The Potential Sex Determination Genes, Sox9a and Cyp19a, in Walleye Pollock (Gadus Chalcogrammus) Are Influenced by Water Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Materials
2.2. Isolation of mRNA Sequence
2.3. Quantitative Real Time-PCR
2.4. Vitellogenin Assay
2.5. Histological Analysis
2.6. Statistical Analysis
3. Results
3.1. Sox9a and Cyp19a mRNA Expression in the Gonadal Tissues with Vitellogenin
3.2. Sox9a and Cyp19a mRNA Expression in Embryos and Larvae at Different Water Temperatures
3.3. Distribution of Sox9a and Cyp19a mRNA in Juvenile Fish
3.4. Sox9a and Cyp19a mRNA Expression with Vitellogenin in Immature Walleye Pollock
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hiatt, T.; Dalton, M.; Felthoven, R.; Fissel, B.; Garber-Yonts, B.; Haynie, A.; Kasperski, S.; Lew, D.; Package, C.; Sepez, J.; et al. Economic status of the ground fish fisheries off Alaska, 2009. In Stock Assessment and Fishery Evaluation Report for the Ground Fish Fisheries of the Gulf of Alaska and Bering Sea/Aleutian Islands Area; North Pacific Fishery Management Council: Anchorage, AK, USA, 2010; p. 254. [Google Scholar]
- Bakkala, R.G. Structure and Historical Changes in the Ground Fish Complex of the Eastern Bering Sea; NOAA Technical Report NMFS: Miami, FL, USA; U.S. Department of Commerce: Washington, DC, USA, 1993. [Google Scholar]
- Nakatani, T.; Maeda, T. Thermal effect on the development of walleye pollock eggs and their upward speed to the surface. Bull. Jpn. Soc. Sci. Fish. 1984, 50, 937–942. [Google Scholar] [CrossRef]
- Graham, C.T.; Harrod, C. Implications of climate change for the fishes of the British Isles. J. Fish Biol. 2009, 74, 1143–1205. [Google Scholar] [CrossRef]
- Hinch, S.G.; Cooke, S.J.; Healey, M.C.; Farrell, A.P. Behavioural physiology of fish migrations: Salmon as a model approach Fish Physiology. Behav. Physiol. Fish. 2005, 24, 239–295. [Google Scholar]
- Hari, R.E.; Livingstone, D.M.; Siber, R.; Burkhardt-Holm, P.; Herbert, G. Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams Glob. Chang. Biol. 2006, 12, 10–26. [Google Scholar] [CrossRef]
- Jobling, M. Temperature and growth: Modulation of growth rate via temperature change. In Global Warming: Implications for Freshwater and Marine Fish; Wood, C.M., McDonald, D.G., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 225–253. [Google Scholar]
- Salinger, D.H.; Anderson, J.J. Effects of water temperature and flow on adult salmon migration swim speed and delay. Trans. Am. Fish. Soc. 2006, 135, 188–199. [Google Scholar] [CrossRef]
- Sponaugle, S.; Cowen, R.K. Larval supply and patterns of recruitment for two Caribbean reef fishes, Stegastes partitus and Acanthurus bahianus. Mar. Freshw. Res. 1996, 47, 433–447. [Google Scholar] [CrossRef]
- Devlin, R.H.; Nagahama, Y. Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture 2002, 208, 191–364. [Google Scholar] [CrossRef]
- Baroiller, J.F.; D’Cotta, H.; Saillant, E. Environmental effects on fish sex determination and differentiation. Sex. Dev. 2009, 3, 118–135. [Google Scholar] [CrossRef]
- Baroiller, J.F.; D’Cotta, H. Environment and sex determination in farmed fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2001, 130, 399–409. [Google Scholar] [CrossRef]
- Baroiller, J.F.; Guiguen, Y. Endocrine and environmental aspects of sex differentiation in gonochoristic fish. EXS 2001, 177, 201. [Google Scholar]
- Godwin, J. Social determination of sex in reef fishes. Semin. Cell. Dev. Biol. 2009, 20, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Conover, D.O.; Heins, S.W. Adaptive variation in environmental and genetic sex determination in a fish. Nature 1987, 326, 496–498. [Google Scholar] [CrossRef] [PubMed]
- Koopman, P.; Gubbay, J.; Vivian, N.; Goodfellow, P.; Lovell-Badge, R. Male development of chromosomally female mice transgenic for sry. Nature 1991, 351, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Kent, J.; Wheatley, S.C.; Andrews, J.E.; Sinclair, A.H.; Koopman, P.A. Male-specific role for sox9 in vertebrate sex determination. Development 1996, 122, 2813–2822. [Google Scholar] [PubMed]
- Smith, C.A.; Roeszler, K.N.; Ohnesorg, T.; Cummins, D.M.; Farlie, P.G.; Doran, T.J.; Sinclair, A.H. The avian Z-linked gene dmrt1 is required for male sex determination in the chicken. Nature 2009, 461, 267–271. [Google Scholar] [CrossRef]
- Heule, C.; Salzburger, W.; Böhne. Genetics of sexual development: An evolutionary playground for fish. Genetics 2014, 196, 579–591. [Google Scholar] [CrossRef] [Green Version]
- Piferrer, F.; Ribas, L.; Díaz, N. Genomic approaches to study genetic and environmental influences on fish sex determination and differentiation. Mar. Biotechnol. 2012, 14, 591–604. [Google Scholar] [CrossRef] [Green Version]
- Guiguen, Y.; Fostier, A.; Piferrer, F.; Chang, C.-F. Ovarian aromatase and estrogens: A pivotal role for gonadal sex differentiation and sex change in fish. Gen. Comp. Endocrinol. 2010, 165, 352–366. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-S.; Kobayashi, T.; Zhou, L.-Y.; Paul-Prasanth, B.; Ijiri, S.; Sakai, F.; Okubo, K.; Morohashi, K.I.; Nagahama, Y. Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with Ad4 binding protein/steroidogenic factor 1. Mol. Endocrinol. 2007, 21, 712–725. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.R.; Mahendroo, M.S.; Means, G.D.; Kilgore, M.W.; Hinshelwood, M.M.; Graham-Lorence, S.; Amarneh, B.; Ito, Y.; Fisher, C.R.; Michael, M.D.; et al. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr. Rev. 1997, 15, 342–355. [Google Scholar]
- Kim, S.S.; So, J.H.; Maeng, C.H.; Kim, N.-J.D.; Lee, C.J.; Ma, Y.; Yoo, H.K.; Choi, J.; Byun, S.G.; Lim, H.J.; et al. The influence of water temperature on the induction of vitellogenin in walleye pollock Gadus chalcogrammus. Aquaculture 2019, 511, 634195. [Google Scholar] [CrossRef]
- Sole, M.; Porte, C.; Barcelo, D. Analysis of the estrogenic activity of sewage treatment works and receiving waters using vitellogenin induction in fish as a biomarker. Trac Trend Anal. Chem. 2001, 20, 518–525. [Google Scholar] [CrossRef]
- Degani, G. Expression of SOX3 and SOX9 genes in gonads of blue gourami. Adv. Biol. Chem. 2014, 4, 322–330. [Google Scholar] [CrossRef]
- Adolfi, M.C.; Carreira, A.C.; Jesus, L.W.; Bogerd, J.; Funes, R.M.; Schartl, M.; Sogayar, M.C.; Borella, M.I. Molecular cloning and expression analysis of dmrt1 and sox9 during gonad development and male reproductive cycle in the lambari fish, Astyanax altiparanae. Reprod. Biol. Endocrinol. 2015, 13, 2. [Google Scholar] [CrossRef] [Green Version]
- Nakamoto, M.; Suzuki, A.; Matsuda, M.; Nagahama, Y.; Shibata, N. Testicular type Sox9 is not involved in sex determination but might be in the development of testicular structures in the medaka, Oryzias latipes. Biochem. Biophys. Res. Commun. 2005, 333, 729–736. [Google Scholar] [CrossRef]
- Jorgensen, A.; Morthorst, J.E.; Andersen, O.; Rasmussen, L.J.; Bjerregaard, P. Expression profiles for six zebrafish genes during gonadal sex differentiation. Reprod. Biol. Endocrinol. 2008, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Kajiura-Kobayashi, H.; Guan, G.; Nagahama, Y. Sexual dimorphic expression of DMRT1 and Sox9a during gonadal differentiation and hormone-induced sex reversal in the teleost fish Nile tilapia (Oreochromis niloticus). Dev. Dyn. 2008, 237, 297–306. [Google Scholar] [CrossRef]
- Deng, S.P.; Chen, S.L.; Xu, J.Y.; Liu, B.W. Molecular cloning, characterization and expression analysis of gonadal P450 aromatase in the half-smooth tongue-sole, Cynoglossus semilaevis. Aquaculture 2009, 287, 211–218. [Google Scholar] [CrossRef]
- Chen, X.W.; Jiang, S.; Gu, Y.F.; Shi, Z.Y. Molecular characterization and expression of cyp19a gene in Carassius auratus. J. Fish Biol. 2014, 85, 516–522. [Google Scholar] [CrossRef]
- Liu, H.; Mu, X.; Gui, L.; Su, M.; Li, H.; Zhang, G.; Liu, Z.; Zhang, J. Characterization and gonadal expression of FOXL2 relative to Cyp19a genes in spotted scat Scatophagus argus. Gene 2015, 561, 6–14. [Google Scholar] [CrossRef]
- Ospina-Alvarez, N.; Piferrer, F. Temperature-dependent sex determination in fish revisited: Prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS ONE 2008, 3, 2837. [Google Scholar] [CrossRef] [Green Version]
- Conover, D.; Kynard, B. Environmental sex determination: Interaction of temperature and genotype in a fish. Science 1981, 213, 31. [Google Scholar] [CrossRef] [PubMed]
- Baroiller, J.F.; Guiguen, Y.; Fostier, A. Endocrine and environmental aspects of sex differentiation in fish. Cell. Mol. Life Sci. 1999, 55, 910–931. [Google Scholar] [CrossRef]
- Tanaka, H.; Nakagawa, T.; Yokota, T.; Chimura, M.; Yamashita, Y.; Funamoto, T. Effects of spawning temperature on the reproductive characteristics of walleye pollock Gadus chalcogrammus. Fish. Sci. 2019, 85, 901–911. [Google Scholar] [CrossRef]
- Roselli, C.E. Distribution and regulation of aromatase activity in the rat hypothalamus and limbic system. Endocrinology 1985, 117, 2471–2477. [Google Scholar] [CrossRef]
- Gelinas, D.; Callard, G.V. Immunolocalization of aromatase- and androgen receptor-positive neurons in the goldfish brain. Gen. Comp. Endocrinol. 1997, 106, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mari, A.; Yan, Y.L.; Bremiller, R.A.; Wilson, C.; Canestro, C.; Postlethwait, J.H. Characterization and expression pattern of zebrafish Anti-Mullerian hormone (Amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development. Gene Expr. Patterns 2005, 5, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Soria, F.N.; Strüssmann, C.A.; Miranda, L.A. High water temperatures impair the reproductive ability of the pejerrey fish Odontesthes bonariensis: Effects on the hypophyseal-gonadal axis. Physiol. Biochem. Zool. 2008, 81, 898–905. [Google Scholar] [CrossRef]
- Anderson, K.; Pankhurst, N.W.; King, H.; Elizur, A. Effect of thermal challenge on the expression of genes involved in ovarian steroidogenesis in Tasmanian Atlantic salmon (Salmo salar). Aquaculture 2017, 479, 474–478. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.; Swanson, P.; Pankhurst, N.; King, H.; Elizur, A. Effect of thermal challenge on plasma gonadotropin levels and ovarian steroidogenesis in female maiden and repeat spawning Tasmanian Atlantic salmon (Salmo salar). Aquaculture 2012, 334–337, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Luckenbach, J.A.; Early, L.W.; Rowe, A.H.; Borski, R.J.; Daniels, H.V.; Godwin, J. Aromatase cytochrome P450: Cloning, intron variation, and ontogeny of gene expression in southern flounder (Paralichthys lethostigma). J. Exp. Zool. A 2005, 303, 643–656. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, M.P.; Nes, V.S.; Andersen, O.; Benfey, T.J.; Reith, M. Real-time PCR analysis of ovary- and brain-type aromatase gene expression during Atlantic halibut (Hippoglossus hippoglossus) development. Comp. Biochem. Physiol. B 2006, 144, 128–135. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Sequence(5’→3’) | Size (bp) |
---|---|---|
RT-PCR sox9a F | GAGACTTCAAGAAGGACG | 260 bp |
RT-PCR sox9a R | CTTCGTTGAGGAGTCTCC | |
RT-PCR cyp19a F | TGGAGATGGTGATCGCCG | 360 bp |
RT-PCR cyp19a R | CATGGTGAAGTCCACCAC | |
RT-qPCR sox9a F | GTGCTGAAGGGGTACGACTG | 92 bp |
RT-qPCR sox9a R | TTCATGGGTCTCTTGACGTG | |
RT-qPCR cyp19a F | AACTGGACCGCATCAACTTC | 100 bp |
RT-qPCR cyp19a R | ATCACCATCTCCAGCACACA | |
18s rRNA F | GCTCACCCGCTACTTGGATA | 89 bp |
18s rRNA R | TCTGATAAATGCACGCATCC |
Water Temp | 5 (°C), | 8 (°C), | 11 (°C), | 14 (°C) | |
---|---|---|---|---|---|
Gene (Number) | |||||
Sox9a | 2 | 4 | 4 | 9 | |
Cyp19a | 8 | 6 | 6 | 1 | |
Total Number | 10 | 10 | 10 | 10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-S.; Kim, D.N.-J.; Lee, C.-J.; Yoo, H.-K.; Byun, S.-G.; Lim, H.-J.; Choi, J.; Park, J.-S. The Potential Sex Determination Genes, Sox9a and Cyp19a, in Walleye Pollock (Gadus Chalcogrammus) Are Influenced by Water Temperature. J. Mar. Sci. Eng. 2020, 8, 501. https://doi.org/10.3390/jmse8070501
Kim S-S, Kim DN-J, Lee C-J, Yoo H-K, Byun S-G, Lim H-J, Choi J, Park J-S. The Potential Sex Determination Genes, Sox9a and Cyp19a, in Walleye Pollock (Gadus Chalcogrammus) Are Influenced by Water Temperature. Journal of Marine Science and Engineering. 2020; 8(7):501. https://doi.org/10.3390/jmse8070501
Chicago/Turabian StyleKim, So-Sun, David Nahm-Joon Kim, Chang-Ju Lee, Hae-Kyun Yoo, Soon-Gyu Byun, Hyun-Jeong Lim, Jin Choi, and Jang-Su Park. 2020. "The Potential Sex Determination Genes, Sox9a and Cyp19a, in Walleye Pollock (Gadus Chalcogrammus) Are Influenced by Water Temperature" Journal of Marine Science and Engineering 8, no. 7: 501. https://doi.org/10.3390/jmse8070501
APA StyleKim, S.-S., Kim, D. N.-J., Lee, C.-J., Yoo, H.-K., Byun, S.-G., Lim, H.-J., Choi, J., & Park, J.-S. (2020). The Potential Sex Determination Genes, Sox9a and Cyp19a, in Walleye Pollock (Gadus Chalcogrammus) Are Influenced by Water Temperature. Journal of Marine Science and Engineering, 8(7), 501. https://doi.org/10.3390/jmse8070501