 | 3 | 1 | 0 | 0.75 | 1 |
Doc 5 | 12 | 3 | 1 | 0.8 | 0.92 |
Doc 6 | 6 | 1 | 0 | 0.85 | 1 |
Doc 7 | 7 | 4 | 0 | 0.63 | 1 |
Doc 8 | 6 | 3 | 0 | 0.66 | 1 |
Classifier | Precision * | Recall * | F-Measure * |
---|---|---|---|
Logistic Regression | 0.69 | 0.95 | 0.80 |
Random Forest | 0.66 | 0.91 | 0.77 |
Support Vector Machine | 0.72 | 0.97 | 0.83 |
Classifier | Precision * | Recall * | F-Measure * |
---|---|---|---|
Keyword match technique based on | 0.76 | 0.65 | 0.70 |
BioBERT pretrained model for sentence classification | 0.63 | 0.84 | 0.72 |
TF-IDF based feature weighting scheme + SVM | 0.69 | 0.92 | 0.79 |
Entropy based feature weighting scheme + SVM | 0.72 | 0.97 | 0.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basu, T.; Goldsworthy, S.; Gkoutos, G.V. A Sentence Classification Framework to Identify Geometric Errors in Radiation Therapy from Relevant Literature. Information 2021, 12, 139. https://doi.org/10.3390/info12040139
Basu T, Goldsworthy S, Gkoutos GV. A Sentence Classification Framework to Identify Geometric Errors in Radiation Therapy from Relevant Literature. Information. 2021; 12(4):139. https://doi.org/10.3390/info12040139
Chicago/Turabian StyleBasu, Tanmay, Simon Goldsworthy, and Georgios V. Gkoutos. 2021. "A Sentence Classification Framework to Identify Geometric Errors in Radiation Therapy from Relevant Literature" Information 12, no. 4: 139. https://doi.org/10.3390/info12040139
APA StyleBasu, T., Goldsworthy, S., & Gkoutos, G. V. (2021). A Sentence Classification Framework to Identify Geometric Errors in Radiation Therapy from Relevant Literature. Information, 12(4), 139. https://doi.org/10.3390/info12040139