A New Green Prospective of Non-orthogonal Multiple Access (NOMA) for 5G
Abstract
:1. Introduction
- Extensive classification of research works on NOMA related energy efficient technologies under power and code domain.
- Proposition of strategies for extending the energy efficiency of existing green NOMA schemes incorporating state-of-the-art techniques.
- Identifying challenges and future directions for energy efficient NOMA.
2. Classification of Green NOMA Technologies
3. Power Domain based NOMA
3.1. Resource Allocation
3.1.1. Power Allocation
3.1.2. Joint Schemes
3.2. Radio Frequency (RF) Energy Harvesting
3.3. Interference Mitigation and Cancellation
3.4. Sleep Wake Modes
4. Code Domain Based NOMA
4.1. Sparse Code Multiple Access
4.2. Space Time Block Coding
4.3. Multi User Shared Access
5. Practical Aspects of Deploying Green NOMA
6. Trending Schemes for Energy Efficient NOMA
6.1. Asymmetric Modulation as a Precoding Technique for Self Interference Cancellation
- Incorporating the amount of transmitted power allocated to each user to the amplitude of the symbols in the constellation map such that the power level is proportional to amplitude. The UEs which are located far from the BS will get more power and hence the amplitude of the symbols which are equidistant from the origin will be higher. Hence, for the near UE, the amplitude will be lesser.
- Mapping each user constellations asymmetrically that no two users have the same amplitude and phase. The constellation map of each user will be phase shifted by a predetermined angle which will incorporate a unique mapping to each user.
6.2. Spatial Shift Keying Modulation
6.3. Constellation Shaping
6.4. Ambient Backscatter Communication
6.5. Channel Coding
6.5.1. Low Density Parity Check (LDPC)
6.5.2. Polar Coding
6.6. Caching
6.7. Computing
6.7.1. Cloud Computing
6.7.2. Fog computing
6.7.3. Edge Computing
6.8. Unmanned Aaerial Vehicle (UAV)
6.9. Artificial Intelligence (AI)
6.10. Age of Information (AoI)
6.11. Internet of Things (IoT)
6.12. Tactile Internet(TI)
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviation/Acronym | Definition |
AI | Artificial intelligence |
AoI | Age of Information |
BER | Bit error rate |
BEEM-NOMA | Built in energy efficient modulation based NOMA |
BP | Belief propagation |
BS | Base station |
CA-SCL | CRC-aided SCL |
CCS | Cloud based cloud station |
CoMP | Coordinated multi point networks |
CR | Cognitive radio |
CRC | Cyclic redundancy check |
CSI | Channel state information |
D2D | Device to device |
HCRAN | Heterogeneous cloud radio access network |
IoT | Internet of Things |
INI | Inter-NOMA-interference |
IPMMSE | Interference predicted minimum mean square error |
LDPC | Low density parity check |
LTE | Long-Term Evolution |
MC-NOMA | Multi-carrier NOMA |
MIC | Multiple interference cancellation |
MIMO | Multiple input multiple output |
MISO | Multiple input single output |
M2M | Machine to machine |
M-NOMA | Modulation based NOMA |
MMSE | Minimum mean square error |
mMTC | Massive machine type communication |
NOMA | Non orthogonal multiple access |
OFDMA | Orthogonal frequency division multiple access |
OMA | Orthogonal multiple access |
PBRL | Protograph-based raptor-like |
PS | Power splitting |
QoS | Quality of services |
QPSK | Quadrature phase shift keying |
SC | Successive cancellation |
SCL | Successive cancellation list |
SCPB | Spatially-coupled protograph-based |
SCMA | Sparse code multiple access |
SISO | Single input single output |
SM | Spatial modulation |
SSK | Spatial shift keying |
SWIPT | Simultaneous wireless information and power transfer |
SWIPT-CNOMA | SWIPT assisted cooperative NOMA |
TI | Tactile internet |
TS | Time switching |
T-SIC | Triangular successive interference cancellation |
UAV | Unmanned aerial vehicle |
UAV-BS | UAV based aerial base station |
UE | User equipment |
URRLC | Ultra-reliable low-latency communication |
WPCCNs | Wireless powered cooperative communication networks |
ZF | Zero forcing |
References
- Liu, G.; Jiang, D. 5G: Vision and Requirements for Mobile Communication System towards Year 2020. Chin. J. Eng. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chin, W.H.; Fan, Z.; Haines, R. Emerging Technologies and Research Challenges for 5G Wireless Networks. IEEE Wirel. Commun. 2014, 21, 106–112. [Google Scholar] [CrossRef] [Green Version]
- 5G Wireless Technology|Qualcomm. Available online: https://www.qualcomm.com/invention/5g (accessed on 6 December 2019).
- More than 50 Billion Connected Devices—Taking Connected Devices to Mass Market and Profitability. Available online: https://www.akos-rs.si/files/Telekomunikacije/Digitalna_agenda/Internetni_protokol_Ipv6/More-than-50-billion-connected-devices.pdf (accessed on 6 December 2019).
- Hao, W.; Chu, Z.; Zhou, F.; Yang, S.; Sun, G.; Wong, K.K. Green Communication for NOMA-Based CRAN. IEEE Internet Things J. 2018, 6, 666–678. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, Y.; Choi, J.; Sun, Q.; Elkashlan, M.; I, C.; Poor, H.V. Application of Non-Orthogonal Multiple Access in LTE and 5G Networks. IEEE Commun. Mag. 2017, 55, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.; Kishiyama, Y.; Benjebbour, A.; Nakamura, T.; Li, A.; Higuchi, K. Non-Orthogonal Multiple Access (NOMA) for Cellular Future Radio Access. In Proceedings of the IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, Germany, 2–5 June 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Ding, Z.; Lei, X.; Karagiannidis, G.K.; Schober, R.; Yuan, J.; Bhargava, V.K. A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends. IEEE J. Sel. Areas Commun. 2017, 35, 2181–2195. [Google Scholar] [CrossRef] [Green Version]
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. What Will 5G Be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Aldababsa, M.; Toka, M.; Gökceli, S.; Karabulut Kurt, G.; Kucur, O. A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond. Wirel. Commun. Mob. Comput. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Environmental Impact of Mobile Communications Networks|GSMA. Available online: https://www.gsma.com/publicpolicy/wp-content/uploads/2012/04/environmobilenetworks.pdf (accessed on 10 December 2019).
- Fehske, A.; Fettweis, G.; Malmodin, J.; Biczok, G. The global footprint of mobile communications: The ecological and economic perspective. IEEE Commun. Mag. 2011, 49, 55–62. [Google Scholar] [CrossRef]
- Lubritto, C.; Petraglia, A.; Vetromile, C.; Curcuruto, S.; Logorelli, M.; Marsico, G.; D’Onofrio, A. Energy and environmental aspects of mobile communication systems. Energy 2011, 36. [Google Scholar] [CrossRef] [Green Version]
- Zappone, A. A Survey of Energy-Efficient Techniques for 5G Networks and Challenges Ahead. IEEE J. Sel. Areas Commun. 2016, 34. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.; Khan, L.U.; Yaqoob, I.; Ahmed, E.; Qureshi, M.A.; Ahmed, A. Energy Harvesting in 5G Networks: Taxonomy, Requirements, Challenges, and Future Directions. arXiv. Available online: https://arxiv.org/abs/1910.00785 (accessed on 6 December 2019).
- Fang, F.; Zhang, H.; Cheng, J.; Leung, V. Energy-efficient resource scheduling for NOMA systems with imperfect channel state information. In Proceedings of the IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.M.; Zheng, T.X.; Yang, Q. Energy-Efficient Transmission Design in Non-Orthogonal Multiple Access. IEEE Trans. Veh. Technol. 2017, 66, 2852–2857. [Google Scholar] [CrossRef] [Green Version]
- Fang, F.; Zhang, H.; Cheng, J.; Leung, V.C.M. Energy efficiency of resource scheduling for non-orthogonal multiple access (NOMA) wireless network. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 23–27 May 2016. [Google Scholar]
- Zhu, J.; Wang, J.; Huang, Y.; He, S.; You, X.; Yang, L. On Optimal Power Allocation for Downlink Non-Orthogonal Multiple Access Systems. IEEE J. Sel. Areas Commun. 2017, 35, 2744–2757. [Google Scholar] [CrossRef] [Green Version]
- Fang, F.; Zhang, H.; Cheng, J.; Leung, V.C.M. Energy-Efficient Resource Allocation for Downlink Non-Orthogonal Multiple Access Network. IEEE Trans. Commun. 2016, 64, 3722–3732. [Google Scholar] [CrossRef]
- Lei, L.; Yuan, D.; Värbrand, P. On Power Minimization for Non-orthogonal Multiple Access (NOMA). IEEE Commun. Lett. 2016, 20, 2458–2461. [Google Scholar] [CrossRef] [Green Version]
- Choi, J. Joint Rate and Power Allocation for NOMA with Statistical CSI. IEEE Trans. Commun. 2017, 65, 4519–4528. [Google Scholar] [CrossRef]
- Senel, K.; Tekinay, S. Optimal Power Allocation in NOMA Systems with Imperfect Channel Estimation. In Proceedings of the GLOBECOM 2017–2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017. [Google Scholar] [CrossRef]
- Zamani, M.; Eslami, M.; Khorramizade, M.; Ding, Z. Energy Efficient Power Allocation for NOMA with Imperfect CSI. IEEE Trans. Veh. Technol. 2018, 68, 1009–1013. [Google Scholar] [CrossRef]
- Sun, Q.; Han, S.; I, C.; Pan, Z. Energy efficiency optimization for fading MIMO non-orthogonal multiple access systems. In Proceedings of the IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 2668–2673. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Jiang, C.; Long, K.; Nallanathan, A.; Leung, V.C.M.; Poor, H.V. Energy Efficient Dynamic Resource Optimization in NOMA System. IEEE Trans. Wirel. Commun. 2018, 17, 5671–5683. [Google Scholar] [CrossRef]
- Wei, Z.; Ng, D.W.K.; Yuan, J. Power-Efficient Resource Allocation for MC-NOMA with Statistical Channel State Information. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016. [Google Scholar]
- Ruby, R.; Zhong, S.; Ng, D.W.K.; Wu, K.; Leung, V.C.M. Enhanced Energy-Efficient Downlink Resource Allocation in Green Non-Orthogonal Multiple Access Systems. Comput. Commun. 2019, 139, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.F. Energy efficiency maximization by joint transmission scheduling and resource allocation in downlink NOMA cellular networks. Comput. Netw. 2019, 159, 37–50. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, W.; Xu, H.; Shi, J.; Chen, M. Energy Efficient Non-Orthogonal Multiple Access for Machine-to-Machine Communications. IEEE Commun. Lett. 2017, 21, 817–820. [Google Scholar] [CrossRef]
- Wang, R.; Liu, G.; Zhang, H.; Kang, W.; Tsiftsis, T.; Leung, V.C.M. Resource Allocation for Energy-Efficient NOMA Network Based on Super-Modular Game. In Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; pp. 2474–9133. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, F.; Cheng, J.; Long, K.; Wang, W.; Leung, V.C.M. Energy-Efficient Resource Allocation in NOMA Heterogeneous Networks. IEEE Wirel. Commun. 2018, 25, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Zhai, D.; Zhang, R.; Cai, L.; Li, B.; Jiang, Y. Energy-Efficient User Scheduling and Power Allocation for NOMA-Based Wireless Networks With Massive IoT Devices. IEEE Internet Things J. 2018, 5, 1857–1868. [Google Scholar] [CrossRef]
- Baidas, M.; Bahbahani, Z.; Alsusa, E. User-Association and Channel Assignment in Downlink Multi-Cell NOMA Networks: A Matching-Theoretic Approach. EURASIP J. Wirel. Commun. Netw. 2019. [Google Scholar] [CrossRef] [Green Version]
- Singh, R. Sub-channel assignment and resource scheduling for non-orthogonal multiple access (NOMA) in downlink coordinated multi-point systems. In Proceedings of the 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), Paris, France, 7–9 March 2017. [Google Scholar] [CrossRef]
- Ni, Z.; Chen, Z.; Zhang, Q.; Zhou, C. Analysis of RF Energy Harvesting in Uplink-NOMA IoT-based Network. In Proceedings of the IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Wang, Y. Cooperative Non-Orthogonal Multiple Access with Energy Harvesting. Information 2017, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Perlaza, S.M.; Esnaola, I.; Poor, H.V. Power Allocation Strategies in Energy Harvesting Wireless Cooperative Networks. IEEE Trans. Wirel. Commun. 2014, 13, 846–860. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.H.; Li, Y.; Jiang, Y.; Ma, Y.; Vucetic, B. Distributed Power Splitting for SWIPT in Relay Interference Channels using Game Theory. IEEE Trans. Wirel. Commun. 2014, 14. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Pan, Y.; Xu, W.; Guan, R.; Wang, Y.; Chen, M. Energy efficient resource allocation for machine-to-machine communications with NOMA and energy harvesting. In Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Atlanta, GA, USA, 23 November 2017. [Google Scholar]
- Ha, D.B.; Agrawal, J. Performance Analysis for NOMA Relaying System in Next-Generation Networks with RF Energy Harvesting; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ding, Z.; Elkashlan, M.; Poor, H.V. Cooperative Non-orthogonal Multiple Access With Simultaneous Wireless Information and Power Transfer. IEEE J. Sel. Areas Commun. 2016, 34, 938–953. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Krikidis, I.; Sharif, B.; Poor, H.V. Wireless Information and Power Transfer in Cooperative Networks With Spatially Random Relays. IEEE Trans. Wirel.Commun. 2014, 13, 4440–4453. [Google Scholar] [CrossRef] [Green Version]
- Ulukus, S.; Yener, A.; Erkip, E.; Simeone, O.; Zorzi, M.; Grover, P.; Huang, K. Energy Harvesting Wireless Communications: A Review of Recent Advances. IEEE J. Sel. Areas Commun. 2015, 33, 360–381. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Xu, Y.; Yang, Z.; Xu, P.; Ding, Z. Energy Efficiency Optimization in Full-Duplex User-Aided Cooperative SWIPT NOMA Systems. IEEE Trans. Commun. 2019, 67, 5753–5767. [Google Scholar] [CrossRef]
- Rajaram, A.; Khan, R.; Tharranetharan, S.; Jayakody, D.N.K.; Dinis, R.; Panic, S. Novel SWIPT Schemes for 5G Wireless Networks. Sensors 2019, 19, 1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medepally, B.; Mehta, N.B. Voluntary Energy Harvesting Relays and Selection in Cooperative Wireless Networks. IEEE Trans. Wirel. Commun. 2010, 9, 3543–3553. [Google Scholar] [CrossRef]
- Ye, Y.; Li, Y.; Wang, D.; Lu, G. Power splitting protocol design for the cooperative NOMA with SWIPT. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 31 July 2017. [Google Scholar] [CrossRef]
- Tang, J.; Luo, J.; Liu, M.; So, D.; Alsusa, E.; Chen, G.; Wong, K.K.; Chambers, J. Energy Efficiency Optimization for NOMA with SWIPT. IEEE J. Sel. Top. Signal Process. 2019, 13, 452–466. [Google Scholar] [CrossRef] [Green Version]
- Mehmood, K.; Niaz, M.T.; Kim, H.S. Dynamic Fractional Frequency Reuse Diversity Design for Inter-Cell Interference Mitigation in Non-Orthogonal Multiple Access (NOMA) Multicellular Networks. Wirel. Commun. Mob. Comput. 2018. [Google Scholar] [CrossRef] [Green Version]
- Haci, H.; Zhu, H.; Wang, J. Performance of Non-orthogonal Multiple Access With a Novel Asynchronous Interference Cancellation Technique. IEEE Trans. Commun. 2017, 65, 1319–1335. [Google Scholar] [CrossRef]
- Su, X.; Yu, H.; Kim, W.; Choi, C.; Choi, D. Interference cancellation for non-orthogonal multiple access used in future wireless mobile networks. EURASIP J. Wirel. Commun. Netw. 2016, 231. [Google Scholar] [CrossRef]
- Gandotra, P.; Jain, S. Green NOMA with Multiple Interference Cancellation (MIC) using Sector Based Resource Allocation. IEEE Trans. Netw. Serv. Manag. 2018, 15, 1006–1017. [Google Scholar] [CrossRef]
- E-Letter-September2014.pdf. Available online: http://mmc.committees.comsoc.org/files/2016/04/E-Letter-September2014.pdf (accessed on 22 December 2019).
- Wang, X.; Zhang, H.; Tian, Y.; Ding, Z.; Leung, V.C.M. Locally Cooperative Interference Mitigation for Small Cell Networks with Non-Orthogonal Multiple Access: A Potential Game Approach. In Proceedings of the IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018. [Google Scholar] [CrossRef]
- Jamal, M.N.; Hassan, S.A.; Jayakody, D.N.K.; Rodrigues, J.J.P.C. Efficient Nonorthogonal Multiple Access: Cooperative Use of Distributed Space-Time Block Coding. IEEE Veh.Technol. Mag. 2018, 13, 70–77. [Google Scholar] [CrossRef]
- El-Amine, A.; Iturralde, M.; Haj Hassan, H.A.; Nuaymi, L. A Distributed Q-Learning Approach for Adaptive Sleep Modes in 5G Networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019. [Google Scholar] [CrossRef]
- Odadzic, B.; Dobrilovic, D.; Stojanov, Z.; Odadžić, D. The Cross Layer Model for Wireless Networks Energy Efficiency. Wirl. Commun. Mob. Comput. 2008, 9, 529–542. [Google Scholar] [CrossRef]
- Kang, M.W.; Chung, Y.W. An Efficient Energy Saving Scheme for Base Stations in 5G Networks with Separated Data and Control Planes Using Particle Swarm Optimization. Energies 2017, 10, 1417. [Google Scholar] [CrossRef] [Green Version]
- Feng, M.; Mao, S.; Jiang, T. Base Station ON-OFF Switching in 5G Wireless Networks: Approaches and Challenges. IEEE Wirel. Commun. 2017, 24, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Elsaraf, Z.; Khan, F.; Ahmed, Q. Performance Analysis of Code-Domain NOMA in 5G Communication Systems. In Proceedings of the 2018 ELEKTRO, Mikulov, Czech Republic, 21–23 May 2018. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, X.; Lu, L.; Wu, Y.; Gaoning, H.; Chen, Y. Sparse code multiple access: An energy efficient uplink approach for 5G wireless systems. In Proceedings of the 2014 IEEE Global Communications Conference, Austin, TX, USA, 8–12 December 2014; pp. 4782–4787. [Google Scholar] [CrossRef]
- Tarokh, V.; Jafarkhani, H.; Calderbank, A.R. Space-time block coding for wireless communications: performance results. IEEE J. Sel. Areas Commun. 1999, 17, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Salim, M. Polar Code Appropriateness for Ultra-Reliable and Low-Latency Use Cases of 5G Systems. Int. J. Netw. Distrib. Comput. 2019. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wang, Q.; Hu, Y.; Zhang, C. Energy Consumption of Polar Codes for Wireless Sensor Networks. In International Wireless Internet Conference 2017; Springer: Cham, Switzerland, 2017; pp. 140–149. [Google Scholar] [CrossRef]
- Ercan, F.; Tonnellier, T.; Gross, W.J. Energy-Efficient Hardware Architectures for Fast Polar Decoders. IEEE Trans. Circuits Syst. I Regul. Pap. 2019. [Google Scholar] [CrossRef]
- Richardson, T.; Kudekar, S. Design of Low-Density Parity Check Codes for 5G New Radio. IEEE Commun. Mag. 2018, 56, 28–34. [Google Scholar] [CrossRef]
- Nguyen, T.T.B.; Nguyen Tan, T.; Lee, H. Efficient QC-LDPC Encoder for 5G New Radio. Electronics 2019, 8, 668. [Google Scholar] [CrossRef] [Green Version]
- Maunder, R. A Vision for 5G Channel Coding; AccelerComm White Paper; Accelercomm Ltd.: Southampton, UK, 2016. [Google Scholar]
- Yuan, Z.; Yu, G.; Li, W.; Yuan, Y.; Wang, X.; Xu, J. Multi-User Shared Access for Internet of Things. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016. [Google Scholar] [CrossRef]
- Yeom, J.S.; Chu, E.; Jung, B.C.; Jin, H. Performance Analysis of Diversity-Controlled Multi-User Superposition Transmission for 5G Wireless Networks. Sensors 2018, 18, 536. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless Networks With RF Energy Harvesting: A Contemporary Survey. IEEE Commun. Surv. Tutor. 2015, 17, 757–789. [Google Scholar] [CrossRef] [Green Version]
- Perera, T.; Jayakody, D.N.; Sharma, S.K.; Chatzinotas, S.; Li, J. Simultaneous Wireless Information and Power Transfer (SWIPT): Recent Advances and Future Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 264–302. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Zhou, X. Cutting the last wires for mobile communications by microwave power transfer. IEEE Commun. Mag. 2015, 53, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Wang, X.; Cattley, R.; Gu, F.; Ball, A.D. Energy Harvesting Technologies for Achieving Self-Powered Wireless Sensor Networks in Machine Condition Monitoring: A Review. Sensors 2018, 18, 4113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nintanavongsa, P.; Naderi, M.Y.; Chowdhury, K.R. Medium access control protocol design for sensors powered by wireless energy transfer. In Proceedings of the 2013 IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 150–154. [Google Scholar] [CrossRef]
- Luo, Y.; Pu, L.; Wang, G.; Zhao, Y. RF Energy Harvesting Wireless Communications: RF Environment, Device Hardware and Practical Issues. Sensors 2019, 19, 3010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pehlivan, I.; Coleri Ergen, S. Scheduling of Energy Harvesting for MIMO Wireless Powered Communication Networks. IEEE Commun. Lett. 2018, 23, 152–155. [Google Scholar] [CrossRef] [Green Version]
- Alsharif, M.; Kim, S.; Kuruoğlu, N. Energy Harvesting Techniques for Wireless Sensor Networks/Radio-Frequency Identification: A Review. Symmetry 2019, 11, 865. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Goldsmith, A.J.; Bahai, A. Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE J. Sel. Areas Commun. 2004, 22, 1089–1098. [Google Scholar] [CrossRef]
- Jayaweera, S.K. Virtual MIMO-based cooperative communication for energy-constrained wireless sensor networks. IEEE Trans. Wirel. Commun. 2006, 5, 984–989. [Google Scholar] [CrossRef]
- Wan, Z.G.; Tan, Y.K.; Yuen, C. Review on energy harvesting and energy management for sustainable wireless sensor networks. In Proceedings of the IEEE 13th International Conference on Communication Technology, Jinan, China, 25–28 September 2011; pp. 362–367. [Google Scholar] [CrossRef]
- Sudevalayam, S.; Kulkarni, P. Energy Harvesting Sensor Nodes: Survey and Implications. IEEE Commun. Surv. Tutor. 2011, 13, 443–461. [Google Scholar] [CrossRef] [Green Version]
- Lei, L.; Chang, Z.; Hu, Y.; Yuan, Y.; Chatzinotas, S. Energy-Efficient Resource Optimization with Wireless Power Transfer for Secure NOMA Systems. In Proceedings of the 2018 IEEE/CIC International Conference on Communications in China (ICCC), Beijing, China, 16–18 August 2018; pp. 106–110. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Shi, W.; Wang, C. Energy-Efficient Resource Management in OFDM-Based Cognitive Radio Networks Under Channel Uncertainty. IEEE Trans. Commun. 2015, 63, 3092–3102. [Google Scholar] [CrossRef]
- Ali, Z.; Sidhu, G.A.S.; Waqas, M.; Gao, F.; Jin, S. Achieving energy fairness in multiuser uplink CR transmission. In Proceedings of the 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 3–6 April 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Usama, M.; Erol-Kantarci, M. A Survey on Recent Trends and Open Issues in Energy Efficiency of 5G. Sensors 2019, 19, 3126. [Google Scholar] [CrossRef] [Green Version]
- Klapez, M.; Grazia, C.A.; Casoni, M. Energy Savings of Sleep Modes Enabled by 5G Software-Defined Heterogeneous Networks. In Proceedings of the 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI), Palermo, Italy, 10–13 September 2018. [Google Scholar] [CrossRef]
- Fernández-Fernández, A.; Cervelló-Pastor, C.; Ochoa-Aday, L. Energy Efficiency and Network Performance: A Reality Check in SDN-Based 5G Systems. Energies 2017, 10, 2132. [Google Scholar] [CrossRef] [Green Version]
- Varshney, L.R. Transporting information and energy simultaneously. In Proceedings of the IEEE International Symposium on Information Theory, Toronto, ON, Canada, 6–11 July 2008; pp. 1612–1616. [Google Scholar] [CrossRef] [Green Version]
- Benjebbour, A.; Saito, Y.; Kishiyama, Y.; Li, A.; Harada, A.; Nakamura, T. Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access. In Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems, Naha, Japan, 12–15 November 2013. [Google Scholar] [CrossRef]
- Vien, Q.T.; Le, T.; Barn, B.; Van Ca, P. Optimising energy efficiency of non-orthogonal multiple access for wireless backhaul in heterogeneous cloud radio access network. IET Commun. 2016, 10, 2516–2524. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Zhao, J.; Qin, D.; Li, X.; Li, C.; Luxi, Y. Green Base Station Assignment for NOMA-Enabled HCNs. IEEE Access 2019. [Google Scholar] [CrossRef]
- Shi, J.; Yu, W.; Ni, Q.; Liang, W.; Li, Z.; Xiao, P. Energy Efficient Resource Allocation in Hybrid Non-Orthogonal Multiple Access Systems. IEEE Trans. Commun. 2019, 67, 3496–3511. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Chu, Z.; Sun, H.; Hu, R.; Hanzo, L. Artificial noise aided secure cognitive beamforming for cooperative MISO-NOMA using SWIPT. IEEE J. Sel. Areas Commun. 2017, 36, 918–931. [Google Scholar] [CrossRef]
- Shirvani moghaddam, S. Primary and Secondary Users in Cognitive Radio-Based Wireless Communication Systems; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Luo, C.; Ji, H.; Zhuang, Y.; Zhang, H.; Leung, V. Energy consumption optimization for self-powered IoT networks with non-orthogonal multiple access. Int. J. Commun. Syst. 2019, 33, e4174. [Google Scholar] [CrossRef]
- Hossain, E.; Al-Eryani, Y. Large-Scale NOMA: Promises for Massive Machine-Type Communication. arXiv 2019, arXiv:1910.00785. [Google Scholar]
- Khan, R.; Jayakody, D.N.; Chen, B. Non-orthogonal multiple access: Basic interference management technique. Int. J. Eng. Technol. 2018, 7, 357–361. [Google Scholar] [CrossRef]
- Wang, B.; Dai, L.; Wang, Z.; Ge, N.; Zhou, S. Spectrum and Energy Efficient Beamspace MIMO-NOMA for Millimeter-Wave Communications Using Lens Antenna Array. IEEE J. Sel. Areas Commun. 2017, 35, 2370–2382. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z. Performance Analysis and Design of Non-orthogonal Multiple Access for Wireless Communications. arXiv 2019, arXiv:1910.00946. [Google Scholar]
- Sun, H. Spectral, Energy and Computation Efficiency in Future 5G Wireless Networks. Ph.D. Thesis, Utah State University, Logan, UT, USA, 2019. [Google Scholar]
- Morelos-Zaragoza, R.; Kreb, E. Asymmetric Modulation for Cognitive Radio and Intelligent Environments. In Proceedings of the 2004 Software Defined RadioTechnical Conference and Product Exposition, Phoenix, AZ, USA, 17 November 2004. [Google Scholar]
- Divsalar, D.; Simon, M.; Yuen, J. Trellis Coding with Asymmetric Modulations. IEEE Trans. Commun. 1987, 35, 130–141. [Google Scholar] [CrossRef]
- Khan, R.; Dushantha, N.; Jayakody, D.N.; Sharma, V.; Kumar, V.; Kaur, K.; Chang, Z. A Machine Learning Based Energy-Efficient Non-Orthogonal Multiple Access Scheme. In Proceedings of the International Forum on Strategic Technology, Tomsk, Russia, 14–17 October 2019. [Google Scholar]
- Khan, R.; Jayakody, D.N.; Pervaiz, H.; Tafazolli, R. Modulation Based Non-Orthogonal Multiple Access for 5G Resilient Networks. In Proceedings of the IEEE GlobecomWorkshops (GC Wkshps), Abu Dhabi, UAE, 9–13 December 2018. [Google Scholar] [CrossRef]
- Ramarakula, M. Energy Efficiency and Capacity Analysis for Spatial Modulation in MIMO Systems. Int. J. Emerg. Technol. Innov. Res. 2018, 5, 985–992. [Google Scholar]
- Mesleh, R.; Haas, H.; Sinanovic, S.; Ahn, C.W.; Yun, S. Spatial Modulation. IEEE Trans. Veh. Technol. 2008, 57, 2228–2241. [Google Scholar] [CrossRef]
- Cogen, F.; Aydin, E. Hexagonal Quadrature Amplitude Modulation Aided Spatial Modulation. In Proceedings of the 11th International Conference on Electrical and Electronics Engineering, Bursa, Turkey, 28–30 November 2019. [Google Scholar]
- Siregar, R.F.; Murti, F.W.; Shin, S.Y. Combination of spatial modulation and non-orthogonal multiple access using hybrid detection scheme. In Proceedings of the 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), Milan, Italy, 4–7 July 2017; pp. 476–481. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Z.; Cao, J. NOMA-Based Spatial Modulation. IEEE Access 2017, 5, 3790–3800. [Google Scholar] [CrossRef]
- Li, Q.; Wen, M.; Basar, E.; Poor, H.V.; Chen, F. Spatial Modulation-Aided Cooperative NOMA: Performance Analysis and Comparative Study. IEEE J. Sel. Top. Signal Process. 2019, 13, 715–728. [Google Scholar] [CrossRef]
- Zhong, C.; Hu, X.; Chen, X.; Ng, D.W.K.; Zhang, Z. Spatial Modulation Assisted Multi-Antenna Non-Orthogonal Multiple Access. IEEE Wirel. Commun. 2018, 25, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Humadi, K.; Sulyman, A.; Alsanie, A. Spatial Modulation Concept for Massive Multiuser MIMO Systems. Int. J. Antennas Propag. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Jeganathan, J.; Ghrayeb, A.; Szczecinski, L.; Ceron, A. Space shift keying modulation for MIMO channels. IEEE Trans. Wirel. Commun. 2009, 8, 3692–3703. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Campos, L.A. Coherent Optics for Access Networks; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Qu, Z.; Djordjevic, I.B.; Anderson, J. Two-Dimensional Constellation Shaping in Fiber-Optic Communications. Appl. Sci. 2019, 9, 1889. [Google Scholar] [CrossRef] [Green Version]
- Millar, D.S.; Fehenberger, T.; Koike-Akino, T.; Kojima, K.; Parsons, K. Coded Modulation for Next-Generation Optical Communications. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018. [Google Scholar]
- Rajaram, A.; Jayakody, D.N.K.; Chen, B.; Dinis, R.; Affes, S. Modulation-based Simultaneous Wireless Information and Power Transfer. IEEE Commun. Lett. 2019, 24, 136–140. [Google Scholar] [CrossRef]
- Liu, V.; Parks, A.; Talla, V.; Gollakota, S.; Wetherall, D.; Smith, J.R. Ambient backscatter: Wireless communication out of thin air. ACM SIGCOMM Comput. Commun. Rev. 2013, 43, 39–50. [Google Scholar] [CrossRef]
- Van Huynh, N.; Hoang, D.T.; Lu, X.; Niyato, D.; Wang, P.; Kim, D.I. Ambient Backscatter Communications: A Contemporary Survey. IEEE Commun. Surv. Tutor. 2018, 20, 2889–2922. [Google Scholar] [CrossRef] [Green Version]
- Darsena, D.; Gelli, G.; Verde, F. Cloud-Aided Cognitive Ambient Backscatter Wireless Sensor Networks. IEEE Access 2019, 7, 57399–57414. [Google Scholar] [CrossRef]
- Zeb, S.; Abbas, Q.; Hassan, S.; Mahmood, A.; Zaidi, S.A.R.; Gidlund, M. NOMA Enhanced Backscatter Communication for Green IoT Networks. In Proceedings of the 2019 16th International Symposium on Wireless Communication Systems (ISWCS), Oulu, Finland, 27–30 August 2019. [Google Scholar] [CrossRef] [Green Version]
- Bharadia, D.; Joshi, K.R.; Kotaru, M.; Katti, S. BackFi: High Throughput WiFi Backscatter. ACM SIGCOMM Comput. Commun. Rev. 2015, 45, 283–296. [Google Scholar] [CrossRef]
- Wang, A.; Iyer, V.; Talla, V.; Smith, J.R.; Gollakota, S. FM Backscatter: Enabling Connected Cities and Smart Fabrics. In Proceedings of the 14th USENIX Symposium on Networked Systems Design and Implementatio, Boston, MA, USA, 27–29 March 2017. [Google Scholar]
- Kellogg, B.; Talla, V.; Gollakota, S.; Smith, J.R. Passive Wi-Fi: Bringing Low Power to Wi-Fi Transmissions. In Proceedings of the 13th USENIX Symposium on Networked Systems Design and Implementation, Santa Clara, CA, USA, 16–18 March 2016; pp. 151–164. [Google Scholar]
- Shirvanimoghaddam, M.; Mohammadi, M.S.; Abbas, R.; Minja, A.; Yue, C.; Matuz, B.; Han, G.; Lin, Z.; Liu, W.; Li, Y. Short block-length codes for ultra-reliable low latency communications. IEEE Commun. Mag. 2018, 57, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Niu, K.; Chen, K. CRC-Aided Decoding of Polar Codes. IEEE Commun. Lett. 2012, 16, 1668–1671. [Google Scholar] [CrossRef]
- Alexiou, A. (Ed.) 5G Wireless Technologies; Telecommunications, Institution of Engineering and Technology: London, UK, 2017. [Google Scholar]
- Zheng, X.; Wang, G.; Zhao, Q. A Cache Placement Strategy with Energy Consumption Optimization in Information-Centric Networking. Future Internet 2019, 11, 64. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.; Zhu, K.; Wang, R.; Chen, B.; Dai, C. Energy Efficient Caching in Backhaul-Aware Cellular Networks with Dynamic Content Popularity. Wirel. Commun. Mob. Comput. 2018, 2018. [Google Scholar] [CrossRef]
- Fan, C.; Zhang, T.; Zeng, Z.; Chen, Y. Energy Efficiency Analysis of Cache-Enabled Cellular Networks with Limited Backhaul. Wirel. Commun. Mob. Comput. 2018, 2018. [Google Scholar] [CrossRef]
- Fan, C.; Zhang, T.; Zeng, Z.; Chen, Y. Backhaul Aware Energy Efficiency Analysis of Cache-Enabled Cellular Networks (Invited Paper). In Proceedings of the IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Paschos, G.S.; Gitzenis, S.; Tassiulas, L. The effect of caching in sustainability of large wireless networks. In Proceedings of the 10th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt)m, Paderborn, Germany, 14–18 May 2012; pp. 355–360. [Google Scholar]
- Bhuvaneswari, P.; Nithyanandan, L. Improving Energy Efficiency in Backhaul of Lte-A Network With Base Station Cooperation. Procedia Comput. Sci. 2018, 143, 843–851. [Google Scholar] [CrossRef]
- Qiu, L.; Cao, G. Cache increases the capacity of wireless networks. In Proceedings of the IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016. [Google Scholar] [CrossRef]
- Liu, D.; Chen, B.; Yang, C.; Molisch, A.F. Caching at the wireless edge: design aspects, challenges, and future directions. IEEE Commun. Mag. 2016, 54, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Niesen, U.; Shah, D.; Wornell, G. Caching in wireless networks. In Proceedings of the 2009 IEEE International Symposium on Information Theory, Seoul, South Korea, 28 June–3 July 2009; pp. 2111–2115. [Google Scholar] [CrossRef]
- Cloud, Fog, and Edge Computing: 3 Differences That Matter—DZone Cloud. Available online: https://dzone.com/articles/cloud-vs-fog-vs-edge-computing-3-differences-that (accessed on 25 December 2019).
- Berl, A.; Gelenbe, E.; Di Girolamo, M.; Giuliani, G.; Meer, H.; Dang, M.; Pentikousis, K. Energy-Efficient Cloud Computing. Comput. J. 2010, 53. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Wu, Y.; Hu, R.; Wang, Y.; Wong, K.K. Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks. IEEE Netw. 2018. [Google Scholar] [CrossRef]
- Peng, M.; Li, Y.; Jiang, J.; Li, J.; Wang, C. Heterogeneous Cloud Radio Access Networks: A New Perspective for Enhancing Spectral and Energy Efficiencies. IEEE Wirel. Commun. 2014, 21. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Peng, M.; Ding, Z.; Wang, W.; Poor, H.V. Cluster Content Caching: An Energy-Efficient Approach in Cloud Radio Access Networks. IEEE J. Sel. Areas Commun. 2016, 34. [Google Scholar] [CrossRef]
- Ma, K.; Bagula, A.; Nyirenda, C.; Ajayi, O. An IoT-Based Fog Computing Model. Sensors 2019, 19, 2783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basir, R.; Qaisar, S.; Ali, M.; Aldwairi, M.; Ashraf, M.I.; Mahmood, A.; Gidlund, M. Fog Computing Enabling Industrial Internet of Things: State-of-the-Art and Research Challenges. Sensors 2019, 19, 4807. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.; Dhelim, S.; Ning, H.; Qiu, T. Survey on fog computing: architecture, key technologies, applications and open issues. J. Netw. Comput. Appl. 2017, 98, 27–42. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Long, K.; Choi, S.; Nallanathan, A. Resource Allocation for Optimizing Energy Efficiency in NOMA-based Fog UAV Wireless Networks. IEEE Netw. 2019, 1–6. [Google Scholar] [CrossRef]
- Wen, X.; Zhang, H.; Zhang, H.; Fang, F. Interference Pricing Resource Allocation and User-Subchannel Matching for NOMA Hierarchy Fog Networks. IEEE J. Sel. Top. Signal Process. 2019, 13, 467–479. [Google Scholar] [CrossRef]
- Ai, Y.; Wang, L.; Jiao, B.; Chen, K. Exploiting NOMA into socially enabled computation offloading. In Proceedings of the 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 11–13 October 2017. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, K.; Zhang, Y.; Zhou, L.; Lin, F.; Liu, T. Multi-Objective Optimization of Fog Computing Assisted Wireless Powered Networks: Joint Energy and Time Minimization. Electronics 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Nath, S.; Gupta, H.; Chakraborty, S.; Ghosh, S. A Survey of Fog Computing and Communication: Current Researches and Future Directions. arXiv 2018, arXiv:1804.04365. [Google Scholar]
- Wang, S.; Huang, X.; Liu, Y. CachinMobile: An energy-efficient users caching scheme for fog computing. 2016. [Google Scholar] [CrossRef]
- Yang, Z.; Pan, C.; Hou, J.; Shikh-Bahaei, M. Efficient Resource Allocation for Mobile-Edge Computing Networks With NOMA: Completion Time and Energy Minimization. IEEE Trans. Commun. 2019, 67, 7771–7784. [Google Scholar] [CrossRef]
- Jia, F.; Zhang, H.; Ji, H.; Li, X. Distributed Resource Allocation and Computation Offloading Scheme for Cognitive Mobile Edge Computing Networks with NOMA. In Proceedings of the IEEE/CIC International Conference on Communications in China (ICCC), Beijing, China, 16–18 August 2018; pp. 553–557. [Google Scholar] [CrossRef]
- Quoc-Viet Pham and Fang Fang and Ha-Nguyen Vu and Mai Le and Zhiguo Ding and Long Bao Le and Won-Joo Hwang. A Survey of Multi-Access Edge Computing in 5G and Beyond: Fundamentals, Technology Integration, and State-of-the-Art. arXiv 2019, arXiv:1906.08452.
- Nasir, A.; Hoang, T.; Duong, T.; Poor, H.V. UAV-Enabled Communication Using NOMA. IEEE Trans. Commun. 2019, 67, 5126–5138. [Google Scholar] [CrossRef] [Green Version]
- Yeom, J.S.; bin Kim, Y.; Jung, B.C. UAV-assisted cooperative downlink NOMA with virtual full-duplex operation. ICT Express 2019, 5, 240–244. [Google Scholar] [CrossRef]
- Sohail, M.F.; Leow, C.Y.; Won, S. Energy-Efficient Non-Orthogonal Multiple Access for UAV Communication System. IEEE Trans. Veh. Technol. 2019, 68, 10834–10845. [Google Scholar] [CrossRef]
- Gui, G.; Huang, H.; Song, Y.; Sari, H. Deep Learning for An Effective Non-Orthogonal Multiple Access Scheme. IEEE Trans. Veh. Technol. 2018. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, J.; Guo, H.; Qi, M.; Kato, N. Envisioning Device-to-Device Communications in 6G. arXiv 2019, arXiv:1912.05771. [Google Scholar]
- Park, J.; Samarakoon, S.; Bennis, M.; Debbah, M. Wireless Network Intelligence at the Edge. Proc. IEEE 2019, 107, 2204–2239. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Tang, J.; So, D.K.C.; Chen, G.; Cumanan, K.; Chambers, J.A. A Deep Learning-Based Approach to Power Minimization in Multi-Carrier NOMA With SWIPT. IEEE Access 2019, 7, 17450–17460. [Google Scholar] [CrossRef]
- Kosta, A.; Pappas, N.; Angelakis, V. Age of Information: A New Concept, Metric, and Tool. Found. Trends Netw. 2017, 12, 162–259. [Google Scholar] [CrossRef] [Green Version]
- Maatouk, A.; Assaad, M.; Ephremides, A. Minimizing The Age of Information: NOMA or OMA? In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019. [Google Scholar]
- Talak, R.; Karaman, S.; Modiano, E. Optimizing age of information in wireless networks with perfect channel state information. In Proceedings of the 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Shanghai, China, 7–11 May 2018 . [Google Scholar] [CrossRef] [Green Version]
- Valehi, A.; Razi, A. Maximizing Energy Efficiency of Cognitive Wireless Sensor Networks with Constrained Age of Information. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 643–654. [Google Scholar] [CrossRef]
- Li, Z.; Gui, J. Energy-Efficient Resource Allocation With Hybrid TDMA–NOMA for Cellular-Enabled Machine-to-Machine Communications. IEEE Access 2019, 7, 105800–105815. [Google Scholar] [CrossRef]
- Trestian, R.; Ormond, O.; Muntean, G.M. Game Theory-Based Network Selection: Solutions and Challenges. IEEE Commun. Surv. Tutor. 2012, 14, 1212–1231. [Google Scholar] [CrossRef]
- Fettweis, G. The Tactile Internet: Applications and Challenges. IEEE Veh. Technol. Mag. 2014, 9, 64–70. [Google Scholar] [CrossRef]
- Sharma, S.K.; Woungang, I.; Chatzinotas, S. Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions. arXiv 2019, arXiv:1908.07337. [Google Scholar]
- Budhiraja, I.; Tyagi, S.; Tanwar, S.; Kumar, N.; Rodrigues, J.J.P.C. Tactile Internet for Smart Communities in 5G: An Insight for NOMA-Based Solutions. IEEE Trans. Ind. Inform. 2019, 15, 3104–3112. [Google Scholar] [CrossRef]
- Budhiraja, I.; Tyagi, S.; Tanwar, S.; Kumar, N.; Rodrigues, J. DIYA: Tactile Internet Driven Delay Assessment NOMA-based Scheme for D2D Communication. IEEE Trans. Ind. Inform. 2019, 15, 1–11. [Google Scholar] [CrossRef]
- Xu, J.; Ota, K.; Dong, M. Energy Efficient Hybrid Edge Caching Scheme for Tactile Internet in 5G. IEEE Trans. Green Commun. Netw. 2019, 3, 483–493. [Google Scholar] [CrossRef]
- Ye, N.; Li, X.; Yu, H.; Wang, A.; Liu, W.; Hou, X. Deep Learning Aided Grant-Free NOMA Toward Reliable Low-Latency Access in Tactile Internet of Things. IEEE Trans. Ind. Inform. 2019, 15, 2995–3005. [Google Scholar] [CrossRef]
Domain | Technology | Citations |
---|---|---|
Power domain | Resource allocation | [16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35] |
Energy harvesting and transfer | [36,37,38,39,40,41,42,43,44,45,46,47,48,49] | |
Interference cancellation techniques | [50,51,52,53,54,55] | |
Sleep/wake modes | [56,57,58,59,60] | |
Code domain | Sparse code multiple access (SCMA) | [61,62] |
Space time block coding (STBC) | [56,63] | |
Polar codes | [64,65,66] | |
Low density parity check (LDPC) | [67,68,69] | |
Multi user shared access (MUSA) | [70,71] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basnayake, V.; Jayakody, D.N.K.; Sharma, V.; Sharma, N.; Muthuchidambaranathan, P.; Mabed, H. A New Green Prospective of Non-orthogonal Multiple Access (NOMA) for 5G. Information 2020, 11, 89. https://doi.org/10.3390/info11020089
Basnayake V, Jayakody DNK, Sharma V, Sharma N, Muthuchidambaranathan P, Mabed H. A New Green Prospective of Non-orthogonal Multiple Access (NOMA) for 5G. Information. 2020; 11(2):89. https://doi.org/10.3390/info11020089
Chicago/Turabian StyleBasnayake, Vishaka, Dushantha Nalin K. Jayakody, Vishal Sharma, Nikhil Sharma, P. Muthuchidambaranathan, and Hakim Mabed. 2020. "A New Green Prospective of Non-orthogonal Multiple Access (NOMA) for 5G" Information 11, no. 2: 89. https://doi.org/10.3390/info11020089
APA StyleBasnayake, V., Jayakody, D. N. K., Sharma, V., Sharma, N., Muthuchidambaranathan, P., & Mabed, H. (2020). A New Green Prospective of Non-orthogonal Multiple Access (NOMA) for 5G. Information, 11(2), 89. https://doi.org/10.3390/info11020089