Next Article in Journal
Effects of Contingency versus Constraints on the Body-Mass Scaling of Metabolic Rate
Next Article in Special Issue
The Dichotomy of the Poly(ADP-Ribose) Polymerase-Like Thermozyme from Sulfolobus solfataricus
Previous Article in Journal
Advances and Remaining Challenges in the Study of Influenza and Anthrax Infection in Lung Cell Culture
Open AccessReview

Roles of Nicotinamide Adenine Dinucleotide (NAD+) in Biological Systems

Institute of Sciences of Food Productions, CNR-ISPA, Ecotekne, via prov.le Lecce-Monteroni km 7, 73100 Lecce, Italy
*
Author to whom correspondence should be addressed.
Challenges 2018, 9(1), 3; https://doi.org/10.3390/challe9010003
Received: 12 December 2017 / Revised: 12 January 2018 / Accepted: 16 January 2018 / Published: 19 January 2018
NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways since it acts as a key regulator of cellular and organism homeostasis. NAD+ is a coenzyme in redox reactions, a donor of adenosine diphosphate-ribose (ADPr) moieties in ADP-ribosylation reactions, a substrate for sirtuins, a group of histone deacetylase enzymes that use NAD+ to remove acetyl groups from proteins; NAD+ is also a precursor of cyclic ADP-ribose, a second messenger in Ca++ release and signaling, and of diadenosine tetraphosphate (Ap4A) and oligoadenylates (oligo2′-5′A), two immune response activating compounds. In the biological systems considered in this review, NAD+ is mostly consumed in ADP-ribose (ADPr) transfer reactions. In this review the roles of these chemical products are discussed in biological systems, such as in animals, plants, fungi and bacteria. In the review, two types of ADP-ribosylating enzymes are introduced as well as the pathways to restore the NAD+ pools in these systems. View Full-Text
Keywords: Nicotinamide adenine dinucleotide (NAD+); ADP ribose (ADPr); ADP Ribosyl Transferase (ADPRT); nicotinamide (Nam); nicotinamide mononucleotide (NMN); nicotinamide riboside (NR); nicotinic acid (NA); nicotinic acid adenine dinucleotide phosphate (NAADP); cyclic ADP ribose (cADPr); post-translational modification (PTM); deacetylation; poly ADP ribose glycohydrolase (PARG); Nicotinamide mononucleotide adenylyl transferease (NMNAT-1); nicotinamide phosphoribosyl transferase (NAMPT) Nicotinamide adenine dinucleotide (NAD+); ADP ribose (ADPr); ADP Ribosyl Transferase (ADPRT); nicotinamide (Nam); nicotinamide mononucleotide (NMN); nicotinamide riboside (NR); nicotinic acid (NA); nicotinic acid adenine dinucleotide phosphate (NAADP); cyclic ADP ribose (cADPr); post-translational modification (PTM); deacetylation; poly ADP ribose glycohydrolase (PARG); Nicotinamide mononucleotide adenylyl transferease (NMNAT-1); nicotinamide phosphoribosyl transferase (NAMPT)
Show Figures

Graphical abstract

MDPI and ACS Style

Poltronieri, P.; Čerekovic, N. Roles of Nicotinamide Adenine Dinucleotide (NAD+) in Biological Systems. Challenges 2018, 9, 3.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop