Climate Change Impacts on Coastal Wave Dynamics at Vougot Beach, France
Abstract
:1. Introduction
2. Study Site
2.1. Location
2.2. Data
3. Approach
3.1. Future Scenarios
3.1.1. Sea Level Rise
3.1.2. Wave Climate
3.2. Numerical Modelling
3.2.1. Delft3D
3.2.2. Model Domains and Boundary Forcing
3.2.3. Model Simulations
3.3. Analysis
- (a)
- Wave spectral density
- (b)
- Effective bed shear stress
- (c)
- Statistical parameters
4. Results
4.1. Model Validation
4.2. Sea Level Rise
4.3. Sea Level Rise and Future Wave Climates
5. Discussion
5.1. Macrotidal Beach Dynamics
5.2. Uncertainties in the Modelling Approach
5.2.1. Model Calibration Uncertainties
5.2.2. Projected SLR and Future Wave Time Series
5.3. Extension of the Modelling Approach
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chowdhury, P.; Behera, M.R. Effect of long-term wave climate variability on longshore sediment transport along regional coastline. Prog. Oceanogr. 2017, 156, 145–153. [Google Scholar] [CrossRef]
- Harley, M.D.; Ciavola, P. Managing local coastal inundation risk using real-time forecasts and artificial dune placements. Coast. Eng. 2013, 77, 77–90. [Google Scholar] [CrossRef]
- Hunt, S.; Bryan, K.R.; Mullarney, J.C. The effect of wind waves on spring-neap variations in sediment transport in two meso-tidal estuarine basins with contrasting fetch. Geomorphology 2017, 280, 76–88. [Google Scholar] [CrossRef]
- Rosenberger, K.J.; Storlazzi, C.D.; Cheriton, O.M.; Pomeroy, A.W.M.; Hansen, J.F.; Lowe, R.J.; Buckley, M.L. Spectral Wave-Driven Bedload Transport Across a Coral Reef Flat/Lagoon Complex. Front. Mar. Sci. 2020, 7, 875. [Google Scholar] [CrossRef]
- Yang, G.; Wang, X.H.; Zhong, Y.; Cheng, Z.; Andutta, F.P. Wave effects on sediment dynamics in a macro-tidal estuary: Darwin Harbour, Australia during monsoon season. Estuar. Coast. Shelf Sci. 2020, 244, 106931. [Google Scholar] [CrossRef]
- Dissanayake, P.; Brown, J.; Sibbertsen, P.; Winter, C. Using a two-step framework for the investigation of storm impacted beach/dune erosion. Coast. Eng. 2021, 168, 103939. [Google Scholar] [CrossRef]
- Dissanayake, P.; Brown, J.; Wisse, P.; Karunarathna, H. Effect of storm clustering on beach/dune evolution. Mar. Geol. 2015, 370, 63–75. [Google Scholar] [CrossRef]
- Huang, S.Y.; Yen, J.Y.; Wu, B.L.; Shih, N.W. Field observations of sediment transport across the rocky coast of east Taiwan: Impacts of extreme waves on the coastal morphology by Typhoon Soudelor. Mar. Geol. 2020, 421, 106088. [Google Scholar] [CrossRef]
- Suanez, S.; Romain, C.; Floc’h, F.; Blaise, E.; Ardhuin, F.; Filipot, J.F.; Cariolet, J.M.; Delacourt, C. Observations and Predictions of Wave Runup, Extreme Water Levels, and Medium-Term Dune Erosion during storm conditions. J. Mar. Sci. Eng. 2015, 3, 674–698. [Google Scholar] [CrossRef] [Green Version]
- Suanez, S.; Cariolet, J.M.; Cancouët, R.; Ardhuin, F.; Delacourt, C. Dune recovery after storm erosion on a high-energy beach: Vougot beach, Brittany (France). Geomorphology 2012, 139, 16–33. [Google Scholar] [CrossRef]
- Van Ormondt, M.; Nelson, T.R.; Hapke, C.J.; Roelvink, D. Morphodynamic modelling of the wilderness breach, Fire Island, New York. Part I: Model set-up and validation. Coast. Eng. 2020, 157, 103621. [Google Scholar] [CrossRef]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea Level Change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Mentaschi, L.; Vousdoukas, M.I.; Voukouvalas, E.; Dosio, A.; Feyen, L. Global changes of extreme coaszal wave energy fluxes triggered by intensified teleconnection patterns. Geophys. Res. Lett. 2017, 44, 2416–2426. [Google Scholar] [CrossRef]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLoS ONE 2015, 10, e0131375. [Google Scholar] [CrossRef] [Green Version]
- Ranasinghe, R. On the need for a new generation of coastal change models for the 21st century. Sci. Rep. 2020, 10, 1–6. [Google Scholar] [CrossRef]
- Vousdoukas, I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sand coastlines under threat of erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Vendel, A.L.; Lopes, S.G.; Santos, C.; Spach, H.L. Fish assemblages in a tidal flat. Braz. Arch. Biol. Technol. 2003, 46, 233–242. [Google Scholar] [CrossRef] [Green Version]
- De Jong, F.; Bakker, J.F.; van Berkel, C.J.M.; Dankers, N.M.J.A.; Dahl, K.; Gätje, C.; Marencic, H.; Potel, P. Wadden Sea Quality Status Report, 1999; Wadden Sea Ecosystem No. 9; Common Wadden Sea Secretariat, Trilateral Monitoring and Assessment Group, Quality Status Report Group: Wilhelmshaven, Germany, 1999. [Google Scholar]
- Bruun, P.M. Sea level rise as a cause of shore erosion. J. Waterw. Harb. Div. 1962, 88, 117–130. [Google Scholar] [CrossRef]
- Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Perrette, M.; Nicholls, R.J.; Tol, R.S.J.; Marzeion, B.; Fettweis, X.; Ionescu, C.; Levermann, A. Coastal food damage and adaptation costs under 21st century sea-level rise. Proc. Natl. Acad. Sci. USA 2014, 111, 3292–3297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez, J.A.; Sanchez-Arcille, A. Physical impacts of climatic change on deltaic coastal systems (II): Driving terms. Clim. Chang. 1997, 35, 95–118. [Google Scholar] [CrossRef]
- Cooper, J.A.G.; Masselink, G.; Coco, G.; Short, A.D.; Castelle, B.; Rogers, K.; Anthony, E.; Green, A.N.; Kelley, J.T.; Pilkey, O.H.; et al. Sandy beaches can survive sea-level rise. Nat. Clim. Chang. 2020, 10, 993–995. [Google Scholar] [CrossRef]
- O’Grady, J.G.; Hemer, M.A.; McInees, K.L.; Trenham, C.E.; Stephenson, A.G. Projected incremental changes to extreme wind-driven wave heights for the twenty-first century. Sci. Rep. 2021, 11, 8826. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazards. Nat. Commun. 2018, 9, 2360. [Google Scholar] [CrossRef] [Green Version]
- Banno, M.; Kuriyama, Y. Prediction of future shoreline change with sea-level rise and wave climate change at Hasaki, Japan. In Proceedings of the 33rd International Conference of Coastal Engineering, Seoul, South Korea, 30 October 2014. [Google Scholar]
- Hemer, M.A.; Fan, Y.; Mori, N.; Semedo, A.; Wang, X. Projected changes in wave climate from a multi-model ensemble. Nat. Clim. Chang. 2013, 3, 471–476. [Google Scholar] [CrossRef]
- Boyd, S.C.; Weaver, R.J. Replacing a third-generation wave model with a fetch based parametric solver in coastal estuaries. Estuar. Coast. Shelf Sci. 2021, 251, 107192. [Google Scholar] [CrossRef]
- Divinsky, B.O.; Kosyan, R.D. Influence of the climatic variations in the wind waves parameters on the alongshore sediment transport. Oceanologia 2020, 62, 190–199. [Google Scholar] [CrossRef]
- Medellín, G.; Mayor, M.; Appendini, C.M.; Cerezo-Mota, R.; Jiménez, J.A. The Role of Beach Morphology and Mid-Century Climate Change Effects on Wave Runup and Storm Impact on the Northern Yucatan Coast. Mar. Sci. Eng. 2021, 9, 518. [Google Scholar] [CrossRef]
- Dodet, G.; Bertin, X.; Taborda, R. Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Model. 2010, 31, 120–131. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions, Part I, Model description and validation. J. Geophys. Res. 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- Lesser, G.; Roelvink, J.A.; Van Kester, J.A.T.M.; Stelling, G.S. Development and validation of a three-dimensional morphological model. Coast. Eng. 2004, 51, 883–915. [Google Scholar] [CrossRef]
- Boudière, E.; Maisonidieu, C.; Ardhuin, F.; Accensi, M.; Pineau-Guillou, L.; Lepesqueur, J. A suitable metocean hindcast database for the design of marine energy converters. Int. J. Mar. Energy 2013, 3, E40–E52. [Google Scholar] [CrossRef] [Green Version]
- Bennett, W.G.; Karunarathna, H.; Reeve, D.; Mori, N. Computational modelling of morphodynamic response of a macro-tidal beach to future climate variabilities. Mar. Geol. 2019, 415, 105960. [Google Scholar] [CrossRef]
- Battistini, R. Le littoral septentrional du Léon: Principaux problèmes morphologiques. Bull. L’association Géographes Français 1953, 30, 58–71. [Google Scholar] [CrossRef]
- Battistini, R. Description du relief et des formations quaternaires du littoral breton entre Brignogan et Saint-Pol-de-Léon (Finistère). Bulletin d’Information du Comité Central d’Océanographie et d’Etude des Côtes 1955, 7, 468–491. [Google Scholar]
- Battistini, R.; Martin, S. La “Plate-forme à écueils” du Nord-Ouest de la Bretagne. Norois 1956, 10, 147–161. [Google Scholar] [CrossRef]
- Guilcher, A.; Hallégouët, B. Coastal dunes in Brittany and their management. J. Coast. Res. 1991, 7, 517–533. [Google Scholar]
- Suanez, S.; Cariolet, J.M.; Fichaut, B. Monitoring of Recent Morphological Changes of the Dune of Vougot Beach (Brittany, France) Using Differential GPS. Shore Beach 2010, 78, 37–47. [Google Scholar]
- Bishop, C.T.; Donelan, M.A. Measuring waves with pressure transducers. Coast. Eng. 1987, 11, 309–328. [Google Scholar] [CrossRef]
- Homma, M.; Horikawa, K.; Komori, S. Response characteristics of underwater wave gauge. Coast. Eng. Jpn. 1966, 9, 45–54. [Google Scholar] [CrossRef]
- Pierson, W.J.; Marks, W. The power spectrum analysis of ocean-wave records. Eos Trans. Am. Geophys. Union 1952, 33, 834–844. [Google Scholar] [CrossRef]
- IAHR Working Group on Wave Generation and Analysis. List of sea-state parameters. J. Waterw. Port Coast. Ocean. Eng. 1989, 115, 793–808. [Google Scholar] [CrossRef]
- Laugel, A. Climatologie des états de mer en Atlantique nord-est: Analyse du Climat Actuel et des Evolutions Futures sous Scénarios de Changement Climatique, par Descente D’échelle Dynamique et Statistique. Ph.D. Thesis, Université Paris Est, Laboratoire d’Hydraulique Saint-Venant, Chatou, France, 2013. [Google Scholar]
- Benoit, M.; Marcos, M.; Becq, F. Development of a third generation shallow-water wave model with unstructured spatial meshing. In Proceedings of the 25th International Conference on Coastal Engineering, Orlando, FL, USA, 2–6 September 1996; pp. 465–478. [Google Scholar]
- Salas-Mélia, D.; Chauvin, F.; Déqué, M.; Douville, H.; Guérémy, J.F.; Marquet, P.; Planton, S.; Royer, J.F.; Tyteca, S. Description and Validation of CNRM-CM3 Global Coupled Climate Modele; Technical Report Note de centre GMGEC 103; CNRM: Toulouse, France, 2005. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis Summary for Policymakers; IPPC: Geneva, Switzwerland, 2007; 18p. [Google Scholar]
- Dissanayake, P.; Winter, C. Modelling the coastline orientation on storm erosion at the Sylt island, North Sea. In Proceedings of the Virtual Conference of Coastal Engineering, 6–9 October 2020. 36v, paper 20. [Google Scholar]
- Stelling, G.S. On the construction of computational methods for shallow water flow problem. In Rijkswaterstaat Communications; Governing Printing Office: Hague, The Netherlands, 1984; Volume 35. [Google Scholar]
- Stelling, G.S.; Lendertse, J.J. Approximation of Convective Processes by Cyclic ACI methods. In Proceedings of the 2nd ASCE Conference on Estuarine and Coastal Modelling, Tampa, FL, USA, 13–15 November 1991. [Google Scholar]
- Roelvink, J.A.; Walstra, D.J. Keeping it simple by using complex models. Adv. Hydrosci. Eng. 2004, V1, 1–11. [Google Scholar]
- Donelan, M.A.; Hamilton, H.; Hui, W.H. Directional spectra of wind-generated waves. Philos. Trans. R. Soc. Lond. A 1985, 315, 509–562. [Google Scholar]
- Hasselmann, K.; Barnett, T.P.; Bouws, F.; Carlson, H.; Cartwright, D.E.; Enke, K.; Ewing, J.A.; Gienapp, H.; Hasselmann, D.E.; Krusemann, P.; et al. Measurements of Windwave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP); Deutches Hydrographisches Institut, A8: Hamburg, Germany, 1973; pp. 1–95. [Google Scholar]
- Nair, M.A.; Kumar, V.S. Wave spectral shapes in the coastal waters based on measured data off Karwar on the western coast of India. Ocean. Sci. 2017, 13, 365–378. [Google Scholar] [CrossRef] [Green Version]
- Soulsby, R. Dynamics of Marine Sands, a Manual for Practical Applications; Thomas Telford: Teleford, UK, 1997. [Google Scholar]
- Fredsøe, J. Turbulent boundary layer in wave-current interaction. J. Hydraul. Eng. 1984, 110, 1103–1120. [Google Scholar] [CrossRef]
- Amoudry, L.O.; Souza, A.J. Deterministic coastal morphological and sediment transport modelling: A review and discussion. Rev. Geophys. 2011, 49, RG2002. [Google Scholar] [CrossRef] [Green Version]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Brooks, N.; Nicholls, R.; Hall, J. Sea Level Rise: Coastal Impacts and Responses. In Expertise for WBGU on Oceans and Global Change; WBGU: Berlin, Germany, 2006; p. 49. [Google Scholar]
- Masselink, G. Simulating the Effects of Tides on Beach Morphodynamics. J. Coast. Res. 1993, SI 15, 180–197. [Google Scholar]
- Sabatier, F.; Anthony, E.J.; Héquette, A.; Suanez, S.; Musereau, J.; Ruz, M.H.; Regnauld, H. Morphodynamics of beach/dune systems: Examples from the coast of France. Géomorphologie Relief Process. Environ. 2009, 15, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Wright, L.D.; Nielsen, P.; Short, A.D.; Green, M.O. Morphodynamics of a macrotidal beach. Mar. Geol. 1982, 50, 97–127. [Google Scholar] [CrossRef]
- Kim, G.H.; Jho, M.H.; Yoon, S.B. Improving the performance of SWAN modelling to simulate diffraction of waves behind structures. J. Coast. Res. 2017, SI 79, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Hsu, Y.L.; Dykes, J.D.; Allard, R.A. Evaluation of Delft3D Performance in Nearshore Flows; Naval Research Laboratory, Ocean Dynamics and Prediction Branch, Stennis Space Center: Hancock, MS, USA, 2006. [Google Scholar]
- Tsai, C.H.; Huang, M.C.; Young, F.J.; Lin, Y.C.; Li, H.W. On the recovery of surface wave by pressure transfer function. Ocean. Eng. 2005, 32, 1247–1259. [Google Scholar] [CrossRef]
- Bonneton, P.; Lannes, D. Recovering water wave elevation from pressure measurements. J. Fluid Mech. 2017, 833, 399–429. [Google Scholar] [CrossRef] [Green Version]
- Martins, K.; Blenkinsopp, C.E.; Almar, R.; Zang, Z. On the influence of swash-based reflection on surf zone hydrodynamics: A wave-by-wave approach. Coast. Eng. 2017, 122, 27–43. [Google Scholar] [CrossRef] [Green Version]
- Morim, J.; Hemer, M.A.; Wang, X.L.; Cartwright, N.; Trenham, C.; Semedo, A. Robustness and uncertainties in global multivariate wind-wave climate projections. Nat. Clim. Chang. 2019, 9, 711–718. [Google Scholar] [CrossRef] [Green Version]
- Masselink, G.; Castelle, B.; Scott, T.; Dodet, G.; Suanez, S.; Jackson, D.; Floc’h, F. Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophys. Res. Lett. 2016, 43, 2135–2143. [Google Scholar] [CrossRef]
- Ruju, A.; Filiplo, J.F.; Bentamy, A.; Leckler, F. Spectral wave modelling of the extreme 2013/2014 winter storms in the North-East Atlantic. Ocean. Eng. 2020, 216, 108012. [Google Scholar] [CrossRef]
Model Domain | Spatial Extent (Alongshore × Cross Shore in km) | Grid Type | Grid Resolution (Alongshore × Cross Shore in m) |
---|---|---|---|
G1 | 20 × 10 | rectilinear | 200 × 200 |
G2 | 8 × 6 | curvilinear | 40–50 × 20–60 |
G3 | 0.5 × 0.7 | curvilinear | 9 × 4–5 |
Simulation | Scenario | Description | |
---|---|---|---|
1 | Reference | Water levels = astronomical tides at AG2 and BG2 + TA at S3 (Figure 1) Wave characteristics at W1 from WW3 (Figure 1) Wind data at BR, Brignogan (Figure 1) | |
2 | Sea level rise | SLRmin | Only water level increased by 0.53 m: minimum of global range by IPCC [16] |
3 | SLRavg | Only water level increased by 0.74 m: average of global range by IPCC [16] | |
4 | SLRmax | Only water level increased by 0.98 m: maximum of global range by IPCC [16] | |
5 | Combined sea level rise and future wave climate | SLRmin + A1B | Water level SLRmin Waves based on A1B of IPCC [16] |
6 | SLRmax + A1B | Water level SLRmax Waves based on A1B of IPCC [16] | |
7 | SLRmin + B1 | Water level SLRmin Waves based on B1 of IPCC [16] | |
8 | SLRmax + B1 | Water level SLRmax Waves based on B1 of IPCC [16] |
Scenario | Parameter | Wave Height (Hs) | ||||
---|---|---|---|---|---|---|
Location | ||||||
P1 | P2 | P3 | P4 | |||
Sea level rise | SLRmin | R2 (-) | 0.93 | 0.94 | 0.92 | 0.94 |
RMSD (m) | 0.19 | 0.17 | 0.20 | 0.19 | ||
(-) | 0.31 | 0.21 | 0.06 | 0.04 | ||
(m) | 0.67 | 0.43 | 0.13 | 0.09 | ||
SLRavg | R2 (-) | 0.88 | 0.92 | 0.90 | 0.92 | |
RMSD (m) | 0.25 | 0.22 | 0.24 | 0.22 | ||
(-) | 0.43 | 0.30 | 0.08 | 0.05 | ||
(m) | 0.90 | 0.59 | 0.15 | 0.11 | ||
SLRmax | R2 (-) | 0.85 | 0.91 | 0.88 | 0.93 | |
RMSD (m) | 0.31 | 0.26 | 0.27 | 0.23 | ||
(-) | 0.53 | 0.38 | 0.10 | 0.07 | ||
(m) | 1.10 | 0.73 | 0.17 | 0.11 | ||
Combined = sea level rise + future wave | SLRmin + A1B | R2 (-) | 0.90 | 0.89 | 0.87 | 0.87 |
RMSD (m) | 0.26 | 0.29 | 0.31 | 0.39 | ||
(-) | 0.40 | 0.42 | 0.18 | 0.21 | ||
(m) | 0.59 | 0.64 | 0.21 | 0.20 | ||
SLRmax + A1B | R2 (-) | 0.84 | 0.86 | 0.84 | 0.84 | |
RMSD (m) | 0.38 | 0.40 | 0.36 | 0.43 | ||
(-) | 0.62 | 0.63 | 0.22 | 0.24 | ||
(m) | 0.97 | 1.00 | 0.26 | 0.23 | ||
SLRmin + B1 | R2 (-) | 0.87 | 0.85 | 0.80 | 0.76 | |
RMSD (m) | 0.19 | 0.27 | 0.33 | 0.43 | ||
(-) | 0.24 | 0.34 | 0.13 | 0.21 | ||
(m) | 0.46 | 0.58 | 0.29 | 0.32 | ||
SLRmax + B1 | R2 (-) | 0.81 | 0.82 | 0.77 | 0.75 | |
RMSD (m) | 0.31 | 0.36 | 0.38 | 0.50 | ||
(-) | 0.46 | 0.54 | 0.20 | 0.27 | ||
(m) | 0.81 | 0.89 | 0.31 | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dissanayake, P.; Yates, M.L.; Suanez, S.; Floc’h, F.; Krämer, K. Climate Change Impacts on Coastal Wave Dynamics at Vougot Beach, France. J. Mar. Sci. Eng. 2021, 9, 1009. https://doi.org/10.3390/jmse9091009
Dissanayake P, Yates ML, Suanez S, Floc’h F, Krämer K. Climate Change Impacts on Coastal Wave Dynamics at Vougot Beach, France. Journal of Marine Science and Engineering. 2021; 9(9):1009. https://doi.org/10.3390/jmse9091009
Chicago/Turabian StyleDissanayake, Pushpa, Marissa L. Yates, Serge Suanez, France Floc’h, and Knut Krämer. 2021. "Climate Change Impacts on Coastal Wave Dynamics at Vougot Beach, France" Journal of Marine Science and Engineering 9, no. 9: 1009. https://doi.org/10.3390/jmse9091009
APA StyleDissanayake, P., Yates, M. L., Suanez, S., Floc’h, F., & Krämer, K. (2021). Climate Change Impacts on Coastal Wave Dynamics at Vougot Beach, France. Journal of Marine Science and Engineering, 9(9), 1009. https://doi.org/10.3390/jmse9091009