Commercial Performance of Blue Mussel (Mytilus edulis, L.) Stocks at a Microgeographic Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Spat Supply Performance
2.3. Commercial Harvest Performance
- -
- The length of mussel socks produced with one long-line containing 488 m of spat collectors, by applying the sock:collector ratio calculated previously;
- -
- The required quantity of grow-out long-lines, by considering a mean length of 549 m of mussel socks per unit;
- -
- The associated variable costs (human and material resources), including seven distinct steps: (i) spat collector installations, (ii) brining [35,36], (iii) harvesting, (iv) spat stripping, de-clumping, and size-ranging, (v) sock sleeving, (vi) installations to grow-out, (vii) harvesting and preparation of raw mussels;
- -
- The raw income of the production purchase at $1.47 kg−1.
2.4. Environmental and Trophic Parameters
2.5. Statistical Analyses
3. Results
3.1. Spat Supply Performance
3.2. Commercial Performance
3.3. Environmental and Trophic Conditions in Grow-out Sites
4. Discussion
4.1. Spat Supply Performance
4.2. Environment and Stock Performance
4.3. Commercial Performance in Different Grow-out Sites
4.4. Stock-site Productivity
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Reproductive Conditions in Grow-out Sites
References
- FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018; p. 227. [Google Scholar]
- Statistics Canada. Agriculture Division—Commodities Section—Aquaculture Statistics 2015; Catalogue n° 23-222-X; Statistics Canada: Ottawa, ON, Canada, 2016; p. 29. [Google Scholar]
- Perez Camacho, A.; Gonzalez, R.; Fuentes, J. Mussel culture in Galicia (N.W. Spain). Aquaculture 1991, 92, 263–278. [Google Scholar] [CrossRef]
- Weitzman, J.; Steeves, L.; Bradford, J.; Filgueira, R. Chapter 11—Far-field and near-field effects of marine aquaculture. In World Seas: An Environmental Evaluation, 2nd ed.; Sheppard, C., Ed.; Elsevier Academic Press: London, UK, 2019; pp. 197–220. [Google Scholar] [CrossRef]
- Drapeau, A.; Comeau, L.A.; Landry, T.; Stryhn, H.; Davidson, J. Association between longline setup and mussel productivity in Prince Edward Island, Canada. Aquaculture 2006, 261, 879–889. [Google Scholar] [CrossRef]
- Filgueira, R.; Guyondet, T.; Comeau, L.A.; Tremblay, R. Bivalve aquaculture-environment interactions in the context of climate change. Glob. Chang. Biol. 2016, 22, 3901–3913. [Google Scholar] [CrossRef] [PubMed]
- Hickman, R.W. Mussel cultivation. In The Mussel Mytilus: Ecology, Physiology, Genetics and Culture; Gosling, E., Ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1992; pp. 465–510. [Google Scholar]
- Cheney, D.; Langan, R.; Heasman, K.; Friedman, B.; Davis, J. Shellfish culture in the open ocean: Lessons learned for offshore expansion. Mar. Technol. Soc. J. 2010, 44, 55–67. [Google Scholar] [CrossRef]
- Langan, R. Mussel culture, open ocean innovations. In Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Springer Science Business Media: New York, NY, USA, 2013; pp. 1929–1939. [Google Scholar] [CrossRef]
- Steeves, L.E.; Filgueira, R.; Guyondet, T.; Chassé, J.; Comeau, L. Past, present, and future: Performance of two bivalve species under changing environmental conditions. Front. Mar. Sci. 2018, 5, 184. [Google Scholar] [CrossRef]
- McKindsey, C.; Thetmeyer, H.; Landry, T.; Silvert, W. Review of recent carrying capacity models for bivalve culture and recommendations for research and management. Aquaculture 2006, 261, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Gallardi, D.; Mills, T.; Donnet, S.; Parrish, C.C.; Murray, H.M. Condition and biochemical profile of blue mussels (Mytilus edulis L.) cultured at different depths in a cold water coastal environment. J. Sea Res. 2017, 126, 37–45. [Google Scholar] [CrossRef]
- Mizuta, D.; Wikfors, G. Depth selection and in situ validation for offshore mussel aquaculture in northeast United States federal waters. J. Mar. Sci. Eng. 2019, 7, 293. [Google Scholar] [CrossRef] [Green Version]
- Bourque, F.; Myrand, B. Potentiel de production mytilicole en milieu ouvert aux Îles-de-la-Madeleine. Merinov, Research and development report, MERINOV, Gaspé; 2014; n° 14-09. 34. [Google Scholar]
- Séguin-Heine, M.O.; Lachance, A.A.; Genard, B.; Myrand, B.; Pellerin, C.; Marcotte, I.; Tremblay, R. Impact of open sea habitat on byssus attachment of suspension-cultured blue mussels (Mytilus edulis). Aquaculture 2014, 426, 189–196. [Google Scholar] [CrossRef]
- Myrand, B.; Gaudreault, J. Summer mortality of blue mussels (Mytilus edulis Linneaus, 1758) in the Magdalen Islands (Southern Gulf of St. Lawrence, Canada). J. Shellfish Res. 1995, 14, 395–404. [Google Scholar]
- Tremblay, R.; Myrand, B.; Guderley, H. Temporal variation of lysosomal capacities in relation to susceptibility of mussels, Mytilus edulis, to summer mortality. Mar. Biol. 1998, 132, 641–649. [Google Scholar] [CrossRef]
- Tremblay, R.; Myrand, B.; Sévigny, J.M. Genetic characterization of wild and suspension-cultured blue mussels (Mytilus edulis Linneaus, 1758) in the Magdalen Islands (southern Gulf of St. Lawrence, Canada). J. Shellfish Res. 1998, 17, 1191–1202. [Google Scholar]
- Tremblay, R.; Myrand, B.; Guderley, H. Thermal sensitivity of organismal and mitochondrial oxygen consumption in relation to the susceptibility of blue mussels, Mytilus edulis (L.), to summer mortality. J. Shellfish Res. 1998, 17, 141–152. [Google Scholar]
- Tremblay, R.; Myrand, B.; Sévigny, J.M.; Blier, P.; Guderley, H. Bioenergetic and genetic parameters in relation to susceptibility of blue mussels, Mytilus edulis (L.) to summer mortality. J. Exp. Mar. Biol. Ecol. 1998, 221, 27–58. [Google Scholar] [CrossRef]
- Myrand, B.; Guderley, H.; Himmelman, J.H. Reproduction and summer mortality of blue mussels Mytilus edulis in the Magdalen Islands, southern Gulf of St. Lawrence. Mar. Ecol. Prog. Ser. 2000, 197, 193–207. [Google Scholar] [CrossRef] [Green Version]
- Myrand, B.; Tremblay, R.; Sévigny, J.M. Selection against blue mussels (Mytilus edulis L.) homozygotes under various stressful conditions. J. Hered. 2002, 93, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Bourque, F.; Myrand, B.; Toupoint, N.; Tremblay, R. Facteurs responsables du succès de l’approvisionnement en naissain de moules de qualité dans le bassin du Havre Aubert aux Îles-de-la-Madeleine. Merinov, Research and development report, MERINOV, Gaspé; 2014; n° 14-13. 33. [Google Scholar]
- Hawkins, A.J.S.; Bayne, B.L. Physiology interrelations and the regulation of production. In The Mussel Mytilus: Ecology, Physiology, Genetics and Culture; Gosling, E., Ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1992; pp. 171–212. [Google Scholar]
- Schotanus, J.; Capelle, J.J.; Leuchter, L.; van de Koppel, J.; Bouma, T.J. Mussel seed is highly plastic to settling conditions: The influence of waves versus tidal emergence. Mar. Ecol. Prog. Ser. 2019, 624, 77–87. [Google Scholar] [CrossRef]
- Penney, R.W.; Hart, M.J.; Templeman, N.D. Genotype-dependent survival, growth, and production in cultured blue mussels, Mytilus spp.: Results of a reciprocal seed transfer experiment. J. Shellfish Res. 2006, 25, 515–525. [Google Scholar] [CrossRef]
- Mallet, A.L.; Carver, C.E.A.; Coffen, S.S.; Freeman, K.R. Winter growth of the blue mussel Mytilus edulis: Importance of stock and site. J. Exp. Mar. Biol. Ecol. 1987, 108, 217–228. [Google Scholar] [CrossRef]
- Mallet, A.L.; Carver, C.E.A.; Coffen, S.S.; Freeman, K.R. Mortality variations in natural populations of the blue mussel, Mytilus edulis. Can. J. Fish. Aquat. Sci. 1987, 44, 1589–1594. [Google Scholar] [CrossRef]
- Mallet, A.L.; Carver, C.E.A. Growth, mortality, and secondary production in natural populations of the blue mussel, Mytilus edulis. Can. J. Fish. Aquar. Sci. 1989, 46, 1154–1159. [Google Scholar] [CrossRef]
- Sanford, E.; Kelly, M.W. Local adaptation in marine invertebrates. Ann. Rev. Mar. Sci. 2011, 3, 509–535. [Google Scholar] [CrossRef] [PubMed]
- Blanquart, F.; Kaltz, O.; Nuismer, S.; Gandon, S. A practical guide to measuring local adaptation. Ecol. Lett. 2013, 16, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Galbraith, P.S.; Chassé, J.; Nicot, P.; Caverhill, C.; Gilbert, D.; Pettigrew, B.; Lefaivre, D.; Brickman, D.; Devine, L.; Lafleur, C. Physical oceanographic conditions in the Gulf of St. Lawrence in 2014. DFO. Can. Sci. Advis. Sec. Res. Doc. 2015, 32, 87. [Google Scholar]
- Cyr, C.; Pedneault, E.; Lionard, M. Programme de monitoring en soutien à l’industrie mytilicole du Québec en 2014–2015. Merinov, Research and development report, MERINOV, Gaspé; 2015; n° 15-05. 23. [Google Scholar]
- Cyr, C.; Lionard, M.; Pedneault, E.; Toupoint, N. Programme de monitoring en soutien à l’industrie mytilicole du Québec en 2015–2016. Merinov, Research and development report, MERINOV, Gaspé; 2016; n° 16-03. 16. [Google Scholar]
- Bourque, F.; Myrand, B. Essais de stratégies pour contrer l’effet négatif des algues sur la collecte de moules au bassin du Havre-Aubert. MAPAQ, Research and development report, DIT, Gaspé; 2007; n° 157. 13. [Google Scholar]
- Bourque, F.; Myrand, B. Traitement des collecteurs de moules à la saumure pour contrer la prédation par les étoiles de mer. MAPAQ, Research and development report, DIT, Gaspé; 2007; n° 160. 20. [Google Scholar]
- Sénéchal, J.; Grant, J.; Archambault, M.C. Experimental manipulation of suspended culture socks: Growth and behaviour of juvenile mussels (Mytilus spp.). J. Shellfish Res. 2008, 27, 811–826. [Google Scholar] [CrossRef]
- Myrand, B.; Tremblay, R.; Sévigny, J.M. Impact of suspension culture using mesh sleeves on genetic characteristics of Mytilus edulis L. in Canada. Aquaculture 2009, 291, 147–153. [Google Scholar] [CrossRef]
- Myrand, B.; Tremblay, R.; Sévigny, J.M. Decreases in multi-locus heterozygosity in suspension-cultured mussels (Mytilus edulis) through loss of the more heterozygous individuals. Aquaculture 2009, 295, 188–194. [Google Scholar] [CrossRef]
- Laplante, J.-F.; Bourque, F. Intérêt économique d’un boudinage hâtif aux Îles-de-la-Madeleine. Merinov, Research and development report, MERINOV, Gaspé; 2014; n° 14-05. 8. [Google Scholar]
- Trottet, A.; Roy, S.; Tamigneaux, E.; Lovejoy, C. Importance of heterotrophic planktonic communities in a mussel culture environment: The Grande Entrée lagoon, Magdalen Islands (Québec, Canada). Mar. Biol. 2007, 151, 377–392. [Google Scholar] [CrossRef]
- Toupoint, N.; Solomon-Gilmore, L.; Bourque, F.; Myrand, B.; Pernet, F.; Olivier, F.; Tremblay, R. Match/mismatch between the Mytilus edulis larval supply and seston quality: Effect on recruitment. Ecology 2012, 93, 1922–1934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toupoint, N.; Mohit, V.; Linossier, I.; Bourgougnon, N.; Myrand, B.; Lovejoy, C.; Olivier, F.; Tremblay, R. Effect of the biofilm age on Mytilus edulis settlement. Biofouling 2012, 29, 985–1001. [Google Scholar] [CrossRef] [PubMed]
- Aminot, A.; Chaussepied, M. Manuel des Analyses Chimiques en Milieu Marin; Centre National Pour l’Exploitation des Océans CNEXO BNDO: Brest, France, 1983; p. 395. [Google Scholar]
- Belzile, C.; Brugel, S.; Nozais, C.; Gratton, Y.; Demers, S. Variations of the abundance and nucleic acid content of heterotrophic bacteria in Beaufort Shelf waters during winter and spring. J. Mar. Syst. 2008, 74, 946–956. [Google Scholar] [CrossRef]
- Tremblay, G.; Belzile, C.; Gosselin, M.; Poulin, M.; Roy, S.; Tremblay, J.E. Late summer phytoplankton distribution along a 3500 km transect in Canadian Arctic waters: Strong numerical dominance by picoeukaryotes. Aquat. Microb. Ecol. 2009, 54, 55–70. [Google Scholar] [CrossRef] [Green Version]
- R Core Development Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: http://www.R-project.org (accessed on 12 February 2019).
- Sokal, R.R.; Rohlf, J.F. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed.; W.H. Freeman and Company: San Francisco, CA, USA, 1995; p. 859. [Google Scholar]
- Clarke, K.R.; Gorley, R.N. PRIMER v7: User Manual/Tutorial; PRIMER-E: Plymouth, UK, 2015; p. 300. [Google Scholar]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; PRIMER-E: Plymouth, UK, 2008; p. 214. [Google Scholar]
- Bourque, F.; Myrand, B. Boudinage estival en lagune aux Îles-de-la-Madeleine. MAPAQ, Research and development report, DIT, Gaspé; 2010; n°189. 15. [Google Scholar]
- Hughes, R.N.; Griffiths, C.L. Self-thinning in barnacles and mussels: The geometry of packing. Am. Nat. 1988, 132, 484–491. [Google Scholar] [CrossRef]
- Fréchette, M.; Bergeron, P.; Gagnon, P. On the use of self-thinning relationships in stocking experiments. Aquaculture 1996, 145, 91–112. [Google Scholar] [CrossRef]
- Alunno-Bruscia, M.; Petraitis, P.S.; Bourget, E.; Fréchette, M. Body size-density relationship for Mytilus edulis in an experimental food-regulated situation. Oikos 2000, 90, 28–42. [Google Scholar] [CrossRef] [Green Version]
- Guiñez, R. A review on self-thinning in mussels. Rev. Biol. Mar. Oceanogr. 2005, 40, 1–6. [Google Scholar] [CrossRef]
- Lachance-Bernard, M.; Himmelman, J.H.; Daigle, G.; Fréchette, M. Biomass density relationships and self-thinning of blue mussels (Mytilus spp.) reared on self-regulated long lines. Aquaculture 2010, 308, 34–43. [Google Scholar] [CrossRef]
- Fréchette, M. Self-thinning, biodeposit production, and organic matter input to the bottom in mussel suspension culture. J. Sea Res. 2012, 67, 10–20. [Google Scholar] [CrossRef]
- Newell, C.R.; Short, F.; Hoven, H.; Healey, L.; Panchang, V.; Cheng, G. The dispersal dynamics of juvenile plantigrade mussels (Mytilus edulis L.) from eelgrass (Zostera marina) meadows in Maine, USA. J. Exp. Mar. Biol. Ecol. 2010, 394, 45–52. [Google Scholar] [CrossRef]
- Lachance, A.A.; Myrand, B.; Tremblay, R.; Koutitonsky, V.; Carrington, E. Biotic and abiotic factors influencing attachment strength of blue mussels Mytilus edulis in suspended culture. Aquat. Biol. 2008, 2, 119–129. [Google Scholar] [CrossRef]
- Pearce, C.M.; Gallager, S.M.; Manuel, J.L.; Manning, D.A.; O’Dor, R.K.; Bourget, E. Effect of thermoclines and turbulence on depth of larval settlement and spat recruitment of the giant scallop Placopecten magellanicus in 9.5m deep laboratory mesocosms. Mar. Ecol. Prog. Ser. 1998, 165, 195–215. [Google Scholar] [CrossRef]
- Kenchington, E.; Freeman, K.R.; Vercaemer, B.; MacDonald, B. Comparative settlement depths of Mytilus edulis C. Linnaeus, 1758 and M. trossulus Gould, 1850: II. Field observations. J. Shellfish Res. 2002, 21, 67–74. [Google Scholar]
- Aghzar, A.; Talbaoui, M.; Benajiba, M.H.; Presa, P. Influence of depth and diameter of rope collectors on settlement density of Mytilus galloprovincialis spat in Baie de M’diq (Alboran Sea). Mar. Freshw. Behav. Physiol. 2012, 45, 51–61. [Google Scholar] [CrossRef]
- Mallet, A.L.; Myrand, B. The culture of the blue mussel in Atlantic Canada. In Cold-Water Aquaculture in Atlantic Canada; Boghen, A.D., Ed.; Canadian Institute for Research on Regional Development: Moncton, NB, Canada, 1995; pp. 255–296. [Google Scholar]
- Lauzon-Guay, J.S.; Dionne, M.; Barbeau, M.A.; Hamilton, D.J. Effects of seed size and density on growth, tissue-to-shell ratio and survival of cultivated mussels (Mytilus edulis) in Prince Edward Island, Canada. Aquaculture 2005, 250, 652–665. [Google Scholar] [CrossRef]
- Gilmore-Solomon, L.; Tremblay, R.; Toupoint, N.; Myrand, B. Aquaculture Marine Biology - Influence of Seston Quality on Physiological Condition of Mytilus Edulis in Oligotrophic Lagoon; MedCrave Group: Edmond, OK, USA, 2016; p. 21. [Google Scholar]
- Seed, R.; Suchanek, T.H. Population and community ecology of Mytilus. In The Mussel Mytilus: Ecology, Physiology, Genetics and Culture; Gosling, E., Ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1992; pp. 87–169. [Google Scholar]
- Bayne, B.L. The biology of mussel larvae. In Marine Mussels: Their Ecology and Physiology; Bayne, B.L., Ed.; Cambridge University Press: Cambridge, UK, 1976; pp. 81–120. [Google Scholar]
- Lesser, M.P.; Shumway, S.E.; Cucci, T.; Smith, J. Impact of fouling organisms on mussel rope culture: Interspecific competition for food among suspension-feeding invertebrates. J. Exp. Mar. Biol. Ecol. 1992, 165, 91–102. [Google Scholar] [CrossRef]
- Dobretsov, S.; Wahl, M. Recruitment preferences of blue mussel spat (Mytilus edulis) for different substrata and microhabitats in the White Sea (Russia). Hydrobiologia 2001, 445, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.L.; Satuito, C.G.; Bao, W.Y. Larval settlement and metamorphosis of the mussel Mytilus galloprovincialis on different macroalgae. Mar. Biol. 2007, 152, 1121–1132. [Google Scholar] [CrossRef]
- Sharp, G.J.; MacNair, N.; Campbell, E.; Butters, A.; Ramsay, A.; Semple, R. Fouling of mussel (Mytilus edulis) collectors by algal mats, dynamics, impacts and symptomatic treatment in P.E.I. Canada. Sci. Asia 2006, 32, 87–97. [Google Scholar] [CrossRef]
- Dionne, M.; Lauzon-Guay, J.S.; Hamilton, D.J.; Barbeau, M.A. Protective socking material for cultivated mussels: A potential non-disruptive deterrent to reduce losses to diving ducks. Aquacult. Int. 2006, 14, 595–613. [Google Scholar] [CrossRef]
- Varennes, E.; Hanssen, S.A.; Bonardelli, J.; Guillemette, M. Sea duck predation in mussel farms: The best nets for excluding common eiders safely and efficiently. Aquacult. Environ. Interact. 2013, 4, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Varennes, E.; Hanssen, S.A.; Bonardelli, J.; Guillemette, M. A large molluscivore bird (Common Eider, Somateria mollissima) is able to discriminate quality of blue mussels (Mytilus edulis) based on size and provenance. Can. J. Zool. 2015, 93, 655–663. [Google Scholar] [CrossRef]
- Varennes, E.; Hanssen, S.A.; Bonardelli, J.; Guillemette, M. Mussel quality of preferred prey improves digestion in a molluscivore bird. Can. J. Zool. 2015, 93, 783–789. [Google Scholar] [CrossRef]
- Guillemette, M.; Reed, A.; Himmelman, J.H. Availability and consumption of food by common eiders wintering in the Gulf of St. Lawrence: Evidence of prey depletion. Can. J. Zool. 1996, 74, 32–38. [Google Scholar] [CrossRef]
- Hamilton, D.J.; Nudds, T.D.; Neate, J. Size-selective predation of blue mussels (Mytilus edulis) by common eiders (Somateria mollissima) under controlled field conditions. Auk 1999, 116, 403–416. [Google Scholar] [CrossRef]
- Miller, M.R.; Pearce, L.; Bettjeman, B.I. Detailed distribution of lipids in greenshell™ mussel (Perna canaliculus). Nutrients 2014, 6, 1454–1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogilvie, S.C.; Fox, S.P.; Ross, A.H.; James, M.R.; Schiel, D.R. Growth of cultured mussels (Perna canaliculus Gmelin 1791) at a deep-water chlorophyll maximum layer. Aquac. Res. 2004, 35, 1253–1260. [Google Scholar] [CrossRef]
- Babarro, J.M.F.; Abad, M.J. Co-existence of two mytilid species in a heterogeneous environment: Mmortality, growth and strength of shell and byssus attachment. Mar. Ecol. Prog. Ser. 2013, 476, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Bayne, B.L. Reproduction in bivalve molluscs under environmental stress. In Physiological Ecology of Estuarine Organisms; Vernberg, F.J., Ed.; University of South Carolina Press: Columbia, NY, USA, 1975; pp. 259–277. [Google Scholar]
- Zippay, M.L.; Helmuth, B. Effects of temperature change on mussel, Mytilus. Integr. Zool. 2012, 7, 312–327. [Google Scholar] [CrossRef]
- Gosling, E. Marine Bivalve Molluscs, 2nd ed.; Wiley-Blackwell Publishing: West Sussex, UK, 2015; p. 524. [Google Scholar] [CrossRef]
- Bayne, B.L.; Widdows, J.; Thompson, R.J. Physiological integrations. In Marine Mussels: Their Ecology and Physiology; Bayne, B.L., Ed.; Cambridge University Press: Cambridge, UK, 1976; pp. 261–299. [Google Scholar]
- Widdows, J. The effects of temperature on the metabolism and activity of Mytilus edulis. Neth. J. Sea. Res. 1973, 7, 387–398. [Google Scholar] [CrossRef]
- Incze, L.S.; Lutz, R.A.; Watling, L. Relationships between effects of environmental temperature and seston on growth and mortality of Mytilus edulis in a temperate northern estuary. Mar. Biol. 1980, 53, 147–156. [Google Scholar] [CrossRef]
- Rayssac, N.; Pernet, F.; Lacasse, O.; Tremblay, R. Temperature effect on survival, growth, and triacylglycerol content during the early ontogeny of Mytilus edulis and M. trossulus. Mar. Ecol. Prog. Ser. 2010, 417, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Trottet, A.; Roy, S.; Tamigneaux, E.; Lovejoy, C.; Tremblay, R. Impact of suspended mussels (Mytilus edulis L.) on plankton communities in a Madgalen Islands lagoon (Québec, Canada): A mesocosm approach. J. Exp. Mar. Biol. Ecol. 2008, 365, 103–115. [Google Scholar] [CrossRef]
- Sonier, R.; Filgueira, R.; Guyondet, T.; Tremblay, R.; Olivier, F.; Meziane, T.; Starr, M.; Leblanc, A.R.; Comeau, L.A. Picophytoplankton contribution to Mytilus edulis growth in an intensive culture environment. Mar. Biol. 2016, 163, 73. [Google Scholar] [CrossRef]
- Lowe, M.N.; Moore, M.N.; Bayne, B.L. Aspect of gametogenesis in the marine mussel Mytilus edulis L. J. Mar. Biol. Assoc. UK 1982, 62, 133–145. [Google Scholar] [CrossRef]
- Pernet, F.; Tremblay, R.; Bourget, E. Biochemical indicator of sea scallop (Placopecten magellanicus) quality based on lipid class composition. Part I: Broodstock conditioning and young larval performance. J. Shellfish Res. 2003, 22, 365–375. [Google Scholar]
Spawn | Year 1 | Year 2 | ||
---|---|---|---|---|
Collector recovery | Fall | Spring | Fall | Spring |
Spat age at harvest (months) | 4–5 | 10–11 | 4–5 | 10–11 |
Stock origin | ||||
BHA | Control | x | Control | x |
HAM | x | x | x | x |
GE | x | x | x | x |
BP | x | x | x | x |
Grow-out site | HAM and BP | |||
Mussels age at harvest (months) | 22–24 |
PERMANOVAs | df | SS | MS | Pseudo-F | P (perm) | Unique perms |
---|---|---|---|---|---|---|
Year 2 | ||||||
Site | 1 | 70.745 | 70.745 | 11.973 | 0.0002 | 9948 |
Residuals | 30 | 177.26 | 5.9085 | |||
Total | 31 | 248.00 | ||||
Year 3 | ||||||
Site | 1 | 45.959 | 45.959 | 7.0274 | 0.0009 | 9939 |
Residuals | 26 | 170.04 | 6.5400 | |||
Total | 27 | 216.00 |
Environmental Variable | Mean Value at HAM Site 1 | Mean Value at BP Site 1 | Average Squared Euclidean Distance | Contribution 2 δi (%) | Cumulative (%) Contribution Σδi |
---|---|---|---|---|---|
Year 2 | |||||
Total heterotrophic bacteria (×106 cells/mL) | 3.55 ± 0.43 | 1.27 ± 0.15 | 2.94 | 14.37 | 14.37 |
Particulate organic matter (mg/L) | 1.82 ± 0.23 | 0.95 ± 0.06 | 2.65 | 12.95 | 27.32 |
Pico-cyanobacteria (×103 cells/mL) | 108.59 ± 21.02 | 31.74 ± 8.54 | 2.57 | 12.59 | 39.91 |
Nano-cyanobacteria (×103 cells/mL) | 6.10 ± 1.79 | 0.53 ± 0.15 | 2.55 | 12.48 | 52.39 |
Pico-eukaryotes (×103 cells/mL) | 115.16 ± 3.34 | 14.25 ± 2.43 | 2.53 | 12.39 | 64.78 |
Chlorophyll-a (µg/L) | 3.78 ± 0.52 | 1.94 ± 0.25 | 2.52 | 12.34 | 77.12 |
Nano-eukaryotes (×103 cells/mL) | 62.60 ± 19.31 | 5.89 ± 1.14 | 2.51 | 12.30 | 89.42 |
Temperature (°C) | 15.09 ± 1.09 | 11.86 ± 1.14 | 2.16 | 10.58 | 100.00 |
Year 3 | |||||
Particulate organic matter (mg/L) | 1.42 ± 0.09 | 0.94 ± 0.07 | 2.72 | 14.52 | 14.52 |
Total heterotrophic bacteria (×106 cells/mL) | 3.40 ± 0.44 | 1.44 ± 0.24 | 2.64 | 14.09 | 28.61 |
Pico-eukaryotes (×103 cells/mL) | 58.94 ± 11.25 | 14.00 ± 3.59 | 2.62 | 13.99 | 42.60 |
Nano-eukaryotes (×103 cells/mL) | 22.64 ± 4.72 | 6.30 ± 1.13 | 2.52 | 13.44 | 56.04 |
Chlorophyll-a (µg/L) | 3.44 ± 0.33 | 2.07 ± 0.46 | 2.28 | 12.17 | 68.22 |
Temperature (°C) | 14.29 ± 1.37 | 12.04 ± 1.14 | 2.04 | 10.90 | 79.12 |
Pico-cyanobacteria (×103 cells/mL) | 58.00 ± 17.46 | 43.29 ± 15.46 | 1.96 | 10.46 | 89.58 |
Nano-cyanobacteria (×103 cells/mL) | 1.14 ± 0.32 | 0.89 ± 0.33 | 1.95 | 10.42 | 100.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillou, E.; Cyr, C.; Laplante, J.-F.; Bourque, F.; Toupoint, N.; Tremblay, R. Commercial Performance of Blue Mussel (Mytilus edulis, L.) Stocks at a Microgeographic Scale. J. Mar. Sci. Eng. 2020, 8, 382. https://doi.org/10.3390/jmse8060382
Guillou E, Cyr C, Laplante J-F, Bourque F, Toupoint N, Tremblay R. Commercial Performance of Blue Mussel (Mytilus edulis, L.) Stocks at a Microgeographic Scale. Journal of Marine Science and Engineering. 2020; 8(6):382. https://doi.org/10.3390/jmse8060382
Chicago/Turabian StyleGuillou, Efflam, Carole Cyr, Jean-François Laplante, François Bourque, Nicolas Toupoint, and Réjean Tremblay. 2020. "Commercial Performance of Blue Mussel (Mytilus edulis, L.) Stocks at a Microgeographic Scale" Journal of Marine Science and Engineering 8, no. 6: 382. https://doi.org/10.3390/jmse8060382
APA StyleGuillou, E., Cyr, C., Laplante, J.-F., Bourque, F., Toupoint, N., & Tremblay, R. (2020). Commercial Performance of Blue Mussel (Mytilus edulis, L.) Stocks at a Microgeographic Scale. Journal of Marine Science and Engineering, 8(6), 382. https://doi.org/10.3390/jmse8060382