Youla–Kučera Parametrization with no Coprime Factorization—Single-Input Single-Output Case
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Parametrization without Coprime Factorizability
5. Proofs of Theorems 1, 2 and 3
6. Example
6.1. Coprime Factorization
6.2. Anantharam’s Example
6.3. Discrete-Time Systems without Unit-Delay Element
7. Conclusions and Future Work
Funding
Conflicts of Interest
References
- Vidyasagar, M. Control System Synthesis: A Factorization Approach; MIT Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Mori, K. Parametrization of All Strictly Causal Stabilizing Controllers. IEEE Trans. Automat. Contr. 2009, 54, 2211–2215. [Google Scholar] [CrossRef]
- Youla, D.; Jabr, H.; Bongiorno, J., Jr. Modern Wiener-Hopf design of optimal controllers, Part I: The single-input case. IEEE Trans. Automat. Contr. 1976, 21, 3–14. [Google Scholar] [CrossRef]
- Kučera, V. Stability of discrete linear feedback systems. Proc. IFAC World Congr. 1975. [Google Scholar] [CrossRef]
- Kučera, V. A Method to Teach the Parameterization of All Stabilizing Controllers. Proc. IFAC World Congr. 2011, 44, 6355–6360. [Google Scholar] [CrossRef]
- Landau, I.; Airimţoaie, T.; Alma, M. IIR Youla–Kučera Parameterized Adaptive Feedforward Compensators for Active Vibration Control With Mechanical Coupling. IEEE Trans. Control Syst. Technol. 2013, 21, 765–779. [Google Scholar] [CrossRef]
- Sǎbau, Ş.; Martins, N. Youla–Like Parametrizations Subject to QI Subspace Constraints. IEEE Trans. Automat. Contr. 2014, 59, 1411–1422. [Google Scholar] [CrossRef]
- Blanchini, F.; Colaneri, P.; Fujisaki, Y.; Miani, S.; Pellegrino, F. A Youla–Kučera parameterization approach to output feedback relatively optimal control. Syst. Control Lett. 2015, 81, 14–23. [Google Scholar] [CrossRef]
- Doumiati, M.; Martinez, J.; Sename, O.; Dugard, L.; Lechner, D. Road profile estimation using an adaptive Youla–Kučera parametric observer: Comparison to real profilers. Control Eng. Pract. 2017, 61, 270–278. [Google Scholar] [CrossRef]
- Tang, T.; Bo, Q.; Tao, Y. Youla–Kučera Parameterization-Based Optimally Closed-Loop Control for Tip–Tilt Compensation. IEEE Sens. J. 2018, 18, 6154–6160. [Google Scholar] [CrossRef]
- Mori, K. Stabilizing Controllers from Non-Coprime Factorization for Single-Input Single-Output Plants. In Proceedings of the 2017 11th Asian Control Conference (ASCC 2017), Gold Coast, Australia, 17–20 December 2017; pp. 2459–2463. [Google Scholar]
- Mori, K. A Generalization of Coprime Factorization forObtaining Stabilizing Controllers. In Proceedings of the 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 10–12 October 2018; pp. 147–151. [Google Scholar]
- Mori, K. Parameterization of Stabilizing Controllers over Commutative Rings with Application to Multidimensional Systems. IEEE Trans. Circuits Syst. I 2002, 49, 743–752. [Google Scholar] [CrossRef]
- Anantharam, V. On Stabilization and the Existence of Coprime Factorizations. IEEE Trans. Automat. Contr. 1985, 30, 1030–1031. [Google Scholar] [CrossRef]
- Sule, V. Feedback Stabilization over Commutative Rings: The Matrix Case. SIAM J. Control Optim. 1994, 32, 1675–1695. [Google Scholar] [CrossRef]
- Mori, K.; Abe, K. Feedback Stabilization over Commutative Rings: Further study of coordinate-free approach. SIAM J. Control Optim. 2001, 39, 1952–1973. [Google Scholar] [CrossRef]
- Mori, K. Elementary proof of controller parametrization without coprime factorizability. IEEE Trans. Automat. Contr. 2004, 49, 589–592. [Google Scholar] [CrossRef]
- Sigler, L. Algebra; Springer-Verlag: New York, NY, USA, 1976. [Google Scholar]
- Mori, K. Controller Parameterization of Anantharam’s Example. IEEE Trans. Automat. Contr. 2004, 48, 1655–1656. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, K. Youla–Kučera Parametrization with no Coprime Factorization—Single-Input Single-Output Case. Information 2019, 10, 120. https://doi.org/10.3390/info10040120
Mori K. Youla–Kučera Parametrization with no Coprime Factorization—Single-Input Single-Output Case. Information. 2019; 10(4):120. https://doi.org/10.3390/info10040120
Chicago/Turabian StyleMori, Kazuyoshi. 2019. "Youla–Kučera Parametrization with no Coprime Factorization—Single-Input Single-Output Case" Information 10, no. 4: 120. https://doi.org/10.3390/info10040120
APA StyleMori, K. (2019). Youla–Kučera Parametrization with no Coprime Factorization—Single-Input Single-Output Case. Information, 10(4), 120. https://doi.org/10.3390/info10040120