Ensemble and Quick Strategy for Searching Reduct: A Hybrid Mechanism
Abstract
:1. Introduction
- (1)
- Low time consumption of deriving reduct. This is the first perspective which should be considered in designing algorithm, especially when large-scale and high-dimensional data appear.
- (2)
- High stability of derived reduct. A reduct with low stability indicates that such reduct is susceptible if data perubation happens, and then it may be unsuitable for further data processing.
- (3)
- Competent classification of derived reduct. Attribute reduction can be regarded as an important step of data pre-processing, and then it does expect that the obtained reduct will offer competent performance if the classification task is explored.
- (1)
- each candidate attribute will be evaluated from different perspectives by using multiple fitness functions;
- (2)
- an appropriate attribute can be obtained by adopting the mechanism of ensemble selector based on the results of the attribute evaluations;
- (3)
- one or more attributes, which bear a striking dissimilarity to the attribute obtained in (2), will also be selected;
- (4)
- more than one attributes can be added into the potential reduct simultaneously.
2. Preliminaries
2.1. Attribute Reduction
- (1)
- A satisfies the ρ-constraint;
- (2)
- , B does not satisfy the ρ-constraint.
Algorithm 1. Forward Greedy Searching (FGS) . |
Input: Decision system , -constraint and fitness function . |
Output: One reduct A. |
Step 1. Calculate the measure-value over the raw attribute set ; |
Step 2.; |
Step 3. Do |
(1) Evaluate each candidate attribute by calculating ; |
(2) Select a qualified attribute with the justifiable evaluation; |
(3) ; |
(4) Calculate ; |
Until -constraint is satisfied; |
// Adding the qualified attributes into the potential~reduct |
Step 4. Do |
(1) , calculate ; |
(2) If -constraint is satisfied |
; |
End |
Until A does not change or =1; |
// Removing redundant attributes from the potential~reduct |
Step 5. Return A. |
2.2. Stability Measure
3. A New Hybrid Mechanism for Attribute Reduct
3.1. Dissimilarity for Attribute Reduction
Algorithm 2. Dissimilarity for Attribute Reduction (DAR) |
Input: Decision system , -constraint, fitness function and number of attributes in one combination t. |
Output: One reduct A. |
Step 1. Calculate the measure-value over the raw attribute set AT; |
Step 2. Calculate the dissimilarities between attributes such that ; |
// denotes the distance between attributesaandb |
Step 3.; |
Step 4. Do |
(1) Evaluate each candidate attribute by calculating ; |
(2) Select a qualified attribute with the justifiable evaluation; |
(3) Obtain from ; |
(4) By , derive attribute subset B with attributes, in which the attributes bear the striking dissimilarity to b; |
(5) ; |
// Selection of a combination of~attributes |
(6) Calculate ; |
Until -constraint is satisfied; |
Step 5. Do |
(1) , calculate ; |
(2) If -constraint is satisfied |
; |
End |
Until A does not change or = 1; |
Step 6. Return A. |
3.2. Ensemble Selector for Attribute Reduction
Algorithm 3. Ensemble Selector for Attribute Reduction (ESAR) |
Input: Decision system , -constraint and fitness function . |
Output: One reduct A. |
Step 1. Calculate the measure-value over the raw attribute set AT; |
Step 2.; |
Step 3. Do |
(1) Let multiset ; |
(2) For i = 1 to s |
(i) Evaluate each candidate attribute by calculating ; |
(ii) Select a qualified attribute with the justifiable evaluation; |
(iii) ; |
End |
(3) Select an attribute with the maximal frequency of occurrences; |
// Ensemble selector mechanism |
(4) ; |
(5) Calculate ; |
Until -constraint is satisfied; |
Step 4. Do |
(1) , calculate ; |
(2) If -constraint is satisfied |
; |
End |
Until A does not change or = 1; |
Step 5. Return A. |
3.3. A New Hybrid Mechanism for Attribute Reduction
- (1)
- Low time consumption of deriving reduct. Though many accelerators have been proposed for quickly deriving reduct, the dissimilarity approach presented in Algorithm 2 will be used in our research, this is mainly because such algorithm will provide us reduct with low stability, and then it is possible for us to optimize it for quickly obtaining reduct with high stability.
- (2)
- High stability of derived reduct. To search reduct with high stability, the ensemble selector presented in Algorithm 3 will be introduced into our research. However, though such algorithm may contribute to the reduct with high stability, it frequently result in a high time consumption of obtaining reduct. Then it is possible for us to optimize such algorithm for quickly obtaining reduct with high stability.
- (3)
- Competent classification of derived reduct. In the studies of Yang et al. [13] and Rao et al. [17], it has been pointed out that the reducts obtained by using Algorithms 2 and 3 possess the justifiable classification ability. For such reason, it is possible that the combination of those two algorithms can also preserve competent classification ability.
Algorithm 4. Hybrid Mechanism for Attribute Reduction (HMAR) |
Input: Decision system , -constraint, fitness function and number of attributes in one combination t. |
Output: One reduct A. |
Step 1. Calculate the measure-value over the raw attribute set AT; |
Step 2. Calculate the dissimilarities between attributes such that ; |
// denotes the distance between attributesaandb |
Step 3.; |
Step 4. Do |
(1) Let multiset ; |
(2) For i = 1 to s |
(i) Evaluate each candidate attribute by calculating ; |
(ii) Select a qualified attribute with the justifiable evaluation; |
(iii) ; |
End |
(3) Select an attribute with the maximal frequency of occurrences; |
// Ensemble selector~mechanism |
(4) Obtain from ; |
(5) By , derive attribute subset B with attributes, in which the attributes bear the striking dissimilarity to b; |
// Using the main thinking of the dissimilarity~approach |
(6) ; |
(7) Calculate ; |
Until -constraint is satisfied; |
Step 4. Do |
(1) , calculate ; |
(2) If -constraint is satisfied |
; |
End |
Until A does not change or =1; |
Step 5. Return A. |
4. Experimental Analysis
4.1. Data Sets and Configuration
4.2. Experimental Setup
4.3. Comparisons of Stability
4.4. Comparisons of Elapsed Time
4.5. Comparisons of Classification Performances
4.6. Discussion of Experimental Results
5. Conclusions and Future Perspectives
- (1)
- (2)
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Song, J.J.; Liu, K.Y.; Lin, Y.J.; Yang, X.B. Combined accelerator for attribute reduction: A sample perspective. Math. Probl. Eng. 2020, 2020, 2350627. [Google Scholar] [CrossRef]
- Jia, X.Y.; Rao, Y.; Shang, L.; Li, T.J. Similarity-based attribute reduction in rough set theory: A clustering perspective. Int. J. Mach. Learn. Cybern. 2020, 11, 1047–1060. [Google Scholar] [CrossRef]
- Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning about Data; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Tsang, E.C.C.; Song, J.J.; Chen, D.G.; Yang, X.B. Order based hierarchies on hesitant fuzzy approximation space. Int. J. Mach. Learn. Cybern. 2019, 10, 1407–1422. [Google Scholar] [CrossRef]
- Tsang, E.C.C.; Hu, Q.H.; Chen, D.G. Feature and instance reduction for PNN classifiers based on fuzzy rough sets. Int. J. Mach. Learn. Cybern. 2016, 7, 1–11. [Google Scholar]
- Wang, C.Z.; Huang, Y.; Shao, M.W.; Fan, X.D. Fuzzy rough set-based attribute reduction using distance measures. Knowl. Based Syst. 2019, 164, 205–212. [Google Scholar] [CrossRef]
- Hu, Q.H.; Zhang, L.; Chen, D.G.; Pedrycz, W.; Yu, D.R. Gaussian kernel based fuzzy rough sets: Model uncertainty measures and applications. Int. J. Approx. Reason. 2010, 51, 453–471. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.H.; Yu, D.R.; Liu, J.F.; Wu, C.X. Neighborhood rough set based heterogeneous feature subset selection. Inf. Sci. 2008, 178, 3577–3594. [Google Scholar] [CrossRef]
- Ko, Y.C.; Fujita, H. An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Inf. Sci. 2019, 486, 190–203. [Google Scholar] [CrossRef]
- Liu, K.Y.; Yang, X.B.; Yu, H.L.; Mi, J.S.; Wang, P.X.; Chen, X.J. Rough set based semi-supervised feature selection via ensemble selector. Knowl. Based Syst. 2019, 165, 282–296. [Google Scholar] [CrossRef]
- Hu, Q.H.; Zhang, L.J.; Zhou, Y.C.; Pedrycz, W. Large-scale multi-modality attribute reduction with multi-kernel fuzzy rough sets. IEEE Trans. Fuzzy Syst. 2018, 26, 226–238. [Google Scholar] [CrossRef]
- Qian, Y.H.; Wang, Q.; Cheng, H.H.; Liang, J.Y.; Dang, C.Y. Fuzzy-rough feature selection accelerator. Fuzzy Sets Syst. 2017, 258, 61–78. [Google Scholar] [CrossRef]
- Yang, X.B.; Yao, Y.Y. Ensemble selector for attribute reduction. Appl. Soft Comput. 2018, 70, 1–11. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, K.Y.; Song, J.J.; Fujita, H.; Qian, Y.H. Attribute group for attribute reduction. Inf. Sci. 2020, 535, 64–80. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, X.J.; Yang, X.B.; Wang, P.X.; Mi, J.S. Ensemble-based neighborhood attribute reduction: A multigranularity view. Complexity 2019, 2019, 2048934. [Google Scholar] [CrossRef]
- Liu, K.Y.; Yang, X.B.; Fujita, H.; Liu, D.; Yang, X.; Qian, Y.H. An efficient selector for multi-granularity attribute reduction. Inf. Sci. 2019, 505, 457–472. [Google Scholar] [CrossRef]
- Rao, X.S.; Yang, X.B.; Yang, X.; Chen, X.J.; Liu, D.; Qian, Y.H. Quickly calculating reduct: An attribute relationship based approach. Knowl. Based Syst. 2020, 200, 106014. [Google Scholar] [CrossRef]
- Song, J.J.; Tsang, E.C.C.; Chen, D.G.; Yang, X.B. Minimal decision cost reduct in fuzzy decision-theoretic rough set model. Knowl. Based Syst. 2017, 126, 104–112. [Google Scholar] [CrossRef]
- Wang, Y.B.; Chen, X.J.; Dong, K. Attribute reduction via local conditional entropy. Int. J. Mach. Learn. Cybern. 2019, 10, 3619–3634. [Google Scholar] [CrossRef]
- Li, J.Z.; Yang, X.B.; Song, X.N.; Li, J.H.; Wang, P.X.; Yu, D.J. Neighborhood attribute reduction: A multi-criterion approach. Int. J. Mach. Learn. Cybern. 2019, 10, 731–742. [Google Scholar] [CrossRef]
- Jia, X.Y.; Shang, L.; Zhou, B.; Yao, Y.Y. Generalized attribute reduct in rough set theory. Knowl. Based Syst. 2016, 91, 204–218. [Google Scholar] [CrossRef]
- Yao, Y.Y.; Zhao, Y.; Wang, J. On reduct construction algorithms. Trans. Comput. Sci. II 2008, 5150, 100–117. [Google Scholar]
- Ju, H.R.; Yang, X.B.; Yu, H.L.; Li, T.J.; Du, D.J.; Yang, J.Y. Cost-sensitive rough set approach. Inf. Sci. 2016, 355, 282–298. [Google Scholar]
- Yang, X.B.; Xu, S.P.; Dou, H.L.; Song, X.N.; Yu, H.L.; Yang, J.Y. Multigranulation rough set: A multiset based strategy. Int. J. Comput. Intell. Syst. 2017, 10, 277–292. [Google Scholar] [CrossRef] [Green Version]
- Dunne, K.; Cunningham, P.; Azuaje, F. Solutions to instability problems with sequential wrapper-based approaches to feature selection. J. Mach. Learn. Res. 2002, 1–22. Available online: https://www.scss.tcd.ie/publications/tech-reports/reports.02/TCD-CS-2002-28.pdf (accessed on 8 January 2021).
- Zhang, M.; Zhang, L.; Zou, J.F.; Yao, C.; Xiao, H.; Liu, Q.; Wang, J.; Wang, D.; Wang, C.G.; Guo, Z. Evaluating reproducibility of differential expression discoveries in microarray studies by considering correlated molecular changes. Bioinformatics 2009, 25, 1662–1668. [Google Scholar] [CrossRef]
- Naik, A.K.; Kuppili, V.; Edla, D.R. A new hybrid stability measure for feature selection. Appl. Intell. 2020, 50, 3471–3486. [Google Scholar] [CrossRef]
- Nogueira, S.; Sechidis, K.; Brown, G. On the stability of feature selection algorithms. J. Mach. Learn. Res. 2018, 18, 1–54. [Google Scholar]
- Jiang, Z.H.; Yang, X.B.; Yu, H.L.; Liu, D.; Wang, P.X.; Qian, Y.H. Accelerator for multi-granularity attribute reduction. Knowl. Based Syst. 2019, 177, 145–158. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Dou, H.L.; Song, J.J.; Wang, P.X.; Yang, X.B.; Qian, Y.H. Data-guided multi-granularity selector for attribute reduction. Appl. Intell. 2020. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, W.L.; Jiang, Y.L.; Zeng, Z.Y. Quick attribute reduct algorithm for neighborhood rough set model. Inf. Sci. 2014, 271, 65–81. [Google Scholar] [CrossRef]
- Qian, Y.H.; Liang, J.Y.; Pedrycz, W.; Dang, C.Y. Positive approximation: An accelerator for attribute reduction in rough set theory. Artif. Intell. 2010, 174, 597–618. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.Y.; Yang, X.B.; Yu, H.L.; Fujita, H. Supervised information granulation strategy for attribute reduction. Int. J. Mach. Learn. Cybern. 2020, 11, 2149–2163. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Liu, K.Y.; Yang, X.B.; Yu, H.L.; Qian, Y.H. Accelerator for supervised neighborhood based attribute reduction. Int. J. Approx. Reason. 2019, 119, 122–150. [Google Scholar] [CrossRef]
ID | Data Sets | Samples | Attributes | Decision Classes |
---|---|---|---|---|
1 | Breast Cancer Wisconsin (Diagnostic) | 569 | 30 | 2 |
2 | Connectionist Bench (Sonar, Mines vs. Rocks) | 208 | 60 | 2 |
3 | Dermatology | 366 | 34 | 6 |
4 | Fertility | 100 | 9 | 2 |
5 | Forest Type Mapping | 523 | 27 | 4 |
6 | Glass Identification | 214 | 9 | 6 |
7 | Ionosphere | 351 | 34 | 2 |
8 | Libras Movement | 360 | 90 | 15 |
9 | LSVT Voice Rehabilitation | 126 | 256 | 2 |
10 | Lymphography | 98 | 18 | 3 |
11 | QSAR Biodegradation | 1055 | 41 | 2 |
12 | Quality Assessment of Digital Colposcopies | 287 | 62 | 2 |
13 | Statlog (Australian Credit Approval) | 690 | 14 | 2 |
14 | Statlog (Heart) | 270 | 13 | 2 |
15 | Statlog (Image Segmentation) | 2310 | 18 | 7 |
16 | Steel Plates Faults | 1941 | 33 | 2 |
17 | Synthetic Control Chart Time Series | 600 | 60 | 6 |
18 | Urban Land Cover | 675 | 147 | 9 |
19 | Waveform Database Generator (Version 1) | 5000 | 21 | 3 |
20 | Wine | 178 | 13 | 3 |
ID | Akashata’s Measure | Nogueira’s Measure | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FGS | AGAR | ESAR | DAR | DGAR | HMAR | FGS | AGAR | ESAR | DAR | DGAR | HMAR | |
1 | 0.4376 | 0.1822 | 0.8602 | 0.3218 | 0.3419 | 0.4379 | 0.4126 | 0.1617 | 0.8632 | 0.3596 | 0.3782 | 0.3935 |
2 | 0.1090 | 0.1077 | 0.9400 | 0.5233 | 0.0610 | 0.6964 | 0.1048 | 0.1035 | 0.8333 | 0.5142 | 0.0580 | 0.6305 |
3 | 0.5212 | 0.2893 | 0.9529 | 0.3992 | 0.5202 | 0.4933 | 0.4292 | 0.2442 | 0.7882 | 0.3311 | 0.3976 | 0.4234 |
4 | 0.4074 | 0.2442 | 0.7732 | 0.4601 | 0.2255 | 0.7157 | 0.4246 | 0.2516 | 0.9042 | 0.6065 | 0.3546 | 0.7274 |
5 | 0.2006 | 0.2457 | 0.8084 | 0.6306 | 0.3716 | 0.2745 | 0.3719 | 0.2588 | 0.9089 | 0.7023 | 0.5784 | 0.4402 |
6 | 0.2766 | 0.2041 | 1.0000 | 0.5754 | 0.5463 | 0.2908 | 0.4257 | 0.2417 | 1.0000 | 0.7776 | 0.7135 | 0.4389 |
7 | 0.2562 | 0.1213 | 0.6545 | 0.2986 | 0.2818 | 0.4416 | 0.2236 | 0.0991 | 0.7011 | 0.2799 | 0.2858 | 0.3750 |
8 | 0.3152 | 0.0923 | 0.7122 | 0.3102 | 0.2372 | 0.5412 | 0.2992 | 0.1091 | 0.8588 | 0.2949 | 0.3304 | 0.4629 |
9 | 0.2964 | 0.2914 | 0.9826 | 0.3807 | 0.8621 | 0.7349 | 0.3072 | 0.3025 | 0.9178 | 0.3876 | 0.7324 | 0.7257 |
10 | 0.4763 | 0.2500 | 0.9130 | 0.1723 | 0.3761 | 0.4964 | 0.3882 | 0.2097 | 0.8933 | 0.1275 | 0.2685 | 0.4013 |
11 | 0.8079 | 0.4508 | 0.5458 | 0.6669 | 0.3626 | 0.8083 | 0.7016 | 0.4217 | 0.7529 | 0.7824 | 0.6108 | 0.7129 |
12 | 0.3981 | 0.3877 | 1.0000 | 0.5867 | 0.4768 | 0.7933 | 0.3981 | 0.3877 | 1.0000 | 0.5867 | 0.4983 | 0.7933 |
13 | 0.5537 | 0.3129 | 0.6449 | 0.9493 | 0.4495 | 0.5537 | 0.7037 | 0.3278 | 0.8548 | 0.9793 | 0.6331 | 0.7037 |
14 | 0.7561 | 0.3097 | 0.9282 | 0.1332 | 0.5158 | 0.4592 | 0.7194 | 0.2896 | 0.9705 | 0.3318 | 0.5467 | 0.4139 |
15 | 0.5620 | 0.3396 | 1.0000 | 0.8977 | 0.4722 | 0.6383 | 0.7296 | 0.3506 | 1.0000 | 0.9576 | 0.6279 | 0.8050 |
16 | 0.9583 | 0.8941 | 0.8927 | 0.8628 | 0.8781 | 0.9716 | 0.9657 | 0.9049 | 0.9345 | 0.8371 | 0.8237 | 0.9788 |
17 | 0.3443 | 0.2441 | 0.9470 | 0.5399 | 0.6782 | 0.7534 | 0.3335 | 0.2346 | 0.8720 | 0.5330 | 0.6001 | 0.6988 |
18 | 0.2927 | 0.2494 | 0.9594 | 0.5600 | 0.3615 | 0.6861 | 0.2902 | 0.2471 | 0.9002 | 0.5467 | 0.3359 | 0.6338 |
19 | 0.2991 | 0.1192 | 0.8556 | 0.3828 | 0.4245 | 0.5248 | 0.3200 | 0.1135 | 0.9288 | 0.4304 | 0.4613 | 0.5132 |
20 | 0.3349 | 0.2423 | 0.8913 | 0.4258 | 0.5288 | 0.4619 | 0.2801 | 0.2020 | 0.8854 | 0.4095 | 0.4471 | 0.3938 |
Average | 0.4302 | 0.2789 | 0.8631 | 0.5039 | 0.4486 | 0.5887 | 0.4414 | 0.2731 | 0.8884 | 0.5388 | 0.4841 | 0.5833 |
ID | HMAR & FGS | HMAR & AGAR | HMAR & ESAR | HMAR & DAR | HMAR & DGAR |
---|---|---|---|---|---|
1 | 0.0009 | 1.4036 | −0.4909 | 0.3610 | 0.2807 |
2 | 5.3867 | 5.4643 | −0.2592 | 0.3309 | 10.4126 |
3 | −0.0535 | 0.7050 | −0.4823 | 0.2359 | −0.0517 |
4 | 0.7570 | 1.9303 | −0.0743 | 0.5556 | 2.1740 |
5 | 0.3685 | 0.1175 | −0.6604 | −0.5647 | −0.2613 |
6 | 0.0516 | 0.4252 | −0.7092 | −0.4946 | −0.4676 |
7 | 0.7240 | 2.6415 | −0.3252 | 0.4790 | 0.5669 |
8 | 0.7169 | 4.8644 | −0.2401 | 0.7447 | 1.2817 |
9 | 1.4792 | 1.5223 | −0.2521 | 0.9302 | −0.1475 |
10 | 0.0422 | 0.9860 | −0.4563 | 1.8810 | 0.3199 |
11 | 0.0006 | 0.7931 | 0.4809 | 0.2121 | 1.2290 |
12 | 0.9929 | 1.0460 | −0.2067 | 0.3523 | 0.6638 |
13 | 0.0000 | 0.7695 | −0.1414 | −0.4167 | 0.2319 |
14 | −0.3926 | 0.4829 | −0.5053 | 2.4467 | −0.1097 |
15 | 0.1357 | 0.8795 | −0.3617 | −0.2890 | 0.3518 |
16 | 0.0139 | 0.0868 | 0.0884 | 0.1261 | 0.1065 |
17 | 1.1881 | 2.0861 | −0.2044 | 0.3954 | 0.1109 |
18 | 1.3438 | 1.7509 | −0.2849 | 0.2252 | 0.8982 |
19 | 0.7546 | 3.4040 | −0.3866 | 0.3710 | 0.2362 |
20 | 0.3791 | 0.9061 | −0.4818 | 0.0848 | −0.1265 |
Average | 0.6945 | 1.6132 | −0.2977 | 0.3984 | 0.8850 |
ID | HMAR & FGS | HMAR & AGAR | HMAR & ESAR | HMAR & DAR | HMAR & DGAR |
---|---|---|---|---|---|
1 | −0.0463 | 1.4333 | −0.5441 | 0.0943 | 0.0406 |
2 | 5.0186 | 5.0904 | −0.2434 | 0.2261 | 9.8752 |
3 | −0.0134 | 0.7341 | −0.4628 | 0.2786 | 0.0651 |
4 | 0.7132 | 1.8906 | −0.1956 | 0.1992 | 1.0515 |
5 | 0.1837 | 0.7006 | −0.5157 | −0.3733 | −0.2390 |
6 | 0.0310 | 0.8158 | −0.5611 | −0.4356 | −0.3848 |
7 | 0.6772 | 2.7850 | −0.4651 | 0.3397 | 0.3121 |
8 | 0.5472 | 3.2431 | −0.4610 | 0.5697 | 0.4009 |
9 | 1.3624 | 1.3986 | −0.2093 | 0.8720 | −0.0092 |
10 | 0.0339 | 0.9138 | −0.5507 | 2.1466 | 0.4946 |
11 | 0.0161 | 0.6907 | −0.0531 | −0.0888 | 0.1672 |
12 | 0.9929 | 1.0460 | −0.2067 | 0.3523 | 0.5920 |
13 | 0.0000 | 1.1466 | −0.1768 | −0.2814 | 0.1115 |
14 | −0.4247 | 0.4291 | −0.5735 | 0.2473 | −0.2430 |
15 | 0.1034 | 1.2963 | −0.1950 | −0.1594 | 0.2820 |
16 | 0.0136 | 0.0816 | 0.0474 | 0.1693 | 0.1883 |
17 | 1.0954 | 1.9788 | −0.1986 | 0.3112 | 0.1644 |
18 | 1.1841 | 1.5649 | −0.2959 | 0.1593 | 0.8867 |
19 | 0.6039 | 3.5202 | −0.4474 | 0.1923 | 0.1125 |
20 | 0.4060 | 0.9493 | −0.5552 | −0.0383 | −0.1191 |
Average | 0.6249 | 1.5854 | −0.3432 | 0.2391 | 0.6875 |
ID | FGS | AGAR | ESAR | DAR | DGAR | HMAR |
---|---|---|---|---|---|---|
1 | 2.2809 | 2.0935 | 2.5233 | 0.5945 | 12.6258 | 1.9478 |
2 | 0.1373 | 0.1221 | 0.3528 | 0.0722 | 1.5168 | 0.2124 |
3 | 0.2474 | 0.2100 | 0.5156 | 0.1093 | 2.2288 | 0.2640 |
4 | 0.0161 | 0.0137 | 0.0217 | 0.0050 | 0.0724 | 0.0175 |
5 | 1.7524 | 1.3389 | 1.5266 | 0.3328 | 7.2682 | 1.3123 |
6 | 0.0252 | 0.0185 | 0.0318 | 0.0058 | 0.3710 | 0.0252 |
7 | 0.2694 | 0.2641 | 0.4229 | 0.0919 | 1.8400 | 0.2420 |
8 | 2.5036 | 1.6398 | 6.7867 | 0.4981 | 13.3538 | 1.7414 |
9 | 0.2086 | 0.2201 | 2.2628 | 0.2399 | 16.6473 | 2.0956 |
10 | 0.0150 | 0.0130 | 0.0420 | 0.0070 | 0.1270 | 0.0251 |
11 | 25.7033 | 23.6295 | 29.4748 | 5.7647 | 122.9442 | 21.1693 |
12 | 0.0505 | 0.0541 | 0.9240 | 0.0259 | 0.8575 | 0.0823 |
13 | 1.4953 | 1.0072 | 1.1725 | 0.2832 | 5.9333 | 1.0844 |
14 | 0.0740 | 0.0652 | 0.1114 | 0.0220 | 0.3521 | 0.0762 |
15 | 28.7973 | 22.0794 | 22.8940 | 5.7499 | 305.8399 | 20.2366 |
16 | 11.7424 | 16.2051 | 68.6182 | 8.1615 | 154.9014 | 16.4106 |
17 | 2.1993 | 1.9011 | 1.1649 | 1.0003 | 23.8315 | 0.7656 |
18 | 8.9002 | 8.0912 | 9.4483 | 5.9042 | 141.7593 | 6.5005 |
19 | 142.1194 | 112.4183 | 120.0497 | 32.7325 | 632.6569 | 103.9153 |
20 | 0.0286 | 0.0256 | 0.0480 | 0.0114 | 0.1828 | 0.0360 |
Average | 11.4283 | 9.5705 | 13.4196 | 3.0806 | 72.2655 | 8.9080 |
ID | HMAR & FGS | HMAR & AGAR | HMAR & ESAR | HMAR & DAR | HMAR & DGAR |
---|---|---|---|---|---|
1 | −0.1460 | −0.0696 | −0.2281 | 2.2765 | −0.8457 |
2 | 0.5477 | 0.7397 | −0.3978 | 1.9413 | −0.8600 |
3 | 0.0673 | 0.2570 | −0.4879 | 1.4144 | −0.8816 |
4 | 0.0871 | 0.2828 | −0.1936 | 2.4795 | −0.7579 |
5 | −0.2512 | −0.0199 | −0.1404 | 2.9433 | −0.8194 |
6 | 0.0006 | 0.3646 | −0.2060 | 3.3309 | −0.9320 |
7 | −0.1015 | −0.0838 | −0.4278 | 1.6345 | −0.8685 |
8 | −0.3044 | 0.0620 | −0.7434 | 2.4965 | −0.8696 |
9 | 9.0439 | 8.5205 | −0.0739 | 7.7355 | −0.8741 |
10 | 0.6782 | 0.9374 | −0.4014 | 2.6051 | −0.8020 |
11 | −0.1764 | −0.1041 | −0.2818 | 2.6722 | −0.8278 |
12 | 0.6299 | 0.5203 | −0.9110 | 2.1718 | −0.9041 |
13 | −0.2748 | 0.0766 | −0.0752 | 2.8284 | −0.8172 |
14 | 0.0303 | 0.1697 | −0.3155 | 2.4605 | −0.7835 |
15 | −0.2973 | −0.0835 | −0.1161 | 2.5195 | −0.9338 |
16 | 0.3976 | 0.0127 | −0.7608 | 1.0107 | −0.8941 |
17 | −0.6519 | −0.5973 | −0.3428 | −0.2347 | −0.9679 |
18 | −0.2696 | −0.1966 | −0.3120 | 0.1010 | −0.9541 |
19 | −0.2688 | −0.0756 | −0.1344 | 2.1747 | −0.8357 |
20 | 0.2592 | 0.4060 | −0.2507 | 2.1671 | −0.8031 |
Average | 0.4500 | 0.5559 | −0.3400 | 2.3364 | −0.8616 |
ID | FGS | AGAR | ESAR | DAR | DGAR | HMAR |
---|---|---|---|---|---|---|
1 | 0.9609 | 0.9637 | 0.9647 | 0.9629 | 0.9614 | 0.9634 |
2 | 0.7669 | 0.7726 | 0.7703 | 0.7965 | 0.7879 | 0.7390 |
3 | 0.9273 | 0.8990 | 0.9344 | 0.9262 | 0.9488 | 0.8744 |
4 | 0.8635 | 0.8630 | 0.8600 | 0.8655 | 0.8710 | 0.8790 |
5 | 0.8762 | 0.8816 | 0.8792 | 0.8820 | 0.8801 | 0.8770 |
6 | 0.6426 | 0.6540 | 0.6399 | 0.6399 | 0.6408 | 0.6422 |
7 | 0.8567 | 0.8454 | 0.8633 | 0.8633 | 0.8666 | 0.8461 |
8 | 0.6982 | 0.6879 | 0.7250 | 0.6739 | 0.7125 | 0.5939 |
9 | 0.8199 | 0.8202 | 0.7544 | 0.8127 | 0.7437 | 0.6838 |
10 | 0.7050 | 0.7278 | 0.7292 | 0.7005 | 0.7886 | 0.7164 |
11 | 0.8570 | 0.8564 | 0.8543 | 0.8562 | 0.8553 | 0.8557 |
12 | 0.7514 | 0.7514 | 0.7842 | 0.7512 | 0.7295 | 0.7393 |
13 | 0.8436 | 0.8499 | 0.8435 | 0.8435 | 0.8435 | 0.8436 |
14 | 0.8181 | 0.8106 | 0.8056 | 0.8031 | 0.8183 | 0.8120 |
15 | 0.9526 | 0.9518 | 0.9528 | 0.9527 | 0.9527 | 0.9524 |
16 | 0.9991 | 0.9982 | 0.9785 | 0.9958 | 0.9984 | 0.9996 |
17 | 0.8189 | 0.8497 | 0.5089 | 0.7855 | 0.6984 | 0.6687 |
18 | 0.7314 | 0.7281 | 0.7631 | 0.7368 | 0.7354 | 0.7235 |
19 | 0.7937 | 0.7923 | 0.8113 | 0.8058 | 0.7984 | 0.7935 |
20 | 0.9563 | 0.9516 | 0.9103 | 0.9598 | 0.9646 | 0.9337 |
Average | 0.8320 | 0.8328 | 0.8166 | 0.8307 | 0.8298 | 0.8069 |
ID | HMAR & FGS | HMAR & AGAR | HMAR & ESAR | HMAR & DAR | HMAR & DGAR |
---|---|---|---|---|---|
1 | 0.0026 | −0.0004 | −0.0014 | 0.0005 | 0.0021 |
2 | −0.0363 | −0.0435 | −0.0406 | −0.0722 | −0.0621 |
3 | −0.0571 | −0.0273 | −0.0642 | −0.0560 | −0.0785 |
4 | 0.0180 | 0.0185 | 0.0221 | 0.0156 | 0.0092 |
5 | 0.0009 | −0.0052 | −0.0025 | −0.0056 | −0.0036 |
6 | −0.0007 | −0.0180 | 0.0036 | 0.0036 | 0.0022 |
7 | −0.0124 | 0.0008 | −0.0199 | −0.0200 | −0.0236 |
8 | −0.1494 | −0.1367 | −0.1808 | −0.1187 | −0.1665 |
9 | −0.1659 | −0.1663 | −0.0935 | −0.1585 | −0.0805 |
10 | 0.0161 | −0.0157 | −0.0175 | 0.0226 | −0.0916 |
11 | −0.0015 | −0.0008 | 0.0017 | −0.0005 | 0.0006 |
12 | −0.0161 | −0.0161 | −0.0573 | −0.0159 | 0.0135 |
13 | 0.0000 | −0.0074 | 0.0002 | 0.0002 | 0.0002 |
14 | −0.0075 | 0.0018 | 0.0080 | 0.0111 | −0.0077 |
15 | −0.0001 | 0.0007 | −0.0004 | −0.0003 | −0.0002 |
16 | 0.0005 | 0.0014 | 0.0216 | 0.0038 | 0.0012 |
17 | −0.1835 | −0.2130 | 0.3139 | −0.1487 | −0.0426 |
18 | −0.0108 | −0.0063 | −0.0519 | −0.0181 | −0.0162 |
19 | −0.0003 | 0.0015 | −0.0219 | −0.0153 | −0.0062 |
20 | −0.0235 | −0.0187 | 0.0258 | −0.0271 | −0.0320 |
Average | −0.0314 | −0.0325 | −0.0078 | −0.0300 | −0.0291 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, W.; Chen, Y.; Shi, J.; Yu, H.; Yang, X. Ensemble and Quick Strategy for Searching Reduct: A Hybrid Mechanism. Information 2021, 12, 25. https://doi.org/10.3390/info12010025
Yan W, Chen Y, Shi J, Yu H, Yang X. Ensemble and Quick Strategy for Searching Reduct: A Hybrid Mechanism. Information. 2021; 12(1):25. https://doi.org/10.3390/info12010025
Chicago/Turabian StyleYan, Wangwang, Yan Chen, Jinlong Shi, Hualong Yu, and Xibei Yang. 2021. "Ensemble and Quick Strategy for Searching Reduct: A Hybrid Mechanism" Information 12, no. 1: 25. https://doi.org/10.3390/info12010025
APA StyleYan, W., Chen, Y., Shi, J., Yu, H., & Yang, X. (2021). Ensemble and Quick Strategy for Searching Reduct: A Hybrid Mechanism. Information, 12(1), 25. https://doi.org/10.3390/info12010025