Performance Assessments of Hurricane Wave Hindcasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Buoy Arrays (CDIP/NDBC)
2.2. Numerical Models
2.3. WW3 NCEP
2.4. ECMWF ERA5
2.5. WW3 IFREMER
2.6. USACE WIS
3. Buoy-Model Comparisons
3.1. Buoy-Model Hs Bias
3.2. Buoy-Model Wind Comparisons
3.3. Hs Bias Depth Dependency
4. Case Studies
4.1. Case Study: Hurricane Sandy
4.2. Case Study: Hurricane Florence
4.3. Mechanisms of Buoy-Model Differences
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blake, E.S.; Landsea, C.W.; Gibney, E.J. The deadliest, costliest, and most intense tropical cyclones from 1851 to 2010 (and other frequently requested hurricane facts); NOAA Technical Memorandum NWS NHC-6; National Weather Service: Miami, FL, USA, 2011. Available online: www.nhc.noaa.gov/pdf/nws-nhc-6.pdf (accessed on 10 March 2020).
- Blake, E.S.; Kimberlain, T.B.; Berg, R.J.; Cangialosi, J.P.; Beven, J.L., II. Tropical cyclone report: Hurricane Sandy (AL182012). NOAA Rep. 2013, 157. Available online: www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf (accessed on 10 March 2020).
- Pielke, R.A.; Gratz, J.; Landsea, C.W.; Collins, D.; Saunders, M.A.; Musulin, R. Normalized hurricane damage in the United States: 1900–2005. Nat. Hazards Rev. 2008, 9, 29–42. [Google Scholar] [CrossRef]
- Pielke, R.A., Jr. Normalized Hurricane Damage 1900–2012. Available online: http://rogerpielkejr.blogspot.com/2012/12/updated-normalized-hurricane-losses.html (accessed on 20 March 2020).
- Woodruff, J.D.; Irish, J.L.; Camargo, S.J. Coastal flooding by tropical cyclones and sea-level rise. Nature 2013, 504, 44–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bender, M.A.; Knutson, T.R.; Tuleya, R.E.; Sirutis, J.J.; Vecchi, G.A.; Garner, S.T.; Held, I.M. Modeled impact of anthropogenic warming of the frequency of intense Atlantic hurricanes. Science 2010, 327, 454–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Ponce de León, S.; Bettencourt, J.H. Composite analysis of North Atlantic extra-tropical cyclone waves from satellite altimetry observations. Adv. Space Res. 25 Years Prog. Radar Altimetry 2021, 68, 762–772. [Google Scholar] [CrossRef]
- Tamizi, A.; Young, I. The spatial distribution of ocean waves in tropical cyclones. J. Phys. Oceanogr. 2020, 50, 2123–2139. [Google Scholar] [CrossRef]
- Abdalla, S.; Kolahchi, A.A.; Ablain, M.; Adusumilli, S.; Bhowmick, S.A.; Alou-Font, E.; Amarouche, L.; Andersen, O.B.; Antich, H.; Aouf, L.; et al. Altimetry for the future: Building on 25 years of progress. Adv. Space Res. 25 Years Prog. Radar Altimetry 2021, 68, 319–363. [Google Scholar] [CrossRef]
- Hu, K.; Chen, Q. Directional spectra of hurricane-generated waves in the Gulf of Mexico. Geophys. Res. Lett. 2011, 38, L19608. [Google Scholar] [CrossRef]
- Wright, C.W.; Walsh, E.J.; Vandemark, D.; Krabill, W.B.; Garcia, A.W.; Houston, S.H.; Powell, M.D.; Black, P.G.; Marks, F.D. Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr. 2001, 31, 2472–2488. [Google Scholar] [CrossRef]
- Black, P.G.; D’Asaro, E.A.; Sanford, T.B.; Drennan, W.M.; Zhang, J.A.; French, J.R.; Niiler, P.P.; Terrill, E.J.; Walsh, E.J. Air-Sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air-sea transfer experiment. Bull. Am. Meteorol. Soc. 2007, 88, 357–374. [Google Scholar] [CrossRef] [Green Version]
- Holthuijsen, L.H.; Powell, M.D.; Pietrzak, J.D. Wind and waves in extreme hurricanes. J. Geophys. Res. Atmos. 2012, 117, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Babanin, A.V.; Fan, Y.; Zieger, S.; Guan, C.; Moon, I. Numerical simulations of ocean surface waves under hurricane conditions: Assessment of existing model performance. Ocean Model. 2017, 118, 73–93. [Google Scholar] [CrossRef]
- Esquivel-Trava, B.; Ocampo-Torres, F.J.; Osuna, P. Spatial structure of directional wave spectra in hurricanes. Ocean Dyn. 2015, 65, 65–76. [Google Scholar] [CrossRef]
- Collins, C.O., III; Potter, H.; Lund, B.; Tamura, H.; Graber, H.C. Directional wave spectra observed during intense tropical cyclones. J. Geophys. Res. Ocean. 2018, 123, 773–793. [Google Scholar] [CrossRef]
- Young, I.R. Observations of the spectra of hurricane generated waves. Ocean. Eng. 1998, 25, 261–276. [Google Scholar] [CrossRef]
- Young, I.R. A review of the sea state generated by hurricanes. Mar. Struct. 2003, 16, 201–218. [Google Scholar] [CrossRef]
- Young, I.R. Directional spectra of hurricane wind waves. J. Geophys. Res. 2006, 111, C08020. [Google Scholar] [CrossRef]
- Young, I.R.; Vinoth, J. An “extended fetch” model for the spatial distribution of tropical cyclone wind–waves as observed by altimeter. Ocean. Eng. 2013, 70, 14–24. [Google Scholar] [CrossRef]
- Young, I.R.; van Vledder, G.P. A review of the central role of nonlinear interactions in wind-wave evolution. Philos. Trans. R. Soc. Lond. 1993, 342A, 505–524. [Google Scholar] [CrossRef]
- Ruggiero, P.; Komar, P.D.; McDougal, W.G.; Marra, J.J.; Beach, R.A. Wave runup, extreme water levels and the erosion of properties backing beaches. J. Coast. Res. 2001, 17, 407–419. [Google Scholar]
- Sallenger, A.H. Storm impact scale for barrier islands. J. Coast. Res. 2000, 16, 890–895. [Google Scholar]
- Stockdon, H.F.; Sallenger, A.H., Jr.; Holman, R.A.; Howd, P.A. A simple model for the spatially-variable response to hurricanes. Mar. Geol. 2007, 238, 1–20. [Google Scholar] [CrossRef]
- Fan, Y.; Hwang, P.; Yu, J. Surface Gravity Wave Modeling in Tropical Cyclones. In Geophysics and Ocean Waves Studies; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- The WAMDI Group. The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr. 1988, 18, 1775–1810. [Google Scholar] [CrossRef] [Green Version]
- Cardone, V.J.; Jensen, R.E.; Resio, D.T.; Swail, V.R.; Cox, A.T. Evaluation of contemporary ocean wave models in rare extreme events: The “Halloween storm” of October 1991 and the “Storm of the Century” of March 1993. J. Atmos. Ocean. Technol. 1996, 13, 198–230. [Google Scholar] [CrossRef] [Green Version]
- Moon, I.; Ginis, I.; Hara, T. Numerical simulation of sea surface directional wave spectra under typhoon wind forcing. J. Phys. Oceanogr. 2003, 33, 1680–1706. [Google Scholar] [CrossRef] [Green Version]
- Babanin, A.V.; Hsu, T.W.; Roland, A.; Ou, S.H.; Doong, D.J.; Kao, C.C. Spectral wave modelling of typhoon Krosa. Nat. Hazards Earth Syst. Sci. 2011, 11, 501–511. [Google Scholar] [CrossRef]
- Cavaleri, L.; Alves, J.H.G.M.; Ardhuin, F.; Babanin, A.V.; Banner, M.; Belibassakis, K.; Benoit, M.; Donelan, M.; Groeneweg, J.; Herbers, T.H.C.; et al. Wave modelling—The state of the art. Prog. Oceanogr. 2007, 75, 603–674. [Google Scholar] [CrossRef] [Green Version]
- Tolman, H.L.; Grumbine, R.W. Holistic genetic optimization of a generalized multiple discrete interaction approximation for wind waves. Ocean Model. 2013, 70, 25–37. [Google Scholar] [CrossRef]
- Babanin, A.V.; Rogers, W.R.; de Camargo, R.; Doble, M.; Durrant, T.; Filchuk, K.; Ewans, K.; Hemer, M.; Janssen, T.; Kelly-Gerreyn, B.; et al. Waves and Swells in High Wind and Extreme Fetches, Measurements in the Southern Ocean. Front. Mar. Sci. 2019, 6, 361. [Google Scholar] [CrossRef] [Green Version]
- Takbash, A.; Young, I.; Breivik, O. Global wind speed and wave height extremes derived from satellite records. J. Clim. 2018, 32, 109–126. [Google Scholar] [CrossRef]
- Cavaleri, L. Wave modeling—Missing the peaks. J. Phys. Oceanogr. 2009, 39, 2757–2778. [Google Scholar] [CrossRef]
- O’Reilly, W.; Olfe, C.B.; Thomas, J.; Seymour, R.; Guza, R. The California coastal wave monitoring and prediction system. Coast. Eng. 2016, 116, 118–132. [Google Scholar] [CrossRef] [Green Version]
- De León, S.P.; Soares, C.G. Hindcast of extreme sea states in North Atlantic extratropical storms. Ocean Dyn. 2015, 65, 241–254. [Google Scholar] [CrossRef]
- De León, S.P.; Soares, C.G. Hindcast of the Hercules winter storm in the North Atlantic. Nat. Hazards 2015, 78, 1883–1897. [Google Scholar] [CrossRef]
- Chao, Y.Y.; Tolman, H.L. Performance of NCEP regional wave models in predicting peak sea states during the 2005 North Atlantic hurricane season. Weather. Forecast. 2010, 25, 1543–1567. [Google Scholar] [CrossRef]
- Guo, L.; Sheng, J. Statistical estimation of extreme ocean waves over the eastern Canadian shelf from 30-year numerical wave simulation. Ocean Dyn. 2015, 65, 1489–1507. [Google Scholar] [CrossRef]
- Chen, S.S.; Curcic, M. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations. Ocean Model. Waves Coast. Reg. Glob. Process. 2016, 103, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Evans, D.; Conrad, C.L.; Paul, F.M. Handbook of automated data quality control checks and procedures. Tech. Doc. 2003, 26, 44. [Google Scholar]
- Adams, P.N.; Inman, D.L.; Graham, N.E. Southern California deep-water wave climate: Characterization and application to coastal processes. J. Coast. Res. 2008, 24, 1022–1035. [Google Scholar] [CrossRef]
- Barnard, P.L.; van Ormondt, M.; Erikson, L.H.; Eshleman, J.; Hapke, C.; Ruggiero, P.; Adams, P.N.; Foxgrover, A.C. Development of the coastal storm modeling system (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts. Nat. Hazards 2014, 74, 1095–1125. [Google Scholar] [CrossRef]
- Lionello, P.; Sanna, A. Mediterranean wave climate variability and its links with NAO and Indian monsoon. Clim. Dyn. 2005, 24, 611–623. [Google Scholar] [CrossRef]
- Cattrell, A.D.; Srokosz, M.; Moat, B.I.; Marsh, R. Can rogue waves be predicted using characteristic wave parameters? J. Geophys. Res. Ocean 2018, 123, 5624–5636. [Google Scholar] [CrossRef] [Green Version]
- Tolman, H.L.; Chalikov, D. Source terms in a third-generation wind wave model. J. Phys. Oceanogr. 1996, 26, 2497–2518. [Google Scholar] [CrossRef] [Green Version]
- Ardhuin, F.; Rogers, E.; Babanin, A.; Filipot, J.-F.; Magne, R.; Roland, A.; van der Westhuysen, A.; Queffeulou, P.; Lefevre, J.-M.; Aouf, L.; et al. Semi-empirical dissipation source functions for ocean waves: Part I, definition, calibration and validation. J. Phys. Oceanogr. 2010, 40, 1917–1941. [Google Scholar] [CrossRef] [Green Version]
- Janssen, P.; Bidlot, J.R. IFS Documentation-Cy46r1. Operational Implementation, 6 June 2019. Part VII: ECMWF Wave Model; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2019; 99p. [Google Scholar]
- Bidlot, J.R. Present Status of Wave Forecasting at ECMWF, Paper Presented at Workshop on Ocean Waves, 25–27 June 2012; ECMWF: Reading, UK, 2012; Available online: http://www.ecmwf.int/publications/ (accessed on 1 March 2020).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Sabater, J.M.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1979 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 7 November 2020). [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40- Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Cavaleri, L.; Abdalla, S.; Benetazzo, A.; Bertotti, L.; Bidlot, J.-R.; Breivik, Ø.; Carniel, S.; Jensen, R.E.; Portilla-Yandun, J.; Rogers, W.E.; et al. Wave modelling in coastal and inner seas. Prog. Oceanogr. 2018, 167, 164–233. [Google Scholar] [CrossRef]
- Donelan, M.A.; Drennan, W.M.; Katsaros, K.B. The Air–Sea Momentum Flux in Conditions of Wind Sea and Swell. J. Phys. Oceanogr. 1997, 27, 2087–2099. [Google Scholar] [CrossRef]
- Umesh, P.A.; Behera, M. Performance evaluation of input-dissipation parameterizations in WAVEWATCH III and comparison of wave hindcast with nested WAVEWATCH III-SWAN in the Indian Seas. Ocean Eng. 2020, 202, 106959. [Google Scholar] [CrossRef]
- Sheng, Y.; Shao, W.; Li, S.; Zhang, Y.; Yang, H.; Zuo, J. Evaluation of Typhoon Waves Simulated by WaveWatch-III Model in Shallow Waters around Zhoushan Islands. J. Ocean Univ. China 2019, 18, 365–375. [Google Scholar] [CrossRef]
- Collins, C.; Hesser, T.; Rogowski, P.; Merrifield, S. Altimeter Observations of Tropical Cyclone-generated Sea States: Spatial Analysis and Operational Hindcast Evaluation. J. Mar. Sci. Eng. 2021, 9, 216. [Google Scholar] [CrossRef]
- Tolman, H.L. Optimum discrete interaction approximations for wind waves. Part 4: Parameter optimization. Tech. Rep. 2010, 288. [Google Scholar]
- Zieger, S.; Babanin, A.V.; Rogers, W.E.; Young, I.R. Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Model. Waves Coast. Reg. Glob. Process. 2015, 96, 2–25. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Ginis, I.; Hara, T. The Effect of Wind-Wave-Current Interaction on Air-Sea Momentum Fluxes and Ocean Response in Tropical Cyclones. J. Phys. Oceanogr. 2009, 39, 1019–1034. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Sheng, J. A comparative study of wave-current interactions over the eastern Canadian shelf under severe weather conditions using a coupled wave-circulation model. J. Geophys. Res. Ocean. 2016, 121, 5252–5281. [Google Scholar] [CrossRef]
- Sun, R.; Bôas, A.; Subramanian, A.; Cornuelle, B.; Mazloff, M.; Miller, A.; Langodan, S.; Hoteit, I. Amplification of Tropical Cyclone Generated Waves by Ocean Current Refraction; American Geophysical Union: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Ardhuin, F.; Gille, S.T.; Menemenlis, D.; Rocha, C.B.; Rascle, N.; Chapron, B.; Gula, J.; Molemaker, J. Small-scale open ocean currents have large effects on wind wave heights. J. Geophys. Res. Ocean. 2017, 122, 4500–4517. [Google Scholar] [CrossRef] [Green Version]
- Hegermiller, C.A.; Warner, J.C.; Olabarrieta, M.; Sherwood, C.R. Wave–Current Interaction between Hurricane Matthew Wave Fields and the Gulf Stream. J. Phys. Oceanogr. 2019, 49, 2883–2900. [Google Scholar] [CrossRef]
- Warner, J.C.; Schwab, W.C.; List, J.H.; Safak, I.; Liste, M.; Baldwin, W.E. Inner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy. Cont. Shelf Res. 2017, 138, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Holthuijsen, L.H.; Tolman, H.L. Effects of the Gulf Stream on ocean waves. J. Geophys. Res. Ocean. 1991, 96, 12755–12771. [Google Scholar] [CrossRef]
- Huang, Y.; Weisberg, R.H.; Zheng, L.; Zijlema, M. Gulf of Mexico hurricane wave simulations using SWAN: Bulk formula-based drag coefficient sensitivity for Hurricane Ike. J. Geophys. Res. Ocean. 2013, 118, 3916–3938. [Google Scholar] [CrossRef] [Green Version]
- Zieger, S.; Greenslade, D.J.M.; Aijaz, S.; Kepert, J.D.; Burton, A. Hindcasting of tropical cyclone winds and waves. Ocean Dyn. 2021, 71, 559–588. [Google Scholar] [CrossRef]
Hurricane | Formation | Dissipation | Maximum | Minimum |
---|---|---|---|---|
Date | Date | Winds (kts) | Pressure (mb) | |
Irene | 22 August 2011 | 28 August 2011 | 105 | 942 |
Sandy | 24 October 2012 | 29 October 2012 | 100 | 940 |
Matthew | 29 September 2012 | 9 October 2012 | 145 | 934 |
Irma | 31 August 2017 | 11 September 2017 | 155 | 914 |
Florence | 4 September 2018 | 15 September 2018 | 130 | 937 |
Dorian | 28 August 2019 | 7 September 2019 | 160 | 910 |
Grid/Hindcast | Model | Spatial Resolution | Wind Source | Time Output | Wind Assimilation |
---|---|---|---|---|---|
NCEP | GFS | 3 h | No | ||
Global North Atlantic Basin U.S. East Coast | WW3 (ST2 + ST4) WW3 (ST2 + ST4) WW3 (ST2 + ST4) | 30 arcmin 10 arcmin 4 arcmin | |||
IFREMER | ERA5 | 3 h | Yes | ||
Global North Atlantic Basin | WW3 (ST4) WW3 (ST4) | 30 arcmin 10 arcmin | |||
ECMWF | ERA5 | 3 h | Yes | ||
ERA5 Reanalysis | HRES-WAM | 30 arcmin (spectral) 21 arcmin (bulk) | |||
WIS | OWI | 1 h | Yes | ||
North Atlantic Basin U.S. East Region U.S. East Coast | WW3 (ST4) WW3 (ST4) WW3 (ST4) | 30 arcmin 15 arcmin 5 arcmin |
Buoy Depth > 20 m | Buoy Depth < 20 m | |||||
---|---|---|---|---|---|---|
bias (%) | rmse (m) | cc | bias (%) | rmse (m) | cc | |
NCEP | −4.8 | 0.84 | 0.86 | −20.0 | 1.19 | 0.54 |
IFREMER | −6.8 | 0.78 | 0.89 | −16.1 | 1.18 | 0.57 |
ECMWF | −8.2 | 0.91 | 0.85 | −8.7 | 1.02 | 0.49 |
WIS | −5.3 | 0.88 | 0.87 | −12.4 | 0.83 | 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogowski, P.; Merrifield, S.; Collins, C.; Hesser, T.; Ho, A.; Bucciarelli, R.; Behrens, J.; Terrill, E. Performance Assessments of Hurricane Wave Hindcasts. J. Mar. Sci. Eng. 2021, 9, 690. https://doi.org/10.3390/jmse9070690
Rogowski P, Merrifield S, Collins C, Hesser T, Ho A, Bucciarelli R, Behrens J, Terrill E. Performance Assessments of Hurricane Wave Hindcasts. Journal of Marine Science and Engineering. 2021; 9(7):690. https://doi.org/10.3390/jmse9070690
Chicago/Turabian StyleRogowski, Peter, Sophia Merrifield, Clarence Collins, Tyler Hesser, Allison Ho, Randy Bucciarelli, James Behrens, and Eric Terrill. 2021. "Performance Assessments of Hurricane Wave Hindcasts" Journal of Marine Science and Engineering 9, no. 7: 690. https://doi.org/10.3390/jmse9070690
APA StyleRogowski, P., Merrifield, S., Collins, C., Hesser, T., Ho, A., Bucciarelli, R., Behrens, J., & Terrill, E. (2021). Performance Assessments of Hurricane Wave Hindcasts. Journal of Marine Science and Engineering, 9(7), 690. https://doi.org/10.3390/jmse9070690