Emission Abatement Technology Selection, Routing and Speed Optimization of Hybrid Ships
Abstract
:1. Introduction
1.1. Related Work and Background
1.2. Aim and Contribution
2. Model Formulation
2.1. Modelling Approach
2.2. Model Description
2.2.1. Notation
2.2.2. Energy Use
- Main engines as mechanical energy sources,
- Propellers as mechanical energy sinks,
- Auxiliary engines and battery (in discharge mode) as electrical energy sources,
- Hotel load, exhaust gas treatment units and battery (in charge mode) as electrical energy sinks.
2.2.3. Emissions
2.2.4. Battery Operation
2.2.5. Unit Installation
2.2.6. Routing and Speed
2.2.7. Objective Function
2.3. Problem Form and Solution Approach
3. Problem Data
3.1. Emissions
3.1.1. Well-to-Tank Greenhouse Gasses
3.1.2. Tank-to-Propeller Greenhouse Gasses
3.1.3. Power Generation Greenhouse Gasses
3.1.4. Nitrogen Oxides
3.1.5. Sulfur Dioxide
3.2. Scrubbers
3.3. Selective Catalytic Reduction System
3.4. Fuels
3.5. Li-Ion Battery System
3.6. Hull Resistance
4. Numerical Example Problems
5. Results and Discussion
5.1. North Sea Route
5.2. Baltic Sea Routes
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CII | carbon intendity indicator |
ECA | emission control area |
EEDI | energy efficiency design index |
EES | electrical energy storage |
EEXI | energy efficiency design index for existing ships |
EGT | exhaust gas treatment |
GHG | greenhouse gas |
HSFO | high sulfur fuel oil |
IFO | intermediate fuel oil |
LSMGO | Low sulfur marine gas oil |
LNG | liquified natural gas |
MS | medium speed |
NMC | nickel manganese cobalt |
OPS | onshore power supply |
SCR | selective catalytic reduction |
SFOC | specific fuel oil consumption |
VLSFO | very low sulfur fuel oil |
References
- Sofiev, M.; Winebrake, J.; Johansson, L.; Carr, E. Cleaner fuels for ships provide public health benefits with climate tradeoffs. Nat. Commun. 2012, 406, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, H.; Gustafsson, M.; Spohr, J. Emission abatement in shipping—Is it possible to reduce carbon dioxide emissions profitably? J. Clean. Prod. 2020, 254, 120069. [Google Scholar] [CrossRef]
- Pryun, J.; van Grootheest, I.; Lafeber, F.H.; Scholtens, M. Support for selection of environmental impact abatement equipment in the early stage design. In Proceedings of the 12th Symposium on High Performance Marine Vehicles, Cortona, Italy, 12–14 October 2020; Bertram, V., Ed.; Technische Universität Hamburg: Hamburg, Germany, 2020. [Google Scholar]
- Balland, O.; Erikstad, S.O.; Fagerholt, K. Concurrent design of vessel machinery system and air emission controls to meet future air emissions regulations. Ocean Eng. 2014, 84, 283–292. [Google Scholar] [CrossRef]
- Baldi, F.; Brynolf, S.; Maréchal, F. The cost of innovative and sustainable future ship energy systems. In Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Wrocław, Poland, 23–28 June 2019. [Google Scholar]
- Winebrake, J.J.; Corbett, J.J.; Wang, C.; Farrell, A.E.; Woods, P. Optimal Fleetwide Emissions Reductions for Passenger Ferries: An Application of a Mixed-Integer Nonlinear Programming Model for the New York–New Jersey Harbor. J. Air Waste Manag. Assoc. 2005, 55, 458–466. [Google Scholar] [CrossRef]
- Trivyza, N.L.; Rentizelas, A.; Theotokatos, G. A novel multi-objective decision support method for ship energy systems synthesis to enhance sustainability. Energy Convers. Manag. 2018, 168, 128–149. [Google Scholar] [CrossRef] [Green Version]
- Ritari, A.; Huotari, J.; Halme, J.; Tammi, K. Hybrid electric topology for short sea ships with high auxiliary power availability requirement. Energy 2020, 190, 116359. [Google Scholar] [CrossRef]
- Huotari, J.; Ritari, A.; Vepsäläinen, J.; Tammi, K. Hybrid Ship Unit Commitment with Demand Prediction and Model Predictive Control. Energies 2020, 13, 4748. [Google Scholar] [CrossRef]
- Ölçer, A.; Ballini, F. The development of a decision making framework for evaluating the trade-off solutions of cleaner seaborne transportation. Transp. Res. Part D Transp. Environ. 2015, 37, 150–170. [Google Scholar] [CrossRef]
- Hansson, J.; Månsson, S.; Brynolf, S.; Grahn, M. Alternative marine fuels: Prospects based on multi-criteria decision analysis involving Swedish stakeholders. Biomass Bioenergy 2019, 126, 159–173. [Google Scholar] [CrossRef]
- Ren, J.; Lützen, M. Fuzzy multi-criteria decision-making method for technology selection for emissions reduction from shipping under uncertainties. Transp. Res. Part D Transp. Environ. 2015, 40, 43–60. [Google Scholar] [CrossRef]
- Goldie-Scot, L. A Behind the Scenes Take on Lithium-Ion Battery Prices; Technical Report; Bloomberg New Energy Finance: New York, NY, USA, 2019. [Google Scholar]
- Solving Challenges in Energy Storage. 2018. Available online: http://www.energy.gov/sites/default/files/2019/07/f64/2018-OTT-Energy-Storage-Spotlight.pdf (accessed on 28 July 2021).
- Besselink, I.; van Oorschot, P.; Meinders, E.; Nijmeijer, H. Design of an efficient, low weight battery electric vehicle based on a VW Lupo 3L. In Proceedings of the 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition (EVS-25), Shenzhen, China, 5–9 November 2010. [Google Scholar]
- Finnlines. Hybrid ro-ro Vessels Sail into a Green Future. 2020. Available online: https://www.finnlines.com/company/news-stories/finnlines-news-22020/hybrid-ro-ro-vessels-sail-green-future (accessed on 6 August 2021).
- Motorship. Havila Kystruten Ferries to Feature 6.1 MWh Corvus ESS. 2019. Available online: https://www.motorship.com/news101/industry-news/havila-kystruten-ferries-to-feature-6.1mwh-corvus-batteries (accessed on 6 August 2021).
- IMO. Prevention of Air Pollution From Ships. 2020. Available online: http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Air-Pollution.aspx (accessed on 20 July 2021).
- Commission, E. Emission Trading—Putting a Price on Carbon. 2021. Available online: https://ec.europa.eu/commission/presscorner/detail/en/qanda_21_3542 (accessed on 20 July 2021).
- Wärtsilä Environmental Product Guide. 2017. Available online: http://cdn.wartsila.com/docs/default-source/product-files/egc/product-guide-o-env-environmental-solutions.pdf (accessed on 28 July 2021).
- Solakivi, T.; Laari, S.; Kiiski, T.; Töyli, J.; Ojala, L. How shipowners have adapted to sulphur regulations—Evidence from Finnish seaborne trade. Case Stud. Transp. Policy 2019, 7, 338–345. [Google Scholar] [CrossRef]
- Li, K.; Wu, M.; Gu, X.; Yuen, K.F.; Xiao, Y. Determinants of ship operators’ options for compliance with IMO 2020. Transp. Res. Part D Transp. Environ. 2020, 86, 102459. [Google Scholar] [CrossRef]
- Bektaş, T.; Ehmke, J.F.; Psaraftis, H.N.; Puchinger, J. The role of operational research in green freight transportation. Eur. J. Oper. Res. 2019, 274, 807–823. [Google Scholar] [CrossRef] [Green Version]
- Fagerholt, K.; Gausel, N.T.; Rakke, J.G.; Psaraftis, H.N. Maritime routing and speed optimization with emission control areas. Transp. Res. Part C Emerg. Technol. 2015, 52, 57–73. [Google Scholar] [CrossRef] [Green Version]
- Geertsma, R.; Negenborn, R.; Visser, K.; Hopman, J. Design and control of hybrid power and propulsion systems for smart ships: A review of developments. Appl. Energy 2017, 194, 30–54. [Google Scholar] [CrossRef]
- Thanh Long, V.; Dhupia, J.; Alexander, A.; Kennedy, L.; Adnanes, A. Control optimization for electric tugboats powertrain with a given load profile. In Proceedings of the ISCIE/ASME International Symposium on Flexible Automation, Awaji-Island, Hyōgo, Japan, 14–16 July 2014. [Google Scholar]
- Jaurola, M.; Hedin, A.; Tikkanen, S.; Huhtala, K. TOpti: A flexible framework for optimising energy management for various ship machinery topologies. J. Mar. Sci. Technol. 2018, 24, 1183–1196. [Google Scholar] [CrossRef] [Green Version]
- Pyrhönen, O.; Pinomaa, A.; Lindh, T.; Peltoniemi, P.; Lana, A.; Montonen, H.; Tikkanen, K. Future Energy Storage Solutions in Marine Installations–FESSMI–Final Report; University of Vaasa: Vaasa, Finland, 2017. [Google Scholar]
- Dedes, E. Investigation of Hybrid Systems for Diesel Powered Ships. Ph.D. Thesis, University of Southampton, Southampton, UK, 2013. [Google Scholar]
- Sui, C.; de Vos, P.; Stapersma, D.; Visser, K.; Ding, Y. Fuel Consumption and Emissions of Ocean-Going Cargo Ship with Hybrid Propulsion and Different Fuels over Voyage. J. Mar. Sci. Eng. 2020, 8, 588. [Google Scholar] [CrossRef]
- Sui, C.; de Vos, P.; Stapersma, D.; Visser, K.; Ding, Y. Impact of Battery-Hybrid Cargo Ship Propulsion on Fuel Consumption and Emissions during Port Approaches. In Proceedings of the CIMAC Congress 2019, Vancouver, BC, Canada, 10–12 June 2019. [Google Scholar]
- Psaraftis, H.N.; Kontovas, C.A. Ship speed optimization: Concepts, models and combined speed-routing scenarios. Transp. Res. Part C Emerg. Technol. 2014, 44, 52–69. [Google Scholar] [CrossRef] [Green Version]
- Misener, R.; Floudas, C.A. GloMIQO: Global mixed-integer quadratic optimizer. J. Glob. Optim. 2012, 57, 3–50. [Google Scholar] [CrossRef] [Green Version]
- Achterberg, T.; Towle, E. Non-Convex Quadratic Optimization. 2020. Available online: https://www.gurobi.com/resource/non-convex-quadratic-optimization/ (accessed on 23 August 2021).
- Schuller, O.; Kupferschmid, S.; Hengstler, J.; Whitehouse, S. Life Cycle GHG Emission Study on the Use of LNG as Marine Fuel; Hinkstep: Stuttgart, Germany, 2019. [Google Scholar]
- Well-to-Wheels Report Version 4.a: JEC Well to Wheels Analysis—Well to Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context; European Commission Joint Research Centre Institute for Energy and Transport: Brussels, Belgium, 2014. [CrossRef]
- Jalkanen, J.P.; Johansson, L.; Kukkonen, J.; Brink, A.; Kalli, J.; Stipa, T. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide. Atmos. Chem. Phys. 2012, 12, 2641–2659. [Google Scholar] [CrossRef] [Green Version]
- Brynolf, S.; Magnusson, M.; Fridell, E.; Andersson, K. Compliance possibilities for the future ECA regulations through the use of abatement technologies or change of fuels. Transp. Res. Part D Transp. Environ. 2014, 28, 6–18. [Google Scholar] [CrossRef]
- Anderson, M.; Salo, K.; Fridell, E. Particle- and Gaseous Emissions from an LNG Powered Ship. Environ. Sci. Technol. 2015, 49, 12568–12575. [Google Scholar] [CrossRef]
- Willems, F.; Modeling & Control of Diesel Aftertreatment Systems. 1st International TNO—TU/e—LiU Course. 2015. Available online: https://www.fs.isy.liu.se/Edu/Courses/AftertreatmentMaC/Exercise_10_solution.pdf (accessed on 28 August 2021).
- Lahtinen, J. Closed-Loop Exhaust Gas Scrubber Onboard a Merchant Ship—Technical, Economical, Environmental and Operational Viewpoints. Ph.D. Thesis, University of Vaasa, Vaasa, Finland, 2015. [Google Scholar]
- Myhre, G.; Shindell, D.; Bréon, F.M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and natural radiative forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Doschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 659–740. [Google Scholar] [CrossRef]
- Exhaust Gas Cleaning Systems Association. A Practical Guide to Exhaust Gas Cleaning Systems for the Maritime Industry; Exhaust Gas Cleaning Systems Association: Staines, UK, 2012. [Google Scholar]
- European Commission. Covenant of Mayors for Climate and Energy: Default Emission Factors for Local Emission Inventories: Version 2017; European Commission Publications Office: Brussels, Belgium, 2017. [Google Scholar] [CrossRef]
- DieselNet Technology Guide. 2021. Available online: https://dieselnet.com/tg.php (accessed on 28 July 2021).
- Winnes, H.; Fridell, E. Particle Emissions from Ships: Dependence on Fuel Type. J. Air Waste Manag. Assoc. 2009, 59, 1391–1398. [Google Scholar] [CrossRef]
- Your Options for Emissions Compliance. Guidance for Shipowners and Operators on the Annex VI SOx and NOx Regulations; Lloyd’s Register: London, UK, 2015. [Google Scholar]
- Ship Technology. Debunking: The Problem of Ships Using Open-Loop Scrubbers. 2021. Available online: https://www.ship-technology.com/features/open-loop-scubbers/ (accessed on 21 July 2021).
- den Boer, E.; Hoen, M. Scrubbers—An Economic and Ecological Assessment. 2015. Available online: https://www.nabu.de/downloads/150312-Scrubbers.pdf (accessed on 28 August 2021).
- Bacher, H.; Albrecht, P. Evaluating the costs arising from new maritime environmental regulations. Trafi Publ. 2013, 24, 2013. [Google Scholar]
- Spoof-Tuomi, K. Calculation Tool for Profitability Assessment of SOx Scrubber Investments. Barchelor’s Thesis, University of Applied Sciences, Vaasa, Finland, 2013. [Google Scholar]
- IACCSEA. Marine SCR—Cost Benefit Analysis. 2013. Available online: https://www.iaccsea.com/wp-content/uploads/2018/12/IACCSEA-Marine-SCR-Cost-benefit-analysis-2013.pdf (accessed on 28 August 2021).
- Zheng, G.; Wang, F.; Wang, S.; Gao, W.; Zhao, Z.; Liu, J.; Wang, L.; Wu, L.; Wang, H. Urea SCR System Development for Large Diesel Engines; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2014. [Google Scholar] [CrossRef]
- MAN Energy Solutions. MAN 32/44CR Project Guide; MAN Energy Solutions: Augsburg, Germany, 2019. [Google Scholar]
- Wik, C.; Niemi, S. Low emission engine technologies for future tier 3 legislations—Options and case studies. J. Shipp. Trade 2016, 1, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Issa, M.; Ibrahim, H.; Ilinca, A.; Hayyani, M.Y. A Review and Economic Analysis of Different Emission Reduction Techniques for Marine Diesel Engines. Open J. Mar. Sci. 2019, 9, 148–171. [Google Scholar] [CrossRef] [Green Version]
- Yaramenka, K.; Winnes, H.; Åström, S.; Fridell, E. Cost-Benefit Analysis of NOX Control for Ships in the Baltic Sea and the North Sea; Technical Report Report C 228; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2017. [Google Scholar]
- Austin, C.; Macdonald, F.; Rojon, I. The Ship Operator’s Guide to NOx Reduction; Fathom: Windsor, UK, 2015. [Google Scholar]
- Ship and Bunker. Rotterdam Bunker Prices. 2021. Available online: https://shipandbunker.com/prices/emea/nwe/nl-rtm-rotterdam#IFO380 (accessed on 21 July 2021).
- DNV GL. Current Price Development Oil and Gas. 2021. Available online: https://www.dnvgl.com/maritime/lng/current-price-development-oil-and-gas.html (accessed on 21 July 2021).
- Statistics Finland. Energy Prices. Available online: http://www.stat.fi/til/ehi/tau_en.html (accessed on 21 July 2021).
- Dinger, A.; Martin, R.; Mosquet, X.; Rizoulis, D.; Russo, M.; Sticher, G. Batteries for Electric Cars: Challenges, Opportunities, and the Outlook to 2020; Technical Report; Boston Consulting Group: Boston, MA, USA, 2010. [Google Scholar]
- McKinsey. Electrifying Insights: How Automakers Can Drive Electrified Vehicle Sales and Profitability; McKinsey: Atlanta, GA, USA, 2017. [Google Scholar]
Indexing | |
Number of fuels | |
Number of pollutant types | |
Number of engine types | |
Number of exhaust gas treatment unit types | |
Number of sailing legs | |
Number of routes | |
Variables | |
Speed on legs (km/h) | |
Sailing duration on legs (h) | |
Power output from use of fuels on legs (MWh) | |
Utilization rate of EGT units on legs (MWh) | |
Battery charge on legs (MWh) | |
Battery capacity (MWh) | |
Charged energy to battery on legs (MWh) | |
Discharged energy from battery on legs (MWh) | |
Energy drawn from onshore power supply on legs (MWh) | |
Decision to install engines | |
Decision to install EGT units | |
Decision to sail on routes | |
Parameters | |
Allocation of legs to routes | |
Mapping between fuels and pollutants (kg/MWh) | |
Compatibility of fuels with engines | |
Reduction of pollutant streams in EGTs (kg/MWh) | |
Specific pollutant limits on legs (kg/MWh) | |
Lower heating values of fuels (MWh/ton) | |
Electricity consumption of EGT units (%/100) | |
Leg distance (km) | |
Onshore power supply availability | |
Engine investment costs (EUR) | |
EGT investment costs (EUR) | |
EGT operating costs (EUR/MWh) | |
Fuel prices (EUR/ton) | |
Battery investment cost (EUR/MWh) | |
Onshore power supply electricity cost (EUR/MWh) | |
Total voyage duration (h) | |
Auxiliary electric power (MW) | |
Hull resistance coefficient | |
Battery charging and discharging efficiency | |
Engine efficiency | |
Investment cost scaling factor |
HSFO | HSFO + EGT | MGO | MGO + SCR | LNG | Source | |
---|---|---|---|---|---|---|
Well-to-tank GHG | ||||||
CO2 (g/MJ fuel) | 13.2 | 13.2 | 14.1 | 14.1 | 13.7 | [35,36] |
CH4 (g/MJ fuel) | 0.028 | 0.028 | 0.028 | 0.028 | 0.15 | [35,36] |
CO2-eq (g/MJ fuel) | 14.2 | 14.2 | 15.1 | 15.1 | 18.8 | |
Combustion GHG | ||||||
CO2 (g/kWh) | 564 | 570 | 551 | 551 | 416 | [37] |
CH4 (mg/kWh) | 4 | 4 | 4 | 4 | 1000 | [38,39] |
N2O (mg/kWh) | 31 | 31 | 27 | 27 | 17 | [35] |
CO2-eq (g/kWh) | 573 | 581 | 560 | 560 | 456 | |
Local pollutants | ||||||
NOx (g/kWh) | 11.7 | 2.0 | 9.6 | 1.9 | 1.7 | [38,39] |
SO2 (g/kWh) | 8.11 | 0.17 | 0.34 | 0.34 | 0.01 | [35] |
Inputs to propulsion | ||||||
SFOC (g/kWh) | 181 | 184 | 172 | 172 | [37] | |
Natural gas (g/kWh) | 149 | [39] | ||||
Pilot fuel (g/kWh) | 2.1 | [39] | ||||
Urea 100% (g/kWh) | 6.3 | 5.0 | [40] | |||
NaOH 50% (g/kWh) | 17.5 | [41] |
Type | Abbreviation | Sulfur (%) | Price | Source |
---|---|---|---|---|
High sulfur fuel oil | HSFO | 3.5 | 386 EUR/ton | [59] |
Very low sulfur fuel oil | VLSFO | 0.5 | 505 EUR/ton | [59] |
Low sulfur marine gas oil | LSMGO | 0.1 | 560 EUR/ton | [59] |
Liquified natural gas | LNG | 0 | 378–733 EUR/ton | [59] |
Electricity | OPS | 0 | 84.8 EUR/MWh | [61] |
Unit Type | (%) | Investment | Operation | Source |
---|---|---|---|---|
MS diesel engine | 45 | 240 EUR/kW | [5] | |
MS dual fuel engine | 45 | 470 EUR/kW | [5] | |
Li-ion battery | 97 | 400 EUR/kWh | [28,63] | |
Closed loop scrubber | 375 EUR/kW | 6 EUR/MWh | [49] | |
SCR system | 46 EUR/kW | 3.5 EUR/MWh | [50] |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
Speed, kn | 0.0 | 17.91 | 0.0 | 0.0 | 0.0 | 17.91 | 17.94 | 17.9 |
Time, h | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 49.86 | 10.54 | 0.3 |
Power, MW | 0.0 | 14.03 | 0.0 | 0.0 | 0.0 | 14.04 | 14.1 | 14.02 |
HSFO, MWh | 0.0 | 4.88 | 0.0 | 0.0 | 0.0 | 807.82 | 170.38 | 4.88 |
VLSFO, MWh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
LSMGO, MWh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
LNG, MWh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
EGT-S, MWh | 0.0 | 4.88 | 0.0 | 0.0 | 0.0 | 807.82 | 150.34 | 4.88 |
EGT-N, MWh | 0.0 | 4.88 | 0.0 | 0.0 | 0.0 | 807.82 | 0.0 | 4.88 |
Obj, kEUR | 99.5 | |||||||
CO2-eq, ton | 588.82 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
Speed, kn | 0.0 | 9.52 | 0.0 | 0.0 | 0.0 | 18.07 | 18.1 | 9.52 |
Time, h | 0.0 | 0.57 | 0.0 | 0.0 | 0.0 | 49.42 | 10.44 | 0.57 |
Power, MW | 0.0 | 2.1 | 0.0 | 0.0 | 0.0 | 14.42 | 14.49 | 2.11 |
HSFO, MWh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 819.52 | 175.38 | 0.0 |
VLSFO, MWh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
LSMGO, MWh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
LNG, MWh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
ESS (—), MWh | 0.0 | 2.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.4 |
ESS (+), MWh | 2.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 | 2.39 | 0.0 |
OPS, MWh | 2.48 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
EGT-S, MWh | 0.0 | 0.0 | 0.01 | 0.01 | 0.01 | 819.52 | 154.75 | 0.0 |
EGT-N, MWh | 0.0 | 0.0 | 0.0 | 0.01 | 0.0 | 819.52 | 0.0 | 0.0 |
Obj, kEUR | 104.05 | |||||||
CO2-eq, ton | 593.47 |
Helsinki | Turku | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |
Speed, kn | 0.0 | 16.54 | 16.58 | 12.0 | 0.0 | 16.38 | 16.37 | 12.0 |
Time, h | 0.0 | 0.33 | 11.07 | 3.6 | 0.0 | 0.33 | 6.07 | 3.6 |
Power, MW | 0.0 | 11.06 | 11.13 | 4.22 | 0.0 | 10.74 | 10.71 | 4.22 |
HSFO, MWh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
VLSFO, MWh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
LSMGO, MWh | 0.0 | 4.28 | 146.15 | 22.51 | 0.0 | 4.22 | 77.54 | 22.51 |
LNG, MWh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
EGT-S, MWh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
EGT-N, MWh | 0.0 | 4.29 | 146.15 | 22.51 | 0.0 | 4.22 | 77.54 | 22.51 |
Obj, kEUR | 21.96 | 15.26 | ||||||
CO2-eq, ton | 101.0 | 60.9 |
Helsinki | Turku | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | ||
Speed, kn | 0.0 | 17.44 | 17.37 | 10.49 | 0.0 | 17.16 | 17.66 | 10.64 | |
Time, h | 0.0 | 0.31 | 10.57 | 4.12 | 0.0 | 0.31 | 5.62 | 4.06 | |
Power, MW | 0.0 | 12.96 | 12.79 | 2.82 | 0.0 | 12.35 | 13.47 | 2.94 | |
HSFO, MWh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
VLSFO, MWh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
LSMGO, MWh | 0.0 | 0.0 | 162.13 | 0.0 | 0.0 | 0.0 | 92.25 | 0.0 | |
LNG, MWh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
EES (—), MWh | 0.0 | 4.78 | 0.0 | 20.46 | 0.0 | 4.65 | 0.0 | 20.68 | |
EES (+), MWh | 20.46 | 0.0 | 4.78 | 0.0 | 20.68 | 0.0 | 4.65 | 0.0 | |
OPS, MWh | 21.09 | 0.0 | 0.0 | 0.0 | 21.32 | 0.0 | 0.0 | 0.0 | |
EGT-S, MWh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
EGT-N, MWh | 0.0 | 0.0 | 162.13 | 0.0 | 0.0 | 0.0 | 92.25 | 0.0 | |
Obj, kEUR | 33.51 | 26.83 | |||||||
CO2-eq, ton | 97.75 | 58.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ritari, A.; Spoof-Tuomi, K.; Huotari, J.; Niemi, S.; Tammi, K. Emission Abatement Technology Selection, Routing and Speed Optimization of Hybrid Ships. J. Mar. Sci. Eng. 2021, 9, 944. https://doi.org/10.3390/jmse9090944
Ritari A, Spoof-Tuomi K, Huotari J, Niemi S, Tammi K. Emission Abatement Technology Selection, Routing and Speed Optimization of Hybrid Ships. Journal of Marine Science and Engineering. 2021; 9(9):944. https://doi.org/10.3390/jmse9090944
Chicago/Turabian StyleRitari, Antti, Kirsi Spoof-Tuomi, Janne Huotari, Seppo Niemi, and Kari Tammi. 2021. "Emission Abatement Technology Selection, Routing and Speed Optimization of Hybrid Ships" Journal of Marine Science and Engineering 9, no. 9: 944. https://doi.org/10.3390/jmse9090944
APA StyleRitari, A., Spoof-Tuomi, K., Huotari, J., Niemi, S., & Tammi, K. (2021). Emission Abatement Technology Selection, Routing and Speed Optimization of Hybrid Ships. Journal of Marine Science and Engineering, 9(9), 944. https://doi.org/10.3390/jmse9090944