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Abstract: Attribute reduction is commonly referred to as the key topic in researching rough set.
Concerning the strategies for searching reduct, though various heuristics based forward greedy
searchings have been developed, most of them were designed for pursuing one and only one charac-
teristic which is closely related to the performance of reduct. Nevertheless, it is frequently expected
that a justifiable searching should explicitly involves three main characteristics: (1) the process of
obtaining reduct with low time consumption; (2) generate reduct with high stability; (3) acquire
reduct with competent classification ability. To fill such gap, a hybrid based searching mechanism
is designed, which takes the above characteristics into account. Such a mechanism not only adopts
multiple fitness functions to evaluate the candidate attributes, but also queries the distance between
attributes for determining whether two or more attributes can be added into the reduct simultane-
ously. The former may be useful in deriving reduct with higher stability and competent classification
ability, and the latter may contribute to the lower time consumption of deriving reduct. By comparing
with 5 state-of-the-art algorithms for searching reduct, the experimental results over 20 UCI data sets
demonstrate the effectiveness of our new mechanism. This study suggests a new trend of attribute
reduction for achieving a balance among various characteristics.

Keywords: attribute reduction; ensemble selector; rough set; stability

1. Introduction

Attribute reduction [1,2], as one filter feature selection technique emerges in rough
set [3–5], plays a crucial role in the field of data dimension reduction. Generally speaking,
given a constraint, the purpose of attribute reduction is to obtain an appropriate attribute
subset through some specific searchings.

In general, if the form of the attribute reduction is fully defined, then how to derive
such qualified reduct is the key. Up to now, exhaustion and heuristics based searchings are
two frequently used strategies. Though the optimal reduct can be obtained through using
exhaustion, the time consumption is frequently too high to be accepted because exhaustion
is designed for finding all reducts. For such reason, the heuristics based searching [6,7]
has been paid much attention to for its low complexity.

As a poster child of heuristic searching, forward greedy [8] is effective. However,
some limitations can also be observed in forward greedy searching. On the one hand,
the elapsed time of obtaining reduct may be higher with dramatically increasing volume of
data [9]. For instance, if we are facing high-dimensional data [10,11], then for each iteration
in the process of forward greedy searching, one and only one attribute is selected and
immediately, the times of iterations may be greater. On the other hand, in the processes
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of most of the forward greedy searchings, each candidate attribute is evaluated based on
one and only one fitness function, i.e., one measure with respect to the form of attribute
reduction is calculated for each candidate attribute. Obviously, such device is only the
single-view [12,13] based evaluation and then it may not be applicable to the stability
requirement of selecting attribute.

By considering what has been discussed above and the learning task, it is not difficult
to emphasize that a reasonable algorithm for deriving reduct should be equipped with the
following important characteristics.

(1) Low time consumption of deriving reduct. This is the first perspective which should
be considered in designing algorithm, especially when large-scale and high-dimensional
data appear.

(2) High stability of derived reduct. A reduct with low stability indicates that such reduct
is susceptible if data perubation happens, and then it may be unsuitable for further
data processing.

(3) Competent classification of derived reduct. Attribute reduction can be regarded as
an important step of data pre-processing, and then it does expect that the obtained
reduct will offer competent performance if the classification task is explored.

Presently, to the best of our knowledge, most of the previous approaches for search-
ing reduct mainly focus on one and only one of the above characteristics. For example,
Chen et al. [14] have proposed an attribute group approach for calculating reduct based
on the consideration of the relationship among attributes. Such approach consists of two
main phases: (1) raw attributes are divided into different groups; (2) in the process of
searching reduct, only the attributes in the group contain at least one attribute in the
potential reduct should be evaluated. From this point of view, such process can reduce
the times of evaluating candidate attributes, it follows that the elapsed time of deriving
reduct may be decreased. Though Chen et al.’s attribute group has achieved success for
low time consumption of deriving reduct, it may not be suitable for generating reduct with
high stability. This is mainly because: (1) in such approach, each candidate attribute is still
evaluated based on one and only one fitness function [13,15], which will lead to ignore the
distribution of the samples; (2) the groups of attributes strongly depend on the process
of K-means, which will result in some degrees of randomness for adding appropriate
attributes into the potential reduct.

To overcome the above limitations, a new hybrid mechanism will be developed in
this paper, where multiple characteristics are considered simultaneously. Firstly, to obtain
the reduct with high stability, the ensemble selector [13,16] will be introduced into our
approach, in which each attribute can be fully evaluated with respect to multiple fitness
functions. Secondly, it is worth noting that the usage of ensemble selector will imply higher
time consumption. Therefore, the dissimilarity relationship among attributes obtained by
using the distance between attributes will be further employed, by which multiple different
attributes can be selected and added into the potential reduct for each iteration in the
process of deriving reduct. This is the core for effectively reducing the time consumption.
In additional, following the researches shown in Refs. [13,17], it can be observed that the
reducts obtained by both ensemble selector and dissimilarity are frequently equipped with
competent generalization performance. For such reason, our hybrid mechanism is also
expected to be with justifiable classification ability. The specific details of our mechanism
will be shown in the following Figure 1.

In Figure 1,

(1) each candidate attribute will be evaluated from different perspectives by using multi-
ple fitness functions;

(2) an appropriate attribute can be obtained by adopting the mechanism of ensemble
selector based on the results of the attribute evaluations;

(3) one or more attributes, which bear a striking dissimilarity to the attribute obtained
in (2), will also be selected;

(4) more than one attributes can be added into the potential reduct simultaneously.
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Figure 1. The framework of hybrid mechanism.

The main contribution of this research can be summarized as the following aspects:
(1) observing that most of the state-of-the-art approaches are designed for pursuing one and
only one characteristic which is closely related to the performance of reduct, a hybrid based
searching mechanism is proposed to make a trade-off between the stability of derived
reduct and the elapsed time of searching reduct; (2) though the neighborhood rough set
based reduct is conducted by using the hybrid based searching mechanism in the context of
this paper, it worth to point out that our hybrid based searching mechanism is independent
of rough set model and then can be employed to any other attribute reduction.

The remainder of this paper is organized as follows. In Section 2, we will review
the basic notions related to attribute reduction and some used measures. A new hybrid
mechanism for searching reduct will be presented in Section 3. Comparative experimental
results and the corresponding analyses will be shown in Section 4. This paper will come to
an end with conclusions and future perspectives in Section 5.

2. Preliminaries
2.1. Attribute Reduction

Presently, a variety of definitions of attribute reduction [18,19] have been proposed
with respect to different requirements [20,21]. Through extracting the commonness of those
definitions, Yao et al. [22], have proposed a general form which is shown in the following
Definition 1.

Definition 1. Given a decision system DS =< U, AT, D >, U is a nonempty finite set of
samples, AT is a nonempty finite set of raw attributes and D is a decision attribute. Supposing that
ρ-constraint is a constraint based on a considered measure ρ such that ρ : P(AT)→ R (P(AT) is
the power set of AT,R is the set of all real numbers), then ∀A ⊆ AT, A is referred to as a reduct if
and only if

(1) A satisfies the ρ-constraint;
(2) ∀B ⊂ A, B does not satisfy the ρ-constraint.

Following Definition 1, the open problem is how to obtain a qualified reduct. As one of
the widely used heuristic algorithms, the forward greedy searching [8,23] has been favored
by many researchers. The details of such strategy are shown in the following Algorithm 1.

In Algorithm 1, fitness value can be obtained by a fitness function such that φ: AT → R,
it follows that the importance of each attribute can be quantitatively characterized. It must
be noticed that the form of fitness function is closely related to the measure ρ used in
given constraint. For example, if the constraint is required to preserve the measure of
approximation quality, then φ(a) can be regarded as the variation of the approximation
quality [24] if a is added into the pool set.

It is not difficult to reveal that the process of Algorithm 1 contains two main phases.
The first phase, adds the qualified attributes into the potential reduct. The second phase,
removes redundant attributes from the potential reduct. Obviously, this process fits
the two requirements shown in Definition 1. The time complexity of Algorithm 1 is
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O(|U|2 × |AT|2), where |U| and |AT| denote the numbers of samples and raw
attributes, respectively.

Algorithm 1. Forward Greedy Searching (FGS)

Input: Decision system DS , ρ-constraint and fitness function φ.
Output: One reduct A.
Step 1. Calculate the measure-value ρ(AT) over the raw attribute set AT;
Step 2. A = ∅;
Step 3. Do

(1) Evaluate each candidate attribute a ∈ AT − A by calculating φ(a);
(2) Select a qualified attribute b ∈ AT − A with the justifiable evaluation;
(3) A = A ∪ {b};
(4) Calculate ρ(A);

Until ρ-constraint is satisfied;
// Adding the qualified attributes into the potential~reduct

Step 4. Do
(1) ∀a ∈ A, calculate ρ(A− {a});
(2) If ρ-constraint is satisfied

A = A− {a};
End

Until A does not change or |A| =1;
// Removing redundant attributes from the potential~reduct

Step 5. Return A.

2.2. Stability Measure

Generally speaking, the stability of reduct can be regarded as the sensitivity of the
attribute preferences if an algorithm produces differences in training sets drawn from the
same generating distribution. Therefore, the stability of reduct can be quantified as the
changing degree of reducts if sample disturbance happens.

To quantitatively characterize the concept of the stability, a series of measures [25–28]
has been proposed. Furthermore, to make the comparisons among different measures more
reasonable, Nogueira et al. [28] suggested five desirable properties that a stability measure
should possess: (1) fully defined; (2) strict monotonicity; (3) bounds; (4) maximum stability;
(5) correction for chance. Therefore, with a critical reviewing of the previous stability mea-
sures, it is not difficult to observe that only the measures designed by Akashata et al. [27]
and Nogueira et al. [28] fully possess the above five properties. Such two measures will be
shown in the following Definitions 2 and 3.

Definition 2. Given a set of reducts Z = {A1, A2, ..., AM}, supposing that AT is a raw attribute
set, the stability measure proposed by Akashata with respect to Z is defined as:

Φ̂(Z) = 1
M(M + 1)

M

∑
i=1

M

∑
j=1,j 6=i

ψ(Ai, Aj), (1)

ψ(Ai, Aj) = α

 Iij − |Ai |2
|AT|

|Ai| − |Ai |2
|AT|

+ β

(
Iij − Eij

Mij − µij

)
, (2)

where Iij, Eij, µij and Mij represent the intersection, expected intersection, minimum intersection
and maximum intersection of attributes with respect to Ai and Aj, respectively. If |Ai| = |Aj|,
then α = 1 and β = 0; otherwise, α = 0 and β = 1.
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Definition 3. Given a set of reducts Z = {A1, A2, ..., AM}, supposing that AT is a raw attribute
set and k is the mean value of the numbers of attributes in reducts, the stability measure proposed
by Nogueira with respect to Z is defined as:

Φ̂(Z) = 1−

 1
|AT| ∑a∈AT s2

a

k
|AT|

(
1− k

|AT|

)
, (3)

where s2
a is unbiased sample variance of the selected attribute a.

Following the above discussions, Akashata’s measure shown in Definition 2 is based
on the similarity over reducts. Nogueira’s measure shown in Definition 3 is based on the
frequency over attributes. It is not difficult to reveal that both of them take the advantage
of the differences among reducts for obtaining the quantified value. The former pay much
attention to the overall differences between two different reducts, while the latter focuses
on the difference of each attribute among multiple reducts.

3. A New Hybrid Mechanism for Attribute Reduct
3.1. Dissimilarity for Attribute Reduction

Through FGS, we can observe that one and only one appropriate attribute will be
selected and added into the potential reduct for each iteration of evaluating candidate
attributes. Therefore, if the number of attributes is large, then the elapsed time of deriving
reduct may still be unacceptable. For such reason, the strategy of searching reduct by con-
sidering the dissimilarity between attributes has been proposed by Rao et al. [17], which can
simultaneously add more than one attribute into the potential reduct for each iteration of
evaluating candidate attributes. The detail is shown in the following Algorithm 2.

Algorithm 2. Dissimilarity for Attribute Reduction (DAR)

Input: Decision systemDS , ρ-constraint, fitness function φ and number of attributes in one
combination t.

Output: One reduct A.
Step 1. Calculate the measure-value ρ(AT) over the raw attribute set AT;
Step 2. Calculate the dissimilarities between attributes such that Ψ = {∆(a, b) : ∀a, b ∈ AT};

// ∆(a, b) denotes the distance between attributes a and b
Step 3. A = ∅;
Step 4. Do

(1) Evaluate each candidate attribute a ∈ AT − A by calculating φ(a);
(2) Select a qualified attribute b ∈ AT − A with the justifiable evaluation;
(3) Obtain Ψb = {∆(b, c) : ∀c ∈ AT − (A ∪ {b})} from Ψ;
(4) By Ψb, derive attribute subset B with t− 1 attributes, in which the attributes

bear the striking dissimilarity to b;
(5) A = A ∪ {b} ∪ B;

// Selection of a combination of~attributes
(6) Calculate ρ(A);

Until ρ-constraint is satisfied;
Step 5. Do

(1) ∀a ∈ A, calculate ρ(A− {a});
(2) If ρ-constraint is satisfied

A = A− {a};
End

Until A does not change or |A| = 1;
Step 6. Return A.

Compared with FGS, Algorithm 2 can significantly reduce the elapsed time of ob-
taining reduct. The time complexity of Algorithm 2 is O(|U|2 × |AT| × m), in which
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m = b |AT|
t c. Obviously, O(|U|2 × |AT| × m) < O(|U|2 × |AT|2), i.e., the complexity of

Algorithm 2 is lower. However, for the reason that more than one attribute can be selected
during each iteration, then Algorithm 2 may derive reduct with lower stability.

3.2. Ensemble Selector for Attribute Reduction

As what has been shown in Section 2.1, the fitness function is actually used to evaluate
the importance of the candidate attributes. However, it must be pointed out that only one
fitness function cannot be used to characterize the importance of the candidate attributes
with multiple views. Furthermore, the using of only one fitness function does not take the
distribution of the samples into account and then it will lead to the instability of deriving
reduct. To fill such gap, Yang and Yao [13] have proposed the ensemble selector for attribute
reduction, which employs multiple fitness functions for evaluating the candidate attributes.
Immediately, the voting mechanism can be used for selecting the appropriate attribute.
The detailed process will be shown in the following Algorithm 3.

Algorithm 3. Ensemble Selector for Attribute Reduction (ESAR)

Input: Decision system DS , ρ-constraint and fitness function φ1, φ2, ..., φs.
Output: One reduct A.
Step 1. Calculate the measure-value ρ(AT) over the raw attribute set AT;
Step 2. A = ∅;
Step 3. Do

(1) Let multiset T = ∅;
(2) For i = 1 to s

(i) Evaluate each candidate attribute a ∈ AT − A by calculating φi(a);
(ii) Select a qualified attribute bi ∈ AT − A with the justifiable evaluation;
(iii) T = T ∪ {bi};

End
(3) Select an attribute b ∈ T with the maximal frequency of occurrences;

// Ensemble selector mechanism
(4) A = A ∪ {b};
(5) Calculate ρ(A);

Until ρ-constraint is satisfied;
Step 4. Do

(1) ∀a ∈ A, calculate ρ(A− {a});
(2) If ρ-constraint is satisfied

A = A− {a};
End

Until A does not change or |A| = 1;
Step 5. Return A.

By comparing with both Algorithms 1 and 2, the time complexity of Algorithm 3 is
significantly increased. This is mainly because multiple fitness functions have been used.
Without loss of generality, the time complexity of Algorithm 3 is O(|U|2 × |AT|2 × s),
in which s is the number of used fitness functions.

3.3. A New Hybrid Mechanism for Attribute Reduction

Reviewing the researches of attribute reduction, most of the previous approaches pay
much attention to improving the performance of one aspect. For example, compared with
Algorithm 1, Algorithm 2 can significantly reduce the elapsed time of calculating reduct
while Algorithm 3 can generate reduct with higher stability. However, as what have been
pointed out in Sections 3.1 and 3.2, the above two algorithms are highly possible to lead
to performance degradation in some other aspects, e.g., Algorithm 2 may derive reduct
with lower stability because more than one attribute have been selected for each iteration
and Algorithm 3 may be with higher time consumption because multiple fitness functions
should be used.
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Without loss of generality, it is expected to design an algorithm for deriving reduct
with the following three characteristics.

(1) Low time consumption of deriving reduct. Though many accelerators have been pro-
posed for quickly deriving reduct, the dissimilarity approach presented in Algorithm
2 will be used in our research, this is mainly because such algorithm will provide
us reduct with low stability, and then it is possible for us to optimize it for quickly
obtaining reduct with high stability.

(2) High stability of derived reduct. To search reduct with high stability, the ensemble
selector presented in Algorithm 3 will be introduced into our research. However,
though such algorithm may contribute to the reduct with high stability, it frequently
result in a high time consumption of obtaining reduct. Then it is possible for us to
optimize such algorithm for quickly obtaining reduct with high stability.

(3) Competent classification of derived reduct. In the studies of Yang et al. [13] and
Rao et al. [17], it has been pointed out that the reducts obtained by using Algorithms 2
and 3 possess the justifiable classification ability. For such reason, it is possible that
the combination of those two algorithms can also preserve competent classification
ability.

Therefore, a new hybrid mechanism for attribute reduction will be proposed. The spe-
cific process is shown in the following Algorithm 4.

Algorithm 4. Hybrid Mechanism for Attribute Reduction (HMAR)

Input: Decision system DS , ρ-constraint, fitness function φ1, φ2, ..., φs and number of
attributes in one combination t.

Output: One reduct A.
Step 1. Calculate the measure-value ρ(AT) over the raw attribute set AT;
Step 2. Calculate the dissimilarities between attributes such that Ψ = {∆(a, b) : ∀a, b ∈ AT};

// ∆(a, b) denotes the distance between attributes a and b
Step 3. A = ∅;
Step 4. Do

(1) Let multiset T = ∅;
(2) For i = 1 to s

(i) Evaluate each candidate attribute a ∈ AT − A by calculating φi(a);
(ii) Select a qualified attribute bi ∈ AT − A with the justifiable evaluation;
(iii) T = T ∪ {bi};

End
(3) Select an attribute b ∈ T with the maximal frequency of occurrences;

// Ensemble selector~mechanism
(4) Obtain Ψb = {∆(b, c) : ∀c ∈ AT − (A ∪ {b})} from Ψ;
(5) By Ψb, derive attribute subset B with t− 1 attributes, in which the attributes

bear the striking dissimilarity to b;
// Using the main thinking of the dissimilarity~approach

(6) A = A ∪ {b} ∪ B;
(7) Calculate ρ(A);

Until ρ-constraint is satisfied;
Step 4. Do

(1) ∀a ∈ A, calculate ρ(A− {a});
(2) If ρ-constraint is satisfied

A = A− {a};
End

Until A does not change or |A| =1 ;
Step 5. Return A.

In Algorithm 4, on the one hand, ensemble selector is employed, which can provide
higher stability. On the other hand, the dissimilarity between candidate attributes is also
taken into account, and then multiple attributes can be added into the potential reduct
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simultaneously, which contributes to the lower time complexity. Therefore, the time com-
plexity of Algorithm 4 is O(∑s

i=1 (|U|2 × |AT| ×m)) = O(|U|2 × |AT| ×m× s), in which
m = b |AT|

t c and s is the number of used fitness functions. Obviously,O(|U|2× |AT| ×m) <
O(|U|2 × |AT| ×m× s) < O(|U|2 × |AT|2 × s), i.e., though the time complexity of Algo-
rithm 4 is higher than that of Algorithm 2, compared with that of Algorithm 3, it is lower.

4. Experimental Analysis
4.1. Data Sets and Configuration

To demonstrate the effectiveness of the algorithm proposed in this paper, 20 UCI data
sets have been selected to conduct the experiments. The detailed description of those data
sets will be shown in the following Table 1. All the experiments have been carried out
on a personal computer with Windows 10, AMD R7 3750H CPU (2.30 GHz) and 8.00 GB
memory. The programming language is Matlab R2017a.

Table 1. Data sets description.

ID Data Sets Samples Attributes Decision Classes

1 Breast Cancer Wisconsin (Diagnostic) 569 30 2
2 Connectionist Bench (Sonar, Mines vs. Rocks) 208 60 2
3 Dermatology 366 34 6
4 Fertility 100 9 2
5 Forest Type Mapping 523 27 4
6 Glass Identification 214 9 6
7 Ionosphere 351 34 2
8 Libras Movement 360 90 15
9 LSVT Voice Rehabilitation 126 256 2
10 Lymphography 98 18 3
11 QSAR Biodegradation 1055 41 2
12 Quality Assessment of Digital Colposcopies 287 62 2
13 Statlog (Australian Credit Approval) 690 14 2
14 Statlog (Heart) 270 13 2
15 Statlog (Image Segmentation) 2310 18 7
16 Steel Plates Faults 1941 33 2
17 Synthetic Control Chart Time Series 600 60 6
18 Urban Land Cover 675 147 9
19 Waveform Database Generator (Version 1) 5000 21 3
20 Wine 178 13 3

4.2. Experimental Setup

In the following experiments, the neighborhood rough set [8,10,29] will be employed
to define forms of attribute reduction. Note that the 5-fold cross-validation is also used
in our experiments to test the performances of reducts. In other words, for each data
set, the set of raw samples is randomly partitioned into 5 groups with the same size,
the 4 groups compose the training samples for computing reducts and the remaining
1 group is regarded as the testing samples. The threshold of approximation quality is set to
be 0.95 (95%). Such value is beneficial to avoid a series of problems caused by too strict
constraints, and reduce the time consumption of the experiments.

Furthermore, five state-of-the-art algorithms are selected for comparing with our
proposed algorithm. The above five algorithms are shown as following.

(1) Forward Greedy Searching (FGS) [8].
(2) Attribute Group for Attribute Reduction (AGAR) [14].
(3) Ensemble Selector for Attribute Reduction (ESAR) [13].
(4) Dissimilarity for Attribute Reduction (DAR) [17].
(5) Data-Guidance for Attribute Reduction (DGAR) [30].
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4.3. Comparisons of Stability

In this section, the stability of reducts obtained by using different algorithms will be
compared with each other. The detailed results will be shown in the following Table 2.

Table 2. Stability of reducts based on different measures.

ID
Akashata’s Measure Nogueira’s Measure

FGS AGAR ESAR DAR DGAR HMAR FGS AGAR ESAR DAR DGAR HMAR

1 0.4376 0.1822 0.8602 0.3218 0.3419 0.4379 0.4126 0.1617 0.8632 0.3596 0.3782 0.3935
2 0.1090 0.1077 0.9400 0.5233 0.0610 0.6964 0.1048 0.1035 0.8333 0.5142 0.0580 0.6305
3 0.5212 0.2893 0.9529 0.3992 0.5202 0.4933 0.4292 0.2442 0.7882 0.3311 0.3976 0.4234
4 0.4074 0.2442 0.7732 0.4601 0.2255 0.7157 0.4246 0.2516 0.9042 0.6065 0.3546 0.7274
5 0.2006 0.2457 0.8084 0.6306 0.3716 0.2745 0.3719 0.2588 0.9089 0.7023 0.5784 0.4402
6 0.2766 0.2041 1.0000 0.5754 0.5463 0.2908 0.4257 0.2417 1.0000 0.7776 0.7135 0.4389
7 0.2562 0.1213 0.6545 0.2986 0.2818 0.4416 0.2236 0.0991 0.7011 0.2799 0.2858 0.3750
8 0.3152 0.0923 0.7122 0.3102 0.2372 0.5412 0.2992 0.1091 0.8588 0.2949 0.3304 0.4629
9 0.2964 0.2914 0.9826 0.3807 0.8621 0.7349 0.3072 0.3025 0.9178 0.3876 0.7324 0.7257
10 0.4763 0.2500 0.9130 0.1723 0.3761 0.4964 0.3882 0.2097 0.8933 0.1275 0.2685 0.4013
11 0.8079 0.4508 0.5458 0.6669 0.3626 0.8083 0.7016 0.4217 0.7529 0.7824 0.6108 0.7129
12 0.3981 0.3877 1.0000 0.5867 0.4768 0.7933 0.3981 0.3877 1.0000 0.5867 0.4983 0.7933
13 0.5537 0.3129 0.6449 0.9493 0.4495 0.5537 0.7037 0.3278 0.8548 0.9793 0.6331 0.7037
14 0.7561 0.3097 0.9282 0.1332 0.5158 0.4592 0.7194 0.2896 0.9705 0.3318 0.5467 0.4139
15 0.5620 0.3396 1.0000 0.8977 0.4722 0.6383 0.7296 0.3506 1.0000 0.9576 0.6279 0.8050
16 0.9583 0.8941 0.8927 0.8628 0.8781 0.9716 0.9657 0.9049 0.9345 0.8371 0.8237 0.9788
17 0.3443 0.2441 0.9470 0.5399 0.6782 0.7534 0.3335 0.2346 0.8720 0.5330 0.6001 0.6988
18 0.2927 0.2494 0.9594 0.5600 0.3615 0.6861 0.2902 0.2471 0.9002 0.5467 0.3359 0.6338
19 0.2991 0.1192 0.8556 0.3828 0.4245 0.5248 0.3200 0.1135 0.9288 0.4304 0.4613 0.5132
20 0.3349 0.2423 0.8913 0.4258 0.5288 0.4619 0.2801 0.2020 0.8854 0.4095 0.4471 0.3938

Average 0.4302 0.2789 0.8631 0.5039 0.4486 0.5887 0.4414 0.2731 0.8884 0.5388 0.4841 0.5833

To further reveal the differences between the stability of reducts obtained by using
HMAR and other five algorithms from the statistical perspective. The changing ratio
related to the stability of reducts obtained by different measures will be shown in the
following Tables 3 and 4.

Following Tables 2–4, it is not difficult to observe that the reduct obtained by using
HMAR is relatively high in terms of Akashat’s and Nogueira’s measures in most cases.
Take “Ionosphere” data set and Akashata’s measure as an example, the stability of reducts
which obtained by using FGS, AGAR, ESAR , DAR, DGAR and HMAR are 0.2562, 0.1213,
0.6545, 0.2986, 0.2818 and 0.4416, respectively. Obviously, though the stability of the reduct
obtained by using HMAR is lower than that by using ESAR which can generate reduct
with high stability, compared with FGS, AGAR, DAR and DGAR, the obtained reduct by
using HMAR is equipped with higher stability.

Furthermore, from the perspective of changing ratio related to the stability, the above
conclusion can be further verified. For example, by using Akashata’s measure and
Nogueira’s measure, the changing ratios of stability are 0.7240, 2.6415, −0.3252, 0.4790,
0.5669 and 0.6772, 2.7850, −0.4651, 0.3397, 0.3121, respectively. Through observing these
values, it can be observed that compared with FGS, AGAR, DAR and DGAR, the changing
ratios related to stability of the reduct obtained by using HMAR are greater than 0. It means
that the stability of the reduct obtained by using HMAR is higher than that by using those
four approaches.
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Table 3. The changing ratio related to stability of reducts based on Akashata’s measure.

ID HMAR & FGS HMAR & AGAR HMAR & ESAR HMAR & DAR HMAR & DGAR

1 0.0009 1.4036 −0.4909 0.3610 0.2807
2 5.3867 5.4643 −0.2592 0.3309 10.4126
3 −0.0535 0.7050 −0.4823 0.2359 −0.0517
4 0.7570 1.9303 −0.0743 0.5556 2.1740
5 0.3685 0.1175 −0.6604 −0.5647 −0.2613
6 0.0516 0.4252 −0.7092 −0.4946 −0.4676
7 0.7240 2.6415 −0.3252 0.4790 0.5669
8 0.7169 4.8644 −0.2401 0.7447 1.2817
9 1.4792 1.5223 −0.2521 0.9302 −0.1475

10 0.0422 0.9860 −0.4563 1.8810 0.3199
11 0.0006 0.7931 0.4809 0.2121 1.2290
12 0.9929 1.0460 −0.2067 0.3523 0.6638
13 0.0000 0.7695 −0.1414 −0.4167 0.2319
14 −0.3926 0.4829 −0.5053 2.4467 −0.1097
15 0.1357 0.8795 −0.3617 −0.2890 0.3518
16 0.0139 0.0868 0.0884 0.1261 0.1065
17 1.1881 2.0861 −0.2044 0.3954 0.1109
18 1.3438 1.7509 −0.2849 0.2252 0.8982
19 0.7546 3.4040 −0.3866 0.3710 0.2362
20 0.3791 0.9061 −0.4818 0.0848 −0.1265

Average 0.6945 1.6132 −0.2977 0.3984 0.8850

Table 4. The changing ratio related to stability of reducts based on Nogueira’s measure.

ID HMAR & FGS HMAR & AGAR HMAR & ESAR HMAR & DAR HMAR & DGAR

1 −0.0463 1.4333 −0.5441 0.0943 0.0406
2 5.0186 5.0904 −0.2434 0.2261 9.8752
3 −0.0134 0.7341 −0.4628 0.2786 0.0651
4 0.7132 1.8906 −0.1956 0.1992 1.0515
5 0.1837 0.7006 −0.5157 −0.3733 −0.2390
6 0.0310 0.8158 −0.5611 −0.4356 −0.3848
7 0.6772 2.7850 −0.4651 0.3397 0.3121
8 0.5472 3.2431 −0.4610 0.5697 0.4009
9 1.3624 1.3986 −0.2093 0.8720 −0.0092

10 0.0339 0.9138 −0.5507 2.1466 0.4946
11 0.0161 0.6907 −0.0531 −0.0888 0.1672
12 0.9929 1.0460 −0.2067 0.3523 0.5920
13 0.0000 1.1466 −0.1768 −0.2814 0.1115
14 −0.4247 0.4291 −0.5735 0.2473 −0.2430
15 0.1034 1.2963 −0.1950 −0.1594 0.2820
16 0.0136 0.0816 0.0474 0.1693 0.1883
17 1.0954 1.9788 −0.1986 0.3112 0.1644
18 1.1841 1.5649 −0.2959 0.1593 0.8867
19 0.6039 3.5202 −0.4474 0.1923 0.1125
20 0.4060 0.9493 −0.5552 −0.0383 −0.1191

Average 0.6249 1.5854 −0.3432 0.2391 0.6875

4.4. Comparisons of Elapsed Time

In this section, the elapsed time of obtaining reducts and the changing ratio related to
the elapsed time of deriving reducts will be shown in the following Tables 5 and 6.
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Table 5. The elapsed time of obtaining the reducts (seconds).

ID FGS AGAR ESAR DAR DGAR HMAR

1 2.2809 2.0935 2.5233 0.5945 12.6258 1.9478
2 0.1373 0.1221 0.3528 0.0722 1.5168 0.2124
3 0.2474 0.2100 0.5156 0.1093 2.2288 0.2640
4 0.0161 0.0137 0.0217 0.0050 0.0724 0.0175
5 1.7524 1.3389 1.5266 0.3328 7.2682 1.3123
6 0.0252 0.0185 0.0318 0.0058 0.3710 0.0252
7 0.2694 0.2641 0.4229 0.0919 1.8400 0.2420
8 2.5036 1.6398 6.7867 0.4981 13.3538 1.7414
9 0.2086 0.2201 2.2628 0.2399 16.6473 2.0956

10 0.0150 0.0130 0.0420 0.0070 0.1270 0.0251
11 25.7033 23.6295 29.4748 5.7647 122.9442 21.1693
12 0.0505 0.0541 0.9240 0.0259 0.8575 0.0823
13 1.4953 1.0072 1.1725 0.2832 5.9333 1.0844
14 0.0740 0.0652 0.1114 0.0220 0.3521 0.0762
15 28.7973 22.0794 22.8940 5.7499 305.8399 20.2366
16 11.7424 16.2051 68.6182 8.1615 154.9014 16.4106
17 2.1993 1.9011 1.1649 1.0003 23.8315 0.7656
18 8.9002 8.0912 9.4483 5.9042 141.7593 6.5005
19 142.1194 112.4183 120.0497 32.7325 632.6569 103.9153
20 0.0286 0.0256 0.0480 0.0114 0.1828 0.0360

Average 11.4283 9.5705 13.4196 3.0806 72.2655 8.9080

Table 6. The changing ratio related to the elapsed time of deriving reducts.

ID HMAR & FGS HMAR & AGAR HMAR & ESAR HMAR & DAR HMAR & DGAR

1 −0.1460 −0.0696 −0.2281 2.2765 −0.8457
2 0.5477 0.7397 −0.3978 1.9413 −0.8600
3 0.0673 0.2570 −0.4879 1.4144 −0.8816
4 0.0871 0.2828 −0.1936 2.4795 −0.7579
5 −0.2512 −0.0199 −0.1404 2.9433 −0.8194
6 0.0006 0.3646 −0.2060 3.3309 −0.9320
7 −0.1015 −0.0838 −0.4278 1.6345 −0.8685
8 −0.3044 0.0620 −0.7434 2.4965 −0.8696
9 9.0439 8.5205 −0.0739 7.7355 −0.8741

10 0.6782 0.9374 −0.4014 2.6051 −0.8020
11 −0.1764 −0.1041 −0.2818 2.6722 −0.8278
12 0.6299 0.5203 −0.9110 2.1718 −0.9041
13 −0.2748 0.0766 −0.0752 2.8284 −0.8172
14 0.0303 0.1697 −0.3155 2.4605 −0.7835
15 −0.2973 −0.0835 −0.1161 2.5195 −0.9338
16 0.3976 0.0127 −0.7608 1.0107 −0.8941
17 −0.6519 −0.5973 −0.3428 −0.2347 −0.9679
18 −0.2696 −0.1966 −0.3120 0.1010 −0.9541
19 −0.2688 −0.0756 −0.1344 2.1747 −0.8357
20 0.2592 0.4060 −0.2507 2.1671 −0.8031

Average 0.4500 0.5559 −0.3400 2.3364 −0.8616

With deep investigation of Tables 5 and 6, it is not difficult to reveal that the time
consumption of obtaining reduct by using HMAR is significantly lower than that by using
ESAR. Take “Forest Type Mapping” data set as an example, the elapsed time of obtaining
reducts by using FGS, AGAR, ESAR , DAR, DGAR and HMAR, 0.0161, 0.0137, 0.0217,
0.0050, 0.0724 and 0.0175 s are required, respectively. Obviously, though the elapsed time
of obtaining reduct by using HMAR is higher than that by using FGS, AGAR and DAR,
compare with that by using ESAR, the elapsed time of obtaining reduct by using HMAR
is lower.
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Furthermore, from the perspective of changing ratio related to the time consumption
the above conclusion can be further verified. For example, the changing ratio of the elapsed
time of obtaining reduct the by using HMAR relative to by using ESAR is−0.4879. It means
that the elapsed time of obtaining reduct by using HMAR is significantly lower than that
by using ESAR.

4.5. Comparisons of Classification Performances

In this section, the classification accuracies of reducts obtained by six different algo-
rithms will be compared. KNN classifier is employed to test the classification performance.
It is worth noting that the parameter k used in KNN classifier is 5. The corresponding
results and the value of the changing ratio related to the classification accuracy of deriving
reducts will be presented in the following Tables 7 and 8, respectively.

Table 7. Classification accuracies based on KNN classifier (k = 5).

ID FGS AGAR ESAR DAR DGAR HMAR

1 0.9609 0.9637 0.9647 0.9629 0.9614 0.9634
2 0.7669 0.7726 0.7703 0.7965 0.7879 0.7390
3 0.9273 0.8990 0.9344 0.9262 0.9488 0.8744
4 0.8635 0.8630 0.8600 0.8655 0.8710 0.8790
5 0.8762 0.8816 0.8792 0.8820 0.8801 0.8770
6 0.6426 0.6540 0.6399 0.6399 0.6408 0.6422
7 0.8567 0.8454 0.8633 0.8633 0.8666 0.8461
8 0.6982 0.6879 0.7250 0.6739 0.7125 0.5939
9 0.8199 0.8202 0.7544 0.8127 0.7437 0.6838

10 0.7050 0.7278 0.7292 0.7005 0.7886 0.7164
11 0.8570 0.8564 0.8543 0.8562 0.8553 0.8557
12 0.7514 0.7514 0.7842 0.7512 0.7295 0.7393
13 0.8436 0.8499 0.8435 0.8435 0.8435 0.8436
14 0.8181 0.8106 0.8056 0.8031 0.8183 0.8120
15 0.9526 0.9518 0.9528 0.9527 0.9527 0.9524
16 0.9991 0.9982 0.9785 0.9958 0.9984 0.9996
17 0.8189 0.8497 0.5089 0.7855 0.6984 0.6687
18 0.7314 0.7281 0.7631 0.7368 0.7354 0.7235
19 0.7937 0.7923 0.8113 0.8058 0.7984 0.7935
20 0.9563 0.9516 0.9103 0.9598 0.9646 0.9337

Average 0.8320 0.8328 0.8166 0.8307 0.8298 0.8069

Through observing Tables 7 and 8, it is not difficult to observe that our proposed
approach will not lead to poorer classification accuracy compared with other approaches.
Take “Dermatology” data set as an example, if k = 5, then the classification accuracies of
reducts obtained by using FGS, AGAR, ESAR , DAR, DGAR and HMAR, are 0.9273, 0.8990,
0.9344, 0.9262, 0.9488 and 0.8744, respectively.

Furthermore, from the perspective of changing ratio related to the classification accu-
racies the above conclusion can be further verified. For example, the changing ratios of
classification accuracies are −0.0571, −0.0273, −0.0642, −0.0560 and −0.0758. Through
observing the these values, it can be observed that the changing ratios of classification
accuracy of obtained reduct by using HMAR relative to that by using other five approaches
are between −0.1 and 0.1. It means that our proposed approach performs similarly with
other compared algorithms in classification ability.
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Table 8. The changing ratio related to classification accuracies based on KNN classifier.

ID HMAR & FGS HMAR & AGAR HMAR & ESAR HMAR & DAR HMAR & DGAR

1 0.0026 −0.0004 −0.0014 0.0005 0.0021
2 −0.0363 −0.0435 −0.0406 −0.0722 −0.0621
3 −0.0571 −0.0273 −0.0642 −0.0560 −0.0785
4 0.0180 0.0185 0.0221 0.0156 0.0092
5 0.0009 −0.0052 −0.0025 −0.0056 −0.0036
6 −0.0007 −0.0180 0.0036 0.0036 0.0022
7 −0.0124 0.0008 −0.0199 −0.0200 −0.0236
8 −0.1494 −0.1367 −0.1808 −0.1187 −0.1665
9 −0.1659 −0.1663 −0.0935 −0.1585 −0.0805

10 0.0161 −0.0157 −0.0175 0.0226 −0.0916
11 −0.0015 −0.0008 0.0017 −0.0005 0.0006
12 −0.0161 −0.0161 −0.0573 −0.0159 0.0135
13 0.0000 −0.0074 0.0002 0.0002 0.0002
14 −0.0075 0.0018 0.0080 0.0111 −0.0077
15 −0.0001 0.0007 −0.0004 −0.0003 −0.0002
16 0.0005 0.0014 0.0216 0.0038 0.0012
17 −0.1835 −0.2130 0.3139 −0.1487 −0.0426
18 −0.0108 −0.0063 −0.0519 −0.0181 −0.0162
19 −0.0003 0.0015 −0.0219 −0.0153 −0.0062
20 −0.0235 −0.0187 0.0258 −0.0271 −0.0320

Average −0.0314 −0.0325 −0.0078 −0.0300 −0.0291

4.6. Discussion of Experimental Results

In Section 4.3, the stability of reduct is discussed. In most cases, the reducts obtained
by using ESAR and HAMR have relatively high stability. Take “Ionosphere” data set and
Akashata’s measure as the example, the stability of reducts which obtained by using FGS,
AGAR, ESAR , DAR, DGAR and HMAR are 0.2562, 0.1213, 0.6545, 0.2986, 0.2818 and
0.4416, respectively.

In Section 4.4, the time consumption of obtaining reduct is discussed. In most data
sets, the elapsed time of obtaining reduct by using HMAR is less than that by using ESAR.
Take “Forest Type Mapping” data set as an example, the elapsed time of obtaining reducts
by using FGS, AGAR, ESAR , DAR, DGAR and HMAR, 0.0161, 0.0137, 0.0217, 0.0050,
0.0724 and 0.0175 s are required, respectively.

In Section 4.5, the classification ability of reduct is discussed. The reducts obtained by
using FGS, AGAR, ESAR, DAR and HMAR have similar classification ability. Take “Derma-
tology” data set as an example, if KNN classifier with k = 5 is used, then the classification
accuracies of reducts obtained by using FGS, AGAR, ESAR , DAR, DGAR and HMAR, are
0.9273, 0.8990, 0.9344, 0.9262, 0.9488 and 0.8744, respectively.

Obviously, the approach of HMAR which proposed by us can be used to generate
reduct with high stability. Furthermore, compared with the previous approaches which
can generate reducts with high stability, our approach can obtain reduct in lesser time.
Concurrently, it must be pointed out that the reduct obtained by using HMAR is equipped
with justifiable classification ability. Above situations are mainly caused by both the
ensemble selector and the acceleration strategy have been used in our hybrid searching.

5. Conclusions and Future Perspectives

In this paper, through considering multiple characteristics related to the searching
of reduct, a hybrid based searching mechanism has not only been explored but also been
developed. Different from the previous approaches in which only single characteristic is
fully considered, our approach takes the time consumption of deriving reduct, the stability
of the derived reduct and the classification ability offered by the reduct into account,
simultaneously. The experimental results demonstrate that our proposed approach can
make a trade-off between the stability of derived reduct and the elapsed time of searching
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reduct. This is mainly because both the ensemble selector and the acceleration strategy
have been used in our hybrid searching. Moreover, it must be pointed out that the reduct
derived by using our approach can also provide competent classification performance by
comparing with several state-of-the-art approaches. In general, a hybrid based searching
mechanism is proposed by us for attribute reduction considering multiple characteristics,
simultaneously. However, in terms of the time consumption of obtaining reduct and
the classification ability of the obtained reduct, there are some limitations in such two
performances of our approach. Therefore, we will confront the following challenges in the
further research.

(1) The elapsed time of obtaining reducts can be further reduced through combining
some other acceleration strategies [31,32].

(2) Supervised information granulation [33,34] strategy can be further introduced into
our approach for improving the generalization performance offered by the reduct.
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