# A Method for Supervisory Control of Manipulator of Underwater Vehicle

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Specifics of the Method for Supervisory Control of MM

## 3. Building of Motion Trajectories for a MM Working Tool Performing Operations on a Flat Bottom Surface

## 4. Building of Motion Trajectories for a MM Working Tool in Case of Rough Bottom Topography

## 5. Building of Complex Trajectories for MM Working Tools to Move Over the Surface of Underwater Objects

## 6. Software Implementation and Results of the Study of the Method for Supervisory Control of an MM Mounted on a UUV

## 7. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Davey, V.S.; Forli, O.; Raine, G.; Whillock, R. Non-Destructive Examination of Underwater Welded Steel Structures; Woodhead Publishing: Cambridge, UK, 1999; Volume 1372, p. 75. [Google Scholar]
- Gracias, N.; Negahdaripour, S. Underwater Mosaic Creation using Video sequences from Different Altitudes. In Proceedings of the OCEANS 2005 MTS/IEEE, Washington, DC, USA, 18–23 September 2006; pp. 1295–1300. [Google Scholar] [CrossRef]
- Christ, R.; Wernli, R. The ROV Manual: A User Guide for Remotely Operated Vehicles, 2nd ed.; Elsevier Science: Oxford, UK, 2013; p. 667. [Google Scholar]
- Carrera, A.; Ahmadzadeh, S.R.; Ajoudani, A.; Kormushev, P.; Carreras, M.; Caldwell, D.G. Towards Autonomous Robotic Valve Turning. Cybern. Inf. Technol.
**2012**, 12, 17–26. [Google Scholar] [CrossRef][Green Version] - Di Lillo, P.; Simetti, E.; Wanderlingh, F.; Casalino, G.; Antonelli, G. Underwater Intervention with Remote Supervision via Satellite Communication: Developed Control Architecture and Experimental Results Within the Dexrov Project. IEEE Trans. Control. Syst. Technol.
**2021**, 29, 108–123. [Google Scholar] [CrossRef] - Noé, S.; Beck, T.; Foubert, A.; Grehan, A. Surface Samples in Belgica Mound Province Hovland Mound Province, West Rockall Bank and Northern Porcupine Bank. In Shipboard Party: Report and Preliminary Results of RV Meteor Cruise M61/3; Ratmeyer, V., Hebbeln, D., Eds.; Universität Bremen: Bremen, Germany, 2006; pp. 28–32. [Google Scholar]
- Galloway, K.C.; Becker, K.P.; Phillips, B.; Kirby, J.; Licht, S.; Tchernov, D.; Wood, R.J.; Gruber, D.F. Soft Robotic Grippers for Biological Sampling on Deep Reefs. Soft Robot.
**2016**, 3, 23–33. [Google Scholar] [CrossRef] - Di Vito, D.; De Palma, D.; Simetti, E.; Indiveri, G.; Antonelli, G. Experimental validation of the modeling and control of a multibody underwater vehicle manipulator system for sea mining exploration. J. Field Robot.
**2021**, 38, 171–191. [Google Scholar] [CrossRef] - Coleman, D.F.; Ballard, R.D.; Gregory, T. Marine archaeological exploration of the black sea. In Oceans 2003 Celebrating the Past... Teaming toward the Future; IEEE: New York, NY, USA, 2003; Volume 3, pp. 1287–1291. [Google Scholar] [CrossRef]
- Hachicha, S.; Zaoui, C.; Dallagi, H.; Nejim, S.; Maalej, A. Innovative design of an underwater cleaning robot with a two arm manipulator for hull cleaning. Ocean Eng.
**2019**, 181, 303–313. [Google Scholar] [CrossRef] - Peñalver, A.; Pérez, J.; Fernández, J.; Sales, J.; Sanz, P.; García, D.F.; Fornas, D.; Marín, R. Visually-guided manipulation techniques for robotic autonomous underwater panel interventions. Annu. Rev. Control.
**2015**, 40, 201–211. [Google Scholar] [CrossRef][Green Version] - Filaretov, V.; Konoplin, A. System of Automatically Correction of Program Trajectory of Motion of Multilink Manipulator Installed on Underwater Vehicle. Procedia Eng.
**2015**, 100, 1441–1449. [Google Scholar] [CrossRef][Green Version] - Antonelli, G.; Caccavale, F.; Chiaverini, S. Adaptive Tracking Control of Underwater Vehicle-Manipulator Systems Based on the Virtual Decomposition Approach. IEEE Trans. Robot. Autom.
**2004**, 20, 594–602. [Google Scholar] [CrossRef] - Mohan, S.; Kim, J. Coordinated motion control in task space of an autonomous underwater vehicle–manipulator system. Ocean Eng.
**2015**, 104, 155–167. [Google Scholar] [CrossRef] - Zhang, J.; Li, W.; Yu, J.; Feng, X.; Zhang, Q.; Chen, G. Study of manipulator operations maneuvered by a ROV in virtual environments. Ocean Eng.
**2017**, 142, 292–302. [Google Scholar] [CrossRef] - Bin Ambar, R.; Sagara, S. Development of a master controller for a 3-link dual-arm underwater robot. Artif. Life Robot.
**2015**, 20, 327–335. [Google Scholar] [CrossRef] - Sakagami, N.; Shibata, M.; Hashizume, H.; Hagiwara, Y.; Ishimaru, K.; Ueda, T.; Saitou, T.; Fujita, K.; Kawamura, S.; Inoue, T.; et al. Development of a human-sized ROV with dual-arm. In OCEANS’10 IEEE SYDNEY; IEEE: New York, NY, USA, 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Galkin, S.V.; Vinogradov, G.M.; Tabachnik, K.M.; Rybakova, E.I.; Konoplin, A.Y.; Ivin, V.V. Megafauna of the Bering Sea Slope Based on Observations and Imaging from ROV “Comanche”; Marine Imaging Workshop: Kiel, Germany, 2017. [Google Scholar]
- Konoplin, A.Y.; Konoplin, N.Y.; Filaretov, V. Development of Intellectual Support System for ROV Operators. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 272, p. 032101. [Google Scholar]
- Filaretov, V.F.; Konoplin, N.Y.; Konoplin, A.Y. Approach to Creation of Information Control System of Underwater Vehicles. In Proceedings of the IEEE 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), St. Petersburg, Russia, 16–19 May 2017; pp. 1–5. [Google Scholar]
- Filaretov, V.; Konoplin, A.Y. System of automatic stabilization of underwater vehicle in hang mode with working multilink manipulator. In Proceedings of the 2015 International Conference on Computer, Control, Informatics and its Applications (IC3INA); Institute of Electrical and Electronics Engineers (IEEE), Bandung, Indonesia, 5–7 October 2015; pp. 132–137. [Google Scholar]
- Vu, M.T.; Le, T.-H.; Thanh, H.L.N.N.; Huynh, T.-T.; Van, M.; Hoang, Q.-D.; Do, T.D. Robust Position Control of an Over-actuated Underwater Vehicle under Model Uncertainties and Ocean Current Effects Using Dynamic Sliding Mode Surface and Optimal Allocation Control. Sensors
**2021**, 21, 747. [Google Scholar] [CrossRef] [PubMed] - Vu, M.T.; Le Thanh, H.N.N.; Huynh, T.T.; Thang, Q.; Duc, T.; Hoang, Q.D.; Le, T.H. Station-keeping control of a hovering over-actuated autonomous underwater vehicle under ocean current effects and model uncertainties in horizontal plane. IEEE Access
**2021**, 9, 6855–6867. [Google Scholar] [CrossRef] - Kang, J.I.; Choi, H.S.; Vu, M.T.; Duc, N.N.; Ji, D.H.; Kim, J.Y. Experimental study of dynamic stability of underwater vehicle-manipulator system using zero moment point. J. Mar. Sci. Technol.
**2017**, 25, 767–774. [Google Scholar] [CrossRef] - Yoerger, D.R.; Slotine, J.-J.E. Supervisory control architecture for underwater teleoperation. In Proceedings of the 1987 IEEE International Conference on Robotics and Automation; Institute of Electrical and Electronics Engineers (IEEE), Berkeley, CA, USA, April 2005; Volume 4, pp. 2068–2073. [Google Scholar]
- Yoerger, D.; Newman, J.; Slotine, J.-J. Supervisory control system for the JASON ROV. IEEE J. Ocean. Eng.
**1986**, 11, 392–400. [Google Scholar] [CrossRef] - Zhang, J.; Li, W.; Yu, J.; Mao, X.; Li, M.; Chen, G. Operating an underwater manipulator via P300 brainwaves. In Proceedings of the 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP); Institute of Electrical and Electronics Engineers (IEEE), Nanjing, China, 28–30 November 2016; pp. 1–5. [Google Scholar]
- Sivčev, S.; Rossi, M.; Coleman, J.; Dooly, G.; Omerdic, E.; Toal, D. Fully automatic visual servoing control for work-class marine intervention ROVs. Control. Eng. Pr.
**2018**, 74, 153–167. [Google Scholar] [CrossRef] - Bruno, F.; Lagudi, A.; Barbieri, L.; Rizzo, D.; Muzzupappa, M.; De Napoli, L. Augmented reality visualization of scene depth for aiding ROV pilots in underwater manipulation. Ocean Eng.
**2018**, 168, 140–154. [Google Scholar] [CrossRef] - Joe, H.; Kim, J.; Yu, S.-C. Sensor Fusion-based 3D Reconstruction by Two Sonar Devices for Seabed Mapping. IFAC-PapersOnLine
**2019**, 52, 169–174. [Google Scholar] [CrossRef] - Marton, Z.C.; Rusu, R.B.; Beetz, M. On fast surface reconstruction methods for large and noisy point clouds. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation; Institute of Electrical and Electronics Engineers (IEEE), Kobe, Japan, 12–17 May 2009; pp. 3218–3223. [Google Scholar]
- Filaretov, V.F.; Konoplin, A.Y.; Konoplin, N.Y. System for automatic soil sampling by AUV equipped with multilink manipulator. Int. J. Energy Technol. Policy
**2019**, 15, 208. [Google Scholar] [CrossRef] - Korn, G.A.; Korn, T.M. Mathematical handbook for scientists and engineers: Definitions, theorems, and formulas for reference and review. In Courier Corporation; Dover Publication, Inc.: Mineola, NY, USA, 24 June 2000; p. 1097. [Google Scholar]
- Schneider, P.J.; Eberly, D.H. Geometric Tools for Computer Graphics; Elsevier BV: Amsterdam, The Netherlands, 2003; p. 946. [Google Scholar]
- Tritech Eclipse. Multibeam Sonar for 3D Model View of Sonar Imagery. Available online: http://www.tritech.co.uk/ (accessed on 1 June 2021).
- BlueView 3D Multibeam Scanning Sonar. Available online: http://www.teledynemarine.com/ (accessed on 1 June 2021).
- Point Cloud Library: Fast Triangulation of Unordered Point Clouds. Available online: http://ns50.pointclouds.org/ (accessed on 1 June 2021).
- Möller, T.; Trumbore, B. Fast, Minimum Storage Ray-Triangle Intersection. J. Graph. Tools
**1997**, 2, 21–28. [Google Scholar] [CrossRef] - Konoplin, A.Y.; Konoplin, N.Y.; Shuvalov, B.V. Technology for Implementation of Manipulation Operations with Different Underwater Objects by AUV. In Proceedings of the 2019 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM); Institute of Electrical and Electronics Engineers (IEEE), Sochi, Russia, 25–28 March 2019; pp. 1–5. [Google Scholar]
- Craig, J.J. Introduction to Robotics: Mechanics and Control; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005; Volume 3. [Google Scholar]
- Fromm, T.; Mueller, C.A.; Pfingsthorn, M.; Birk, A.; Di Lillo, P. Efficient continuous system integration and validation for deep-sea robotics applications. In OCEANS 2017-Aberdeen; IEEE: New York, NY, USA, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Filaretov, V.; Gubankov, A.; Gornostaev, I. The formation of motion laws for mechatronics objects along the paths with the desired speed. In Proceedings of the 2016 International Conference on Computer, Control, Informatics and its Applications (IC3INA); Institute of Electrical and Electronics Engineers (IEEE), Jakarta, Indonesia, 3–5 October 2016; pp. 93–96. [Google Scholar]
- Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: Hoboken, NJ, USA, 2011; p. 736. [Google Scholar]
- Herman, P. Numerical Test of Several Controllers for Underactuated Underwater Vehicles. Appl. Sci.
**2020**, 10, 8292. [Google Scholar] [CrossRef] - Vervoort, J. Modeling and Control of an Unmanned Underwater Vehicle. Ph.D. Thesis, Christchurch, New Zealand, 2009; pp. 5–15. [Google Scholar]
- Filaretov, V.F.; Konoplin, A.; Zuev, A.; Krasavin, N. System of High-precision Movements Control of Underwater Manipulator. In Proceedings of the 29th International DAAAM Symposium 2018, Zadar, Croatia, 24–27 October 2020; Volume 7, pp. 752–757. [Google Scholar] [CrossRef]
- Filaretov, V.; Konoplin, A. Experimental Definition of the Viscous Friction Coefficients for Moving Links of Multilink Underwater Manipulator. In Proceedings of the 29th International DAAAM Symposium 2018; DAAAM International, Zadar, Croatia, 24–27 October 2016; Volume 1, pp. 762–767. [Google Scholar]
- Filaretov, V.; Konoplin, A.Y. Development of control systems for implementation of manipulative operations in hovering mode of underwater vehicle. In OCEANS 2016-Shanghai; IEEE: New York, NY, USA, 2016; pp. 1–5. [Google Scholar] [CrossRef]

**Figure 5.**A triangulation model of a seabed surface and the formed motion trajectory of the MM working tool.

**Figure 8.**(

**a**) A model of the UUV, MM, and work object in V-REP; (

**b**) a formed motion trajectory of the MM working tool in V-REP.

Parameters | Values (unit) | |
---|---|---|

UUV | L × H × W | 1.2 × 1.5 × 0.9 (${\mathrm{m}}^{3}$) |

Mass | 117 (kg) | |

Link 1 | Length | 0.05 (m) |

Mass | 0.4 (kg) | |

Link 2 | Length | 0.5 (m) |

Mass | 4 (kg) | |

Link 3 | Length | 0.5 (m) |

Mass | 4 (kg) | |

Link 4 | Length | 0.1 (m) |

Mass | 0.5 (kg) |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Konoplin, A.; Filaretov, V.; Yurmanov, A. A Method for Supervisory Control of Manipulator of Underwater Vehicle. *J. Mar. Sci. Eng.* **2021**, *9*, 740.
https://doi.org/10.3390/jmse9070740

**AMA Style**

Konoplin A, Filaretov V, Yurmanov A. A Method for Supervisory Control of Manipulator of Underwater Vehicle. *Journal of Marine Science and Engineering*. 2021; 9(7):740.
https://doi.org/10.3390/jmse9070740

**Chicago/Turabian Style**

Konoplin, Alexander, Vladimir Filaretov, and Alexander Yurmanov. 2021. "A Method for Supervisory Control of Manipulator of Underwater Vehicle" *Journal of Marine Science and Engineering* 9, no. 7: 740.
https://doi.org/10.3390/jmse9070740