Impact of Improved Mellor–Yamada Turbulence Model on Tropical Cyclone-Induced Vertical Mixing in the Oceanic Boundary Layer
Abstract
:1. Introduction
2. Vertical Mixing Processes
3. Methodology
4. Results
4.1. Response of the Upper Ocean Temperature
4.2. Enhancement of the Vertical Mixing
5. Summary and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, T.; Jin, E.K. Impact of an interactive ocean on numerical weather prediction: A case of a local heavy snowfall event in eastern Korea. J. Geophys. Res. Atmos. 2016, 121, 8243–8253. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Choo, S.-H.; Moon, J.-H.; Chang, P.-H. Contribution of tropical cyclones to abnormal sea surface temperature warming in the Yellow Sea in December 2004. Dynam. Atmos. Ocean. 2017, 80, 97–109. [Google Scholar] [CrossRef]
- Kim, T.; Moon, J.-H.; Kang, K.R. Uncertainty and sensitivity of wave-induced sea surface roughness parameterisations for a coupled numerical weather prediction model. Tellus A 2018, 70, 1–18. [Google Scholar] [CrossRef]
- Yamamoto, M.; Hirose, N. Possible modification of atmospheric circulation over the north-western Pacific induced by a small semi-enclosed ocean. Geophys. Res. Lett. 2011, 38, L03804. [Google Scholar] [CrossRef]
- Kwon, Y.C.; Kim, T. Impact of air-sea exchange coefficients on the structure and intensity of tropical cyclones. Terr. Atmos. Ocean. Sci. 2017, 28, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Fisher, E.L. Hurricanes and the sea-surface temperature field. J. Meteor. 1958, 15, 328–333. [Google Scholar] [CrossRef]
- Leipper, D.F. Observed ocean conditions and Hurricane Hilda, 1964. J. Atmos. Sci. 1967, 24, 182–196. [Google Scholar] [CrossRef] [Green Version]
- D’Asaro, E.A. The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr. 1985, 15, 1043–1059. [Google Scholar] [CrossRef] [Green Version]
- Kunze, E. The mean and near-inertial velocity fields in a warm-core ring. J. Phys. Oceanogr. 1986, 16, 1444–1461. [Google Scholar] [CrossRef] [Green Version]
- D’Asaro, E.A. Upper-ocean inertial currents forced by a strong storm. Part III: Interaction of inertial currents and mesoscale eddies. J. Phys. Oceanogr. 1995, 25, 2953–2958. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-K.; Niiler, P.P. The inertial chimney: The near-inertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res. 1998, 103, 7579–7591. [Google Scholar] [CrossRef]
- Garrett, C. What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr. 2001, 31, 962–971. [Google Scholar] [CrossRef]
- Vincent, E.M.; Madec, G.; Lengaigne, M.; Vialard, J.; Koch-Larrouy, A. Influence of tropical cyclones on sea surface temperature seasonal cycle and ocean heat transport. Clim. Dyn. 2013, 41, 2019–2038. [Google Scholar] [CrossRef] [Green Version]
- Mellor, G.L.; Yamada, T. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 1974, 31, 1791–1806. [Google Scholar] [CrossRef] [Green Version]
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 1982, 20, 851–875. [Google Scholar] [CrossRef] [Green Version]
- Mellor, G.L. One-dimensional ocean surface layer modeling a problem and a solution. J. Phys. Oceanogr. 2001, 31, 790–809. [Google Scholar] [CrossRef]
- Mellor, G.L.; Blumberg, A.F. Wave breaking and ocean surface layer thermal response. J. Phys. Oceanogr. 2004, 34, 693–698. [Google Scholar] [CrossRef]
- Mellor, G.L. Analytic prediction of the properties of stratified planetary surface layers. J. Atmos. Sci. 1973, 30, 1061–1069. [Google Scholar] [CrossRef]
- Satoh, M.; Tomita, H.; Yashiro, H.; Miura, H.; Kodama, C.; Seiki, T.; Noda, A.T.; Yamada, Y.; Goto, D.; Sawada, M.; et al. The Non-hydrostatic Icosahedral Atmospheric Model: Description and development. Prog. Earth Planet. Sci. 2014, 1, 18. [Google Scholar] [CrossRef] [Green Version]
- Nakano, M.; Wada, A.; Sawada, M.; Yoshimura, H.; Onishi, R.; Kawahara, S.; Sasaki, W.; Nasuno, T.; Yamaguchi, M.; Iriguchi, T.; et al. Global 7-km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): Experimental design and preliminary results. Geosci. Model Dev. 2017, 10, 1363–1381. [Google Scholar] [CrossRef] [Green Version]
- Kukkonen, J.; Olsson, T.; Schultz, D.M.; Baklanov, A.; Klein, T.; Miranda, A.I.; Monteiro, A.; Hirtl, M.; Tarvainen, V.; Boy, M.; et al. A review of operational, regional-scale, chemical weather forecasting models in Europe. Atmos. Chem. Phys. 2012, 12, 1–87. [Google Scholar] [CrossRef] [Green Version]
- Fox-Kemper, B.; Adcroft, A.; Böning, C.W.; Chassignet, E.P.; Curchitser, E.; Danabasoglu, G.; Eden, C.; England, M.H.; Gerdes, R.; Greatbatch, R.J.; et al. Challenges and Prospects in Ocean Circulation Models. Front. Mar. Sci. 2019, 6, 65. [Google Scholar] [CrossRef]
- Sun, W.-Y.; Ogura, Y. Modeling the evolution of the convective planetary boundary layer. J. Atmos. Sci. 1980, 37, 1558–1572. [Google Scholar] [CrossRef] [Green Version]
- Turton, J.; Brown, R. A comparison of a numerical model of radiation fog with detailed observations. Q. J. R. Meteorol. Soc. 1987, 113, 37–54. [Google Scholar] [CrossRef]
- Galperin, B.; Kantha, L.H.; Rosati, A. A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci. 1988, 45, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Janjic, Z.I. The step-mountain coordinate: Physical package. Mon. Weather Rev. 1990, 118, 1429–1443. [Google Scholar] [CrossRef]
- Janjic, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Blumberg, A.F.; Galperin, B.G.; O’Connor, D.J. Modeling vertical structure of open channel flow. J. Hydraul. Eng. 1992, 118, 1119–1134. [Google Scholar] [CrossRef]
- Kantha, L.H.; Clayson, C.A. An improved mixed layer model for geophysical applications. J. Geophys. Res. 1994, 99, 25235–25266. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Jpn. 2009, 87, 895–912. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, M. Improvement of the Mellor-Yamada turbulence closure model based on large-eddy simulation data. Bound.-Layer Meteor. 2001, 99, 349–378. [Google Scholar] [CrossRef]
- Hara, T. Update of the operational JMA mesoscale model and implementation of improved Mellor-Yamada level 3 scheme. In Proceedings of the Extended Abstracts, 22nd Conference on Weather Analysis and Forecasting/18th Conference on Numerical Weather Prediction, Park City, UT, USA, 25–29 June 2007; p. J3.5. [Google Scholar]
- Saito, K.; Ishida, J.; Aranami, K.; Hara, T.; Segawa, T.; Narita, M.; Honda, Y. Nonhydrostatic atmospheric models and operational development at JMA. J. Meteor. Soc. Jpn. 2007, 85, 271–304. [Google Scholar] [CrossRef] [Green Version]
- Chikira, M.; Mochizuki, T. Introduction of an improved Mellor–Yamada scheme into MIROC3.2. In Proceedings of the Preprints, Autumn Meeting of the Meteorological Society of Japan, Sapporo, Japan, 14–16 October 2007; p. 71. (In Japanese). [Google Scholar]
- Furuichi, N.; Hibiya, T. Assessment of the upper-ocean mixed layer parameterizations using a large eddy simulation model. J. Geophys. Res. 2015, 120, 2350–2369. [Google Scholar] [CrossRef]
- Furuichi, N.; Hibiya, T.; Niwa, Y. Assessment of turbulence closure models for resonant inertial response in the oceanic mixed layer using a large eddy simulation model. J. Oceanogr. 2012, 68, 285–294. [Google Scholar] [CrossRef]
- Suzuki, S.; Niino, H.; Kimura, R. The mechanism of upper-oceanic vertical motions forced by a moving typhoon. Fluid Dyn. Res. 2011, 43, 025504. [Google Scholar] [CrossRef]
- Shibano, R.; Yamanaka, Y.; Okada, N.; Chuda, T.; Suzuki, S.; Niino, H.; Toratani, M. Response of marine ecosystem to typhoon passage in the western subtropical North Pacific. Geophys. Res. Lett. 2011, 38, L18608. [Google Scholar] [CrossRef]
- Kanada, S.; Tsujino, S.; Aiki, H.; Yoshioka, M.K.; Miyazawa, Y.; Tsuboki, K.; Takayabu, I. Impacts of SST Patterns on Rapid Intensification of Typhoon Megi (2010). J. Geophys. Res. Atmos. 2017, 122, 13245–13262. [Google Scholar] [CrossRef] [Green Version]
- Ezer, T. On the seasonal mixed-layer simulated by a basin-scale ocean model and the Mellor-Yamada turbulence scheme. J. Geophys. Res. 2000, 105, 16843–16855. [Google Scholar] [CrossRef]
- Huang, C.J.; Qiao, F.; Song, Z.; Ezer, T. Improving simulations of the upper ocean by inclusion of surface waves in Mellor-Yamada turbulence scheme. J. Geophys. Res. 2011, 116, C01007. [Google Scholar] [CrossRef] [Green Version]
- Moeng, C.-H.; Wyngaard, J.C. Evaluation of turbulent transport and dissipation closures in second-order modelling. J. Atmos. Sci. 1989, 46, 2311–2330. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.C. A Numerical Simulation for the Water Masses and Circulations of the Yellow Sea and the East China Sea. Ph.D. Thesis, Kyushu University, Fukuoka, Japan, 1996. [Google Scholar]
- Choi, B.H.; Kim, K.O.; Eum, H.M. Digital bathymetric and topographic data for neighboring seas of Korea. J. Korean Soc. Coastal Ocean Eng. 2002, 14, 41–50. (In Korean) [Google Scholar]
- Kim, T.; Yoon, J.-H. Seasonal variation of upper layer circulation in the northern part of the East/Japan Sea. Cont. Shelf Res. 2010, 30, 1283–1301. [Google Scholar] [CrossRef]
- Typhoon Research Center Home Page. Available online: http://www.typhoon.or.kr/ (accessed on 17 May 2020).
- Saito, K.; Fujita, T.; Yamada, Y.; Ishida, J.; Kumagai, Y.; Aranami, K.; Ohmori, S.; Nagasawa, R.; Kumagai, S.; Muroi, C.; et al. The operational JMA nonhydrostatic mesoscale model. Mon. Weather Rev. 2006, 134, 1266–1298. [Google Scholar] [CrossRef]
- Hirose, N.; Takayama, K.; Moon, J.-H.; Watanabe, T.; Nishida, Y. Regional data assimilation system extended to the East Asian marginal seas. Umi Sora (Sea and Sky) 2013, 89, 43–51. [Google Scholar]
- Takikawa, T.; Yoon, J.-H.; Cho, K.-D. The Tsushima Warm Current through Tsushima Straits estimated from ferryboat. J. Phys. Oceanogr. 2005, 35, 1154–1168. [Google Scholar] [CrossRef]
- Hirose, N.; Kawamura, H.; Lee, H.J.; Yoon, J.-H. Sequential forecasting of the surface and subsurface conditions in the Japan Sea. J. Oceanogr. 2007, 63, 467–481. [Google Scholar] [CrossRef]
- Price, J.F. Upper ocean response to a hurricane. J. Phy. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef] [Green Version]
- Price, J.F. Internal wave wake of a moving storm. Part I: Scales, energy budget and observations. J. Phys. Oceanogr. 1983, 13, 949–965. [Google Scholar] [CrossRef] [Green Version]
- Mori, K.; Matsuno, T.; Senjyu, T. Seasonal/Spatial Variations of the Near-Inertial Oscillations in the Deep Water of the Japan Sea. J. Oceanogr. 2005, 61, 761–773. [Google Scholar] [CrossRef]
- Niwa, Y.; Hibiya, T. Nonlinear processes of energy transfer from traveling hurricanes to the deep ocean internal wave field. J. Geophys. Res. 1997, 102, 12469–12477. [Google Scholar] [CrossRef]
- Danioux, E.; Klein, P.; Rivière, P. Propagation of wind energy into the deep ocean through a fully turbulent mesoscale eddy field. J. Phys. Oceanogr. 2008, 38, 2224–2241. [Google Scholar] [CrossRef]
- Jaimes, B.; Shay, L.K. Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Weather Rev. 2009, 137, 4188–4207. [Google Scholar] [CrossRef] [Green Version]
- Cuypers, Y.; Le Vaillant, X.; Bouruet-Aubertot, P.; Vialard, J.; McPhaden, M. Tropical storm-induced near inertial internal waves during the Cirene experiment: Energy fluxes and impact on vertical mixing. J. Geophys. Res. 2013, 118, 358–380. [Google Scholar] [CrossRef] [Green Version]
- Martin, P.J. Simulation of the mixed layer at OWS November and Papa with several models. J. Geoph. Res. 1985, 90, 903–916. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Moon, J.-H. Impact of Improved Mellor–Yamada Turbulence Model on Tropical Cyclone-Induced Vertical Mixing in the Oceanic Boundary Layer. J. Mar. Sci. Eng. 2020, 8, 497. https://doi.org/10.3390/jmse8070497
Kim T, Moon J-H. Impact of Improved Mellor–Yamada Turbulence Model on Tropical Cyclone-Induced Vertical Mixing in the Oceanic Boundary Layer. Journal of Marine Science and Engineering. 2020; 8(7):497. https://doi.org/10.3390/jmse8070497
Chicago/Turabian StyleKim, Taekyun, and Jae-Hong Moon. 2020. "Impact of Improved Mellor–Yamada Turbulence Model on Tropical Cyclone-Induced Vertical Mixing in the Oceanic Boundary Layer" Journal of Marine Science and Engineering 8, no. 7: 497. https://doi.org/10.3390/jmse8070497
APA StyleKim, T., & Moon, J.-H. (2020). Impact of Improved Mellor–Yamada Turbulence Model on Tropical Cyclone-Induced Vertical Mixing in the Oceanic Boundary Layer. Journal of Marine Science and Engineering, 8(7), 497. https://doi.org/10.3390/jmse8070497