Effect of Marine Macroalga Enteromorpha sp. Enriched with Zn(II) and Cu(II) ions on the Digestibility, Meat Quality and Carcass Characteristics of Growing Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Production of Algal Feed Additives
2.3. Feeding Experiments on Growing Pigs
2.4. Analytical Methods
2.5. Statistical Methods
3. Results
3.1. Balance and Digestibility Trials
3.2. Daily Amounts of Feces and Urine Excreted by Growing Pigs
3.3. Apparent Fecal Nutrient Digestibility (%) and Daily Nitrogen Balance and Retention
3.4. Meat Quality and Slaughter Value of Carcass
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Craigie, J.S. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Hurst, D. Marine functional foods and ingredients. A briefing document. Mar. Fores. Ser. 2006, 5, 1–72. [Google Scholar]
- McHugh, D.J. A Guide to the Seaweed Industry; FAO Fisheries Technical Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003; p. 441. [Google Scholar]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for livestock diets: A review. Anim. Feed Sci. Technol. 2016, 212, 1–17. [Google Scholar] [CrossRef]
- Angell, A.R.; Angell, S.F.; de Nys, R.; Paul, N.A. Seaweed as a protein source for mono-gastric livestock. Trends Food Sci. Technol. 2016, 54, 74–84. [Google Scholar] [CrossRef]
- Corino, C.; Modina, S.C.; Di Giancamillo, A.; Chiapparini, S.; Rossi, R. Seaweeds in pig nutrition. Animals 2019, 9, 1126. [Google Scholar] [CrossRef] [Green Version]
- Øverland, M.; Mydland, L.T.; Skrede, A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food Agric. 2019, 99, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Lynch, M.B.; Sweeney, T.; Callan, J.J.; O’Sullivan, J.T.; O’Doherty, J.V. The effect of dietary Laminaria-derived laminarin and fucoidan on nutrient digestibility, nitrogen utilisation, intestinal microflora and volatile fatty acid concentration in pigs. J. Sci. Food Agric. 2010, 90, 430–437. [Google Scholar] [CrossRef]
- Dierick, N.; Ovyn, A.; De Smet, S. Effect of feeding intact brown seaweed Ascophyllum nodosum on some digestive parameters and on iodine content in edible tissues in pigs. J. Sci. Food Agric. 2009, 89, 584–594. [Google Scholar] [CrossRef]
- Gardiner, G.E.; Campbell, A.J.; O’Doherty, J.V.; Pierce, E.; Lynch, P.B.; Leonard, F.C.; Stanton, C.; Ross, R.P.; Lawlor, P.G. Effect of Ascophyllum nodosum extract on growth performance, digestibility, carcass characteristics and selected intestinal microflora populations of grower–finisher pigs. Anim. Feed Sci. Technol. 2008, 141, 259–273. [Google Scholar] [CrossRef]
- Choi, Y.S.; Choi, J.H.; Han, D.J.; Kim, H.Y.; Kim, H.W.; Lee, M.A.; Chung, H.J.; Kim, C.J. Effects of Laminaria japonica on the physico-chemical and sensory characteristics of reduced-fat pork patties. Meat Sci. 2012, 91, 1–7. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K. Edible macroalga Ulva prolifera as microelemental feed supplement for livestock: The fundamental assumptions of the production method. World J. Microbiol. Biotechnol. 2009, 25, 997–1005. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K.; Witek-Krowiak, A. State of the art for the biosorption process—A review. Appl. Biochem. Biotechnol. 2013, 170, 1389–1416. [Google Scholar] [CrossRef] [Green Version]
- Michalak, I.; Witek-Krowiak, A.; Chojnacka, K.; Bhatnagar, A. Advances in biosorption of microelements—the starting point for the production of new agrochemicals. Rev. Inorg. Chem. 2015, 35, 115–133. [Google Scholar] [CrossRef]
- Jacela, J.Y.; DeRouchey, J.M.; Tokach, M.D.; Goodband, R.D.; Nelssen, J.L.; Renter, D.G.; Dritz, S.S. Feed additives for swine: Fact sheets—high dietary levels of copper and zinc for young pigs, and phytase. J. Swine Health Prod. 2010, 18, 87–91. [Google Scholar] [CrossRef] [Green Version]
- McGrath, S.P.; Chaudri, A.M.; Giller, K.E. Long-term effect of metals in sewage sludge on soils microorganisms and plants. J. Ind. Microbiol. 1995, 14, 94–104. [Google Scholar] [CrossRef]
- Hernández, A.; Pluske, J.R.; D’Souza, D.N.; Mullan, B.P. Levels of copper and zinc in diets for growing and finishing pigs can be reduced without detrimental effects on production and mineral status. Animal 2008, 2, 1763–1771. [Google Scholar] [CrossRef] [Green Version]
- Michalak, I.; Chojnacka, K.; Korniewicz, A. New feed supplement from macroalgae as the dietary source of microelements for pigs. Open Chem. 2015, 13, 1341–1352. [Google Scholar] [CrossRef]
- Dederen, L.H.T. Marine eutrophication in Europe: Similarities and regional differences in appearance. In Marine Coastal Eutrophication: Proceedings of an International Conference; Vollenweider, R.A., Marchetti, R., Viviani, R., Eds.; Elsevier: Bologna, Italy, 1992; pp. 21–24. [Google Scholar]
- Haroon, A.M.; Szaniawska, A.; Normant, M.; Janas, U. The biochemical composition of Enteromorpha spp. from the Gulf of Gdańsk coast on the southern Baltic Sea. Oceanologia 2000, 42, 19–28. [Google Scholar]
- Szefer, P.; Skwarzec, B. Concentration of elements in some seaweeds from coastal region of the southern Baltic and in the Żarnowiec Lake. Oceanologia 1988, 25, 87–98. [Google Scholar]
- Żbikowski, R.; Szefer, P.; Latała, A. Distribution and relationships between selected chemical elements in green alga Enteromorpha sp. from the southern Baltic. Environ. Poll. 2006, 143, 435–448. [Google Scholar] [CrossRef]
- Saeid, A.; Chojnacka, K.; Korczyński, M.; Korniewicz, D.; Dobrzański, Z. Effect on supplementation of Spirulina maxima enriched with Cu on production performance, metabolical and physiological parameters in fattening pigs. J. Appl. Phycol. 2013, 25, 1607–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feeding Standards for Poultry and Swine; Polish Academy of Sciences, Institute of Animals Physiology and Feeding: Warsaw, Poland, 2005.
- Rak, L.; Morzyk, K. Chemiczne Badania Mięsa; Wydawnictwo Akademii Rolniczej we Wrocławiu: Wrocław, Poland, 2007. (In Polish) [Google Scholar]
- Rutkowski, A. Wartość pokarmowa zbóż dla kurcząt brojlerów. Rocz. Akad. Rol. Poznaniu 1996, 267, 22–25. (In Polish) [Google Scholar]
- Toldrá, F.; Reig, M. Innovations for healthier processed meats. Trends Food Sci. Technol. 2011, 22, 517–522. [Google Scholar] [CrossRef]
- Svoboda, M.; Saláková, A.; Fajt, Z.; Kotrbáček, V.; Ficek, R.; Drábek, J. Efficacy of Se-enriched alga Chlorella spp. and Se-enriched yeast on tissue selenium retention and carcass characteristics in finisher pigs. Acta Vet. Brno 2009, 78, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Hintz, H.F.; Heitman, H. Sewage-grown algae as a protein supplement for swine. Anim. Prod. 1967, 9, 135–140. [Google Scholar] [CrossRef]
- Suzuki, K.; Shimizu, Y.; Kadowaki, H. Influence of dried seaweed stalk and breadcrumbs in pig feed on meat production and quality. Jpn. J. Swine Sci. 2002, 39, 66–70. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Development. Analiza Sytuacji Rynkowej na Podstawowych Rynkach Rolnych w Grudniu 2011 Oraz w Całym 2011 Roku; Ministry of Agriculture and Rural Development: Warsaw, Poland, 2012. Available online: www.minrol.gov.pl (accessed on 15 May 2012).
- Sardi, L.; Martelli, G.; Lambertini, L.; Parisini, P.; Mordenti, A. Effects of a dietary supplement of DHA-rich marine algae on Italian heavy pig production parameters. Livestock Sci. 2006, 103, 95–103. [Google Scholar] [CrossRef]
- Olszewski, A. Technologie Przetwórstwa Mięsa; WNT: Warsaw, Poland, 2007. [Google Scholar]
- Przybylski, W.; Jaworska, D.; Czarniecka-Skubina, E.; Kajak-Siemaszko, K. Ocena możliwości wyodrębniania mięsa kulinarnego o wysokiej jakości z uwzględnieniem mięsności tuczników, pomiaru barwy i pH z zastosowaniem analizy skupień. Żywność Nauka Technologia Jakość 2008, 4, 43–51. (In Polish) [Google Scholar]
Ingredient (in 1 kg of Mixture) | Unit | Type of Mixture | ||
---|---|---|---|---|
”Starter” | ”Grower” | ”Finisher” | ||
Net energy | kcal | 2340 | 2280 | 2281 |
Metabolizable energy | MJ | 13.6 | 13.2 | 13.2 |
Dry mass | % | 87.3 | 87.2 | 87.1 |
Crude protein | % | 17.4 | 15.7 | 14.5 |
Crude fiber | % | 3.00 | 2.80 | 3.50 |
Crude fat | % | 5.00 | 3.10 | 3.20 |
Crude ash | % | 5.10 | 4.30 | 3.70 |
N-free extractives | % | 56.8 | 61.3 | 62.2 |
L-Lysine | % | 1.17 | 0.93 | 0.85 |
Methionine | % | 0.39 | 0.29 | 0.26 |
Methionine+Cysteine | % | 0.71 | 0.60 | 0.55 |
L-Threonine | % | 0.75 | 0.59 | 0.54 |
Tryptophan | % | 0.23 | 0.20 | 0.16 |
Isoleucine | % | 0.66 | 0.59 | 0.51 |
Calcium (Ca) total | % | 0.73 | 0.68 | 0.60 |
Phosphorus (P) total | % | 0.55 | 0.50 | 0.43 |
Mineral phosphorus (P) | % | 0.16 | 0.15 | 0.13 |
Digestible phosphorus (P) | % | 0.34 | 0.30 | 0.25 |
Phytase | FTUa | 500 | 510 | 425 |
Sodium (Na) | % | 0.20 | 0.20 | 0.14 |
Iron (Fe)b | mg | 198 | 183 | 172 |
Manganese (Mn)b | mg | 91 | 82 | 73 |
Copper (Cu)b | mg | 167 | 25 | 22 |
Zinc (Zn)b | mg | 157 | 148 | 126 |
Iodine (I)b | mg | 1.66 | 1.49 | 1.26 |
Cobalt (Co)b | mg | 0.88 | 0.81 | 0.68 |
Selenium (Se)b | mg | 0.49 | 0.48 | 0.44 |
Vitamin Ac | I.U. | 16,000 | 12,000 | 10,000 |
Vitamin D3c | I.U. | 2000 | 1998 | 1665 |
Vitamin Ec | mg | 150 | 124 | 104 |
Vitamin K3c | mg | 4.00 | 1.80 | 1.50 |
Vitamin B1c | mg | 2.40 | 1.80 | 1.50 |
Vitamin B2c | mg | 6.40 | 4.80 | 4.00 |
Vitamin B3 (Niacin)c | mg | 32.0 | 24.0 | 20.0 |
Vitamin B5 (Pantothenic acid)c | mg | 16.0 | 12.0 | 10.0 |
Vitamin B6c | mg | 4.8 | 3.6 | 3.0 |
Vitamin B12c | mcg | 40.0 | 30.0 | 25.0 |
Vitamin Cc | mg | 100 | 100 | 83.3 |
Biotinc | mcg | 160 | 120 | 100 |
Folic acid c | mg | 3.20 | 2.40 | 2.00 |
Cholinec | mg | 350 | 250 | 208 |
Microelement | Requirement | ”Starter” | ”Grower” | ”Finisher” |
---|---|---|---|---|
Cu | Requirement for Cu in the standard feed that should be covered by the feed additive | 25% | 84% | 84% |
The coverage of the requirement by enriched algae (as a premix) | 26% | 100% | 100% | |
Zn | Requirement for Cu in the standard feed that should be covered by the feed additive | 28% | 15% | 15% |
The coverage of the requirement by enriched algae (as a premix) | 32% | 18% | 18% |
Element | ”Starter” | ”Grower” | ”Finisher” | |||
---|---|---|---|---|---|---|
C | MA | C | MA | C | MA | |
mean ± SD (mg/kg DM) | ||||||
Ca | 4412 ± 1484 | 4476 ± 698 | 4038 ± 787 | 3819 ± 581 | 3611 ± 595 | 2872 ± 732 |
Cu | 13.3 ± 7.6 | 4.08 ± 0.62 | 9.06 ± 2.16 | 5.54 ± 1.06 | 11.3 ± 3.7 | 6.16 ± 4.9 |
Fe | 206 ± 141 | 166 ± 87 | 149 ± 79 | 193 ± 56 | 205 ± 9 | 91.2 ± 63 |
K | 3550 ± 716 | 3216 ± 444 | 3459 ± 593 | 3461 ± 566 | 3721 ± 270 | 2854 ± 576 |
Mg | 788 ± 156 | 728 ± 107 | 767 ± 125 | 750 ± 118 | 846 ± 72 | 674 ± 123 |
Mn | 82.0 ± 29.7 | 61.3 ± 16.3 | 66.4 ± 21.0 | 77.0 ± 15.5 | 63.7 ± 12.8 | 52.0 ± 16.7 |
Na | 999 ± 187 | 909 ± 111 | 866 ± 118 | 890 ± 136 | 841 ± 84 | 745 ± 222 |
Zn | 91.4 ± 22.9 | 73.0 ± 9.8 | 78.1 ± 17.5 | 76.0 ± 14.3 | 86.5 ± 11.4 | 62.3 ± 14.8 |
Specification | C | MA | p Value | Statistical Test |
---|---|---|---|---|
Mean ± SD | ||||
Feces | ||||
Feces excreted (g) | 765 ± 74 | 865 ± 254 | 0.749 | Mann-Whitney |
Dry matter (%) | 32.7 ± 3.0 | 31.8 ± 5.9 | 0.750 | Test t |
Excreted dry matter (g) | 249 ± 11 | 264 ± 29 | 0.251 | Test t |
Urine | ||||
Urine excreted (g) | 5 095 ± 1 035 | 4 079 ± 1 276 | 0.161 | Test t |
N (%) | 0.427 ± 0.116 | 0.572 ± 0.154 | 0.0956 | Test t |
N excreted in urine (g) | 20.8 ± 1.9 | 21.8 ± 2.7 | 0.483 | Test t |
Specification | C | MA | p Value | Statistical Test |
---|---|---|---|---|
Mean ± SD | ||||
Apparent Fecal Nutrient Digestibility (%) | ||||
Dry matter | 86.2 ± 1.3 | 84.9 ± 1.8 | 0.184 | Test t |
Dry organic matter | 88.1 ± 1.2 | 87.0 ± 1.6 | 0.208 | Test t |
Total protein | 87.4 ± 1.8 | 86.9 ± 3.7 | 0.689 | Mann-Whitney |
Total fat | 77.0 ± 3.4 | 78.9 ± 8.6 | 0.630 | Test t |
Crude fiber | 22.0 ± 8.2 | 18.8 ± 5.3 | 0.443 | Test t |
Crude ash | 50.2 ± 4.4 | 42.5 ± 6.3 | 0.0330 | Test t |
Nitrogen-free extractives | 91.9 ± 0.8 | 90.8 ± 1.1 | 0.0731 | Test t |
Daily Nitrogen Balance and Nitrogen Retention | ||||
Nitrogen taken in the feed (g) | 50.2 ± 0.0 | 50.2 ± 0.0 | - | - |
Nitrogen excreted (g) in: | ||||
Feces | 6.32 ± 0.90 | 6.53 ± 1.86 | 0.689 | Mann-Whitney |
Urine | 20.8 ± 1.9 | 21.8 ± 2.7 | 0.486 | Test t |
Nitrogen retention (g) | 23.1 ± 2.0 | 21.9 ± 2.0 | 0.331 | Test t |
Retention in relation to N intake (%)—absorption | 45.9 ± 3.9 | 43.5 ± 3.9 | 0.311 | Test t |
Specification | C | MA | p Value | Statistical Test |
---|---|---|---|---|
Mean ± SD | ||||
Assessment of Slaughter Value of Carcass | ||||
Hot carcass weight (kg) | 90.7 ± 2.8 | 88.3 ± 4.1 | 0.143 | Test t |
Carcass yield (%) | 54.7 ± 2.3 | 53.6 ± 3.5 | 0.408 | Cochran-Cox |
Loin eye area (cm2) | 38.9 ± 4.8 | 37.5 ± 5.0 | 0.548 | Test t |
Weight of liver (g) | 1 724 ± 227 | 1 474 ± 200 | 0.0284 | Mann-Whitney |
Average backfat thickness (mm) | ||||
Over the shoulder | 38.7 ± 6.7 | 37.7 ± 5.6 | 0.721 | Test t |
On the midback | 20.2 ± 5.1 | 21.9 ± 5.7 | 0.489 | Test t |
On the rump I | 20.2 ± 3.1 | 21.0 ± 5.3 | 0.650 | Mann-Whitney |
On the rump II | 13.8 ± 2.6 | 14.3 ± 4.4 | 0.762 | Test t |
On the rump III | 16.2 ± 3.6 | 16.2 ± 4.7 | 1.000 | Test t |
Assessment of meat quality | ||||
pH 1 (after 45 minutes) | 6.28 ± 0.24 | 6.26 ± 0.23 | 0.854 | Test t |
pH 24 (after 24 hours) | 5.51 ± 0.0944 | 5.50 ± 0.0860 | 0.733 | Test t |
Water absorption (%) | 32.9 ± 0.9 | 30.7 ± 3.4 | 0.0686 | Cochran-Cox |
Drip loss (%) | 5.46 ± 2.13 | 5.05 ± 2.43 | 0.694 | Test t |
Marbling (degrees) | 1.75 ± 0.26 | 1.70 ± 0.42 | 1.000 | Mann-Whitney |
Electrical conductivity (mS/cm2) | 3.97 ± 1.15 | 4.04 ± 1.08 | 0.890 | Test t |
The content in muscles (%) | ||||
Water | 72.4 ± 1.1 | 72.5 ± 0.9 | 0.893 | Test t |
Fat | 3.24 ± 0.89 | 2.62 ± 0.65 | 0.0821 | Mann-Whitney |
Protein | 23.3 ± 0.7 | 23.8 ± 0.7 | 0.106 | Test t |
Color | ||||
L (color lightness) | 50.8 ± 1.7 | 51.1 ± 3.0 | 0.838 | Test t |
a (color value-red) | 4.49 ± 0.72 | 4.52 ± 0.82 | 0.932 | Test t |
b (color value-yellow) | 0.265 ± 0.806 | 0.0340 ± 1.38 | 0.653 | Test t |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalak, I.; Chojnacka, K.; Korniewicz, D. Effect of Marine Macroalga Enteromorpha sp. Enriched with Zn(II) and Cu(II) ions on the Digestibility, Meat Quality and Carcass Characteristics of Growing Pigs. J. Mar. Sci. Eng. 2020, 8, 347. https://doi.org/10.3390/jmse8050347
Michalak I, Chojnacka K, Korniewicz D. Effect of Marine Macroalga Enteromorpha sp. Enriched with Zn(II) and Cu(II) ions on the Digestibility, Meat Quality and Carcass Characteristics of Growing Pigs. Journal of Marine Science and Engineering. 2020; 8(5):347. https://doi.org/10.3390/jmse8050347
Chicago/Turabian StyleMichalak, Izabela, Katarzyna Chojnacka, and Daniel Korniewicz. 2020. "Effect of Marine Macroalga Enteromorpha sp. Enriched with Zn(II) and Cu(II) ions on the Digestibility, Meat Quality and Carcass Characteristics of Growing Pigs" Journal of Marine Science and Engineering 8, no. 5: 347. https://doi.org/10.3390/jmse8050347
APA StyleMichalak, I., Chojnacka, K., & Korniewicz, D. (2020). Effect of Marine Macroalga Enteromorpha sp. Enriched with Zn(II) and Cu(II) ions on the Digestibility, Meat Quality and Carcass Characteristics of Growing Pigs. Journal of Marine Science and Engineering, 8(5), 347. https://doi.org/10.3390/jmse8050347